常微分方程总结

时间:2024.4.1

常微分方程

·可分离变量的微分方程

形如           的方程,称为可分离变量的微分方程.

求解步骤:分离变量,得               两边积分,得

求出通解

·齐次微分方程

形如的微分方程;叫做齐次微分方程

对它进行求解时,只要作变换原方程便化为可分离变量的微分方程来求解。于是有,从而原方程可化为,即

·一阶线性微分方程

  形如的方程称为一阶线性微分方程,

 

其通解为

·可降阶的高阶微分方程

形如          的微分方程,两端积分即可。

形如           的微分方程,方程右端不显含未知函数y,另,则

形如           的微分方程,方程右端不显含自变量x,设,则

·二阶常系数齐次线性微分方程

  形如                 的微分方程,称为二阶常系数齐次线性微分方程

通解归纳如下

·n阶常系数线性齐次线性微分方程的通解

·二阶常系数非齐次线性微分方程

                型通解


                                 型通解

 

                                                             



第二篇:二阶常微分方程解


第七节  二阶常系数线性微分方程的解法

在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。

§7.1  二阶常系数线性齐次方程及其求解方法

设给定一常系数二阶线性齐次方程为

       +p+qy=0             (7.1)

    其中p、q是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y1,y就可以了,下面讨论这样两个特解的求法。

我们先分析方程(7.1)可能具有什么形式的特解,从方程的形式上来看,它的特点是,y各乘以常数因子后相加等于零,如果能找到一个函数y,其,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数erx,符合上述要求,于是我们令

       y=erx

(其中r为待定常数)来试解

将y=erx=rerx=r2erx代入方程(7.1)

得      r2erx+prerx+qerx=0

或      erx(r2+pr+q)=0

因为erx≠0,故得

       r2+pr+q=0

由此可见,若r是二次方程

      r2+pr+q=0             (7.2)

的根,那么erx就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1)的特征方程。

特征方程(7.2)是一个以r为未知函数的一元二次代数方程。特征方程的两个根r,r2,称为特征根,由代数知识,特征根r1,r2有三种可能的情况,下面我们分别进行讨论。

(1)若特证方程(7.2)有两个不相等的实根r,r2,此时er1x,er2x是方程(7.1)的两个特解。

因为    =e≠常数

所以er1x,er2x为线性无关函数,由解的结构定理知,方程(7.1)的通解为

y=C1er1x+C2er2x

(2)若特征方程(7.2)有两个相等的实根r1=r2,此时p2-4q=0,即

有r1=r2,这样只能得到方程(7.1)的一个特解y=er1x,因此,我们还要设法找出另一个满足≠常数,的特解y2,故应是x的某个函数,设=u,其中u=u(x)为待定函数,即

    y2=uy1=uerx

对y2求一阶,二阶导数得

    er1x+ruer1x=(+r1u)er1x

        =(r2u+2r1)er1x

将它们代入方程(7.1)得

    (r21u+2r1)er1x+p(+r1u)er1x+quer1x=0

或

        [+(2r1+p) +(r+pr1+q)u]er1x=0

因为er1x≠0,且因r1是特征方程的根,故有r+pr+q=0,又因r1=-故有2r1+p=0,于是上式成为

    =0

显然满足=0的函数很多,我们取其中最简单的一个

    u(x)=x

则y2=xerx是方程(7.1)的另一个特解,且y1,y2是两个线性无关的函数,所以方程(7.1)的通解是

    y=C1er1x+C2xer1x=(C1+C2x)er1x

    (3)若特征方程(7.2)有一对共轭复根    r1=α+iβ,r2=α-iβ

此时方程(7.1)有两个特解

    y1=e(α+iβ)x    y2=e(α-iβ)x

则通解为

    y=C1e(α+iβ)x+C2e(α-iβ)x

其中C1,C2为任意常数,但是这种复数形式的解,在应用上不方便。在实际问题中,常常需要实数形式的通解,为此利用欧拉公式

    eix=cosx+isinx,e-ix=cosx-isinx

有       (eix+e-ix)=cosx

     (eix-e-ix)=sinx

     (y1+y)=eαx(eiβx+e-iβx)=eαxcosβx

     (y1-y2)=eαx(eiβx-e-iβx)=eαxsinβx

由上节定理一知, (y1+y2), (y1-y2)是方程(7.1)的两个特解,也即eαxcosβx,eαxsinβx是方程(7.1)的两个特解:且它们线性无关,由上节定理二知,方程(7.1)的通解为

    y=C1eαxcosβx+C2eαxsinβx

或      y=eαx(C1cosβx+C2sinβx)

