均值不等式公式总结及应用

时间:2024.4.20

均值不等式应用

1. (1)若,则   (2)若,则           (当且仅当时取“=”)

2. (1)