其中C1,C2为任意常数,至此我们已找到了实数形式的通解,其中α,β分别是特征方程(7.2)复数根的实部和虚部。

综上所述,求二阶常系数线性齐次方程(7.1)的通解,只须先求出其特征方程(7.2)的根,再根据他的三种情况确定其通解,现列表如下

例1.  求下列二阶常系数线性齐次方程的通解

        (1) +3-10y=0

(2) -4+4y=0

(3) +4+7y=0

解  (1)特征方程r2+3r-10=0有两个不相等的实根

          r1=-5,r2=2

所求方程的通解  y=C1e-5r+C2e2x

(2)特征方程r2-4r+4=0,有两重根

          r1=r2=2

所求方程的通解y=(C1+C2x)e2x

(3)特征方程r2+4r+7=0有一对共轭复根

          r1=-2+i    r2=-2-i

所求方程的通解  y=e-2x(C1cosx+C2sinx)

§7.2  二阶常系数线性非齐次方程的解法

由上节线性微分方程的结构定理可知,求二阶常系数线性非齐次方程

    +p+qy=f(x)             (7.3)

的通解,只要先求出其对应的齐次方程的通解,再求出其一个特解,而 后相加就得到非齐次方程的通解,而且对应的齐次方程的通解的解法,前面已经解决,因此下面要解决的问题是求方程(7.3)的一个特解。

方程(7.3)的特解形式,与方程右边的f(x)有关,这里只就f(x)的两种常见的形式进行讨论。

一、f(x)=pn(x)eαx,其中pn(x)是n次多项式,我们先讨论当α=0时,即当

f(x)=pn(x)时方程

    +p+qy=pn(x)             (7.4)

的一个特解。

(1)如果q≠0,我们总可以求得一n次多项式满足此方程,事实上,可设特解=Qn(x)=a0xn+a1xn-1+…+an,其中a0,a1,…an是待定常数,将及其导数代入方程(7.4),得方程左右两边都是n次多项式,比较两边x的同次幂系数,就可确定常数a0,a1,…an。

例1.  求+2y=x2-3的一个特解。

解  自由项f(x)=x2-3是一个二次多项式,又q=2≠0,则可设方程的特解为

    =a0x2+a1x+a2

求导数  =2a0x+a1

        =2a0

代入方程有2a0x2+(2a0+2a1)x+(2a0+a1+2a)=x2-3比较同次幂系数

     解得  

所以特解x2x-

(2)如果q=0,而p≠0,由于多项式求导一次,其次数要降低一次,此时=Qn(x)不能满足方程,但它可以被一个(n+1)次多项式所满足,此时我们可设

    =xQn(x)=a0xn+1+a1xn+…+anx

代入方程(7.4),比较两边系数,就可确定常数a0,a1,…an。

例2.  求方程+4=3x2+2的一个特解。

解  自由项  f(x)=3x2+2是一个二次多项式,又q=0,p=4≠0,故设特解

    =a0x3+a1x2+a2x

求导数  =3a0x2+2a1x+a2

    =6a0x+2a1

代入方程得

12a0x2+(8a1+6a0)x+(2a1+4a2)=3x2+2,比较两边同次幂的系数

     解得    

所求方程的特解  x3x2x

(3)如果p=0,q=0,则方程变为=pn(x),此时特解是一个(n+2)次多项式,可设

=x2Qn(x),代入方程求得,也可直接通过两次积分求得。

下面讨论当α≠0时,即当f(x)=pn(x)eαx时方程

    +p+qy=pn(x)eαx             (7.5)

的一个特解的求法,方程(7.5)与方程(7.4)相比,只是其自由项中多了一个指数函数因子eαx,如果能通过变量代换将因子eαx去掉,使得(7.5)化成(7.4)式的形式,问题即可解决,为此设y=ueαx,其中u=u(x)是待定函数,对y=ueαx,求导得

=eαx+αueαx

求二阶导数  =eαx+2αeαx+α2ueαx

代入方程(7.5)得

    eαx+2α+α2u]+peαx+αu]+queαx=pn(x)eαx

消去eαx得

    +(2α+p) +(α2+pα+q)u=pn(x)             (7.6)

由于(7.6)式与(7.4)形式一致,于是按(7.4)的结论有:

(1)如果α2+pα+q≠0,即α不是特征方程r2+pr+q=0的根,则可设(7.6)的特解u=Qn(x),从而可设(7.5)的特解为

    =Qn(x)eαx

    (2)如果α2+pα+q=0,而2α+p≠0,即α是特征方程r2+pr+q=0的单根,则可设(7.6)的特解u=xQn(x),从而可设(7.5)的特解为

    =xQn(x)eαx

    (3)如果r2+pα+q=0,且2α+p=0,此时α是特征方程r2+pr+q=0的重根,则可设(7.6)的特解u=x2Qn(x),从而可设(7.5)的特解为

    =x2Qn(x)eαx

    例3.  求下列方程具有什么样形式的特解

    (1)+5+6y=e3x

(2) +5+6y=3xe-2x

(3) +α+y=-(3x2+1)e-x

解  (1)因α=3不是特征方程r2+5r+6=0的根,故方程具有形如

=a0e3x的特解。

    (2)因α=-2是特征方程r2+5r+6=0的单根,故方程具有形如

    =x(a0x+a1)e-2x的特解。

    (3)因α=-1是特征方程r2+2r+1=0的二重根,所以方程具有形如

    =x2(a0x2+a1x+a)e-x的特解。

例4.  求方程+y=(x-2)e3x的通解。

解  特征方程  r+1=0

    特征根  r=±i得,对应的齐次方程+y=0的通解为

    Y=C1cosx+Csinx

由于α=3不是特征方程的根,又pn(x)=x-2为一次多项式,令原方程的特解为

    =(a0x+a1)e3x

此时u=a0x+a1,α=3,p=0,q=1,求u关于x的导数=a0=0,代入

+(2α+p) +(α2+αp+q)u=(x-2)得:

    10a0x+10a1+6a0=x-2

比较两边x的同次幂的系数有

       解得  a0,a1=-

于是,得到原方程的一个特解为

    =(x-)e3x

所以原方程的通解是

    y=Y+=C1cosx+C2sinx+(x-)e3x

例5.  求方程-2-3y=(x+1)e-x的通解。

解  特征方程  r2-2r-3=0

特征根  r1=-1,r2=3

所以原方程对应的齐次方程-2-3y=0的通解Y=C1e-x+C2e3x,由于α=-1是特征方程的单根,又pn(x)=x2+1为二次多项式,令原方程的特解

    =x(a0x2+a1x+a2)e-x

此时      u=a0x3+a1x2+a2x,α=-1,p=-2,q=-3

对u关于x求导

    =3a0x2+2a1x+a2

        =6a0x+2a1

代入+(2α+p) +(α2+pr+q)u=x2+1,得

-12a0x2+(6a0-8a)x+2a1-4a=x2+1比较x的同次幂的系数有

        解得   

故所求的非齐次方程的一个特解为

    =- ()e-x

    二、f(x)=pn(x)eαxcosβx或pn(x)eαxsinβx,即求形如

    +p+qy=pn(x)eαxcosβx             (7.7)

        +p+qy=pn(x)eαxsinβx             (7.8)

这两种方程的特解。

由欧拉公式知道,pn(x)eαxcosβx,pn(x)eαxsinx分别是函数pn(x)e(α+iβ)x的实部和虚部。

我们先考虑方程

    +p+qy=pn(x)e(α+iβ)x             (7.9)

方程(7.9)与方程(7.5)类型相同,而方程(7.5)的特解的求法已在前面讨论。 

由上节定理五知道,方程(7.9)的特解的实部就是方程(7.7)的特解,方程(7.9)的特解的虚部就是方程(7.8)的特解。因此,只要先求出方程(7.9)的一个特解,然而取其实部或虚部即可得方程(7.7)或(7.8)的一个特解。

注意到方程(7.9)的指数函数e(α+iβ)x中的α+iβ(β≠0)是复数,而特征方程是实系数的二次方程,所以α+iβ最多只能是它的单根。因此方程(7.9)的特解形为Qn(x)e(α+iβ)x或xQn(x)e(α+iβ)x。

例6.  求方程-y=excos2x的通解。

解  特征方程  r2-1=0

    特征根  r1=1,r2=-1

于是原方程对应的齐次方程的通解为

    Y=C1ex+C2e-x

为求原方程的一个特解。

先求方程-y=e(1+2i)x的一个特解,由于1+2i不是特征方程的根,且pn(x)为零次多项式,故可设u=a0,此时α=(1+2i),p=0,q=-1代入方程

+(2α+p) +(α2+αp+q)u=1

得[(1+2i)2-1]a0=1 ,即(4i-4)a0=1,得

    a0=- (i+1)

这样得到-y=e(1+2i)x的一个特解

    y=- (i+1)e(1+2i)x

由欧拉公式

y =- (i+1)e(1+2i)x

 =- (i+1)ex(cos2x+isin2x)

 =-ex[(cos2x-sin2x)+i(cos2x+sin2x)]

取其实部得原方程的一个特解

    =-ex(cos2x-sin2x)

故原方程的通解为

    y=Y+=C1ex+C2e-xex(cos2x-sin2x)

    例7.  求方程+y=(x-2)e3x+xsinx的通解。

解  由上节定理三,定理四,本题的通解只要分别求+y=0的特解Y,

    +y=(x-2)e3x的一个特解,

    +y=xsinx的一个特解

然而相加即可得原方程的通解,由本节例4有

    Y=C1cosx+C2sinx,=(x-)e3x

下面求,为求先求方程

    +y=xeix

由于i是特征方程的单根,且pn(x)=x为一次式,故可设u=x(a0x+a1)=a0x2+a1x,此时α=i,p=0,q=1,对u求导

    =2a0x+a1=2a0

代入方程

    +(2α+p) +(α2+pα+q)u=x

得      2a+2i(2a0x+a1)+0=x

即      4ia0x+2ia1+2a0=x

比较x的同次幂的系数有:

      得 

即方程+y=xeix的一个特解

    =(-x2x)eix

 =(-x2)(cosx+isinx)

 =(x2sinx+xcosx)+i(-x2cosx+xsinx)

取其虚部,得=-x2cosx+xsinx

所以,所求方程的通解y =Y+

 =C1cosx+C2sinx+()e3xxcosx+xsinx

综上所述,对于二阶常系数线性非齐次方程

    +p+qy=f(x)

当自由项f(x)为上述所列三种特殊形式时,其特解可用待定系数法求得,其特解形式列表如下:

    以上求二阶常系数线性非齐次方程的特解的方法,当然可以用于一阶,也可以推广到高阶的情况。

例8.  求y+3y″+3y′+y=ex的通解

解  对应的齐次方程的特征方程为

       r3+3r2+3r+1=0    r1=r2=r3=-1

所求齐次方程的通解Y=(C1+C2x+C3x2)e-x

由于α=1不是特征方程的根

因此方程的特解=a0ex代入方程可解得a0

故所求方程的通解为y=Y+=(C1+C2x+C3x2)e-xex。

§7.3  欧拉方程

下述n阶线性微分方程

    a0xn+a1xn-1+…+an-1x+any=f(x)

称为欧拉方程,其中a0,a1,…an都是常数,f(x)是已知函数。欧拉方程可通过变量替换化为常系数线性方程。下面以二阶为例说明。

对于二阶欧拉方程

    a0x2+a1x+a2y=f(x)             (7.10)

作变量替换令x=et,即t=lnx

引入新变量t,于是有

   

     ()= ()+ ()

 =

 =

代入方程(7.10)得

    a0()+a2+a1y=f(et)

即      y=f(et)

它是y关于t的常系数线性微分方程。

例9.  求x2+x=6lnx-的通解。

解  所求方程是二阶欧拉方程

作变换替换,令x=et,则

   

   

代入原方程,可得

    =6t-e-t

两次积分,可求得其通解为

    y=C1+C2t+t3-e-t

代回原来变量,得原方程的通解

    y=C1+C2lnx+(lnx)3-

第八节  常系数线性方程组

前面讨论的微分方程所含的未知函数及方程的个数都只有一个,但在实际问题中常遇到含有一个自变量的两个或多个未知函数的常微分方程组。本节只讨论常系数线性方程组,并且用代数的方法将其化为常系数线性方程的求解问题。下面以例说明。

例1.  求方程组

    的通解。

解  与解二元线性代数方程组中的消元法相类似,我们设法消去一个未知函数,由(1)得

    y= (-x-et)             (3)

将其代入(2)得

     (-et)-4x- (-x-et)=0

化简得

    -4-5x=-2et

它是一个二阶常系数非齐次方程

它的通解为        x=C1e5t+C2e-tet

代入(3)得        y=2C1e5t-C2e-tet

即所求方程组的通解为

   

例2.  求解方程组

    的通解

解  为消去y,先消去,为此将(1)-(2)得

    +x+2y+t=0

即有    y=- (+x+t)             (3)

代入(2)得

 (+x+t)-x+ (+x+t)-2t=0

即      -2+x=3t-1

这是一个二阶常系数线性非齐次方程,解得

    x=Cet+C2tet-3t-7

代入(3)得  y=-C1et-C(+t)et+t+5

所以原方程组的通解为

   

更多相关推荐:
常微分方程小结

常微分方程小结组员黎英20xx104417韦旭20xx104408陆华豪20xx104505常微分常微分方程只含一个自变量的微分方程方程d2ydycyft1112bdtdtdydyty0112dtdtd2yg2...

一阶常微分方程解法总结

第一章一阶微分方程的解法的小结可分离变量的方程形如dydxfxgy当gy0时得到dygyfxdx两边积分即可得到结果当g00时则yx0也是方程的解例11dydxxy解当y0时有x2dyyxdx两边积分得到lny...

常微分方程第五章微分方程组总结

一线性微分方程组的一般理论1线性微分方程组一般形式为a11tx1a12tx2a1ntxnf1tx1xatxatxatxft22112222nn21an1tx1an2tx2anntxnfntxn记a11ta12t...

一阶常微分方程习题(一)

一阶常微分方程习题一1dydx2xy并满足初始条件x0y1的特解2xdx两边积分有lnyx2c解dyyyexeccex22另外y0也是原方程的解c0时y0原方程的通解为ycex2x0y1时c1特解为yex2y2...

常微分方程发展简史—解析理论与定性理论阶段

第三讲常微分方程发展简史解析理论与定性理论阶段3常微分方程解析理论阶段19世纪19世纪为常微分方程发展的解析理论阶段作为微分方程向复数域的推广微分方程解析理论是由Cauchy开创的在Cauchy之后重点转向大范...

常微分方程

第八章常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程贝努利Bernoulli方程全微分方程可用简单变量代换求解的微分方程可降阶的高微分方程线性微分方程解的性质及解的结构定...

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用目录摘要11引言22常微分方程的发展概况23数学建模简介34常微分方程和数学建模结合的特点35常微分方程在数学建模中的应用351建立微分方程的方法452市场价格模型553广告模型75...

常微分方程试卷及答案

20xx20xx学年第二学期常微分方程考试AB卷答案院年级专业填空题每题4分共20分1形如y39PxyQxPxQx连续的方程是方程它的通解为yePxdxPxdxdxcQxe2形如yy0的方程是阶齐次还是非齐次系...

常微分方程基本概念习题及解答

12常微分方程基本概念习题及解答1dy2xy并满足初始条件x0y1的特解dx解dy2xdx两边积分有lnyx2cy2yexeccex2另外y0也是原方程的解c0时y0原方程的通解为ycex2x0y1时c1特解为...

对于微分方程模型的总结

微分方程预测1特点描述实际对象某些特性随时间空间而演变的过程分析它的变化规律预测它的未来形态特性会给出关于变化率的一些关系2经典案例人口预测模型模型一马尔萨斯Malthus指数增长模型假设了种群增长率r为一常数...

常微分方程发展简史

第三讲常微分方程发展简史解析理论与定性理论阶段3常微分方程解析理论阶段19世纪19世纪为常微分方程发展的解析理论阶段作为微分方程向复数域的推广微分方程解析理论是由Cauchy开创的在Cauchy之后重点转向大范...

考研数学:微积分考点总结

凯程考研集训营为学生引路为学员服务考研数学微积分考点总结一历年微积分考试命题特点微积分复习的重点根据考试的趋势来看难度特别是怪题不多就是综合性串题以往考试选择填空题比较少而今年变大了微积分一共74分填空选择占3...

常微分方程总结(22篇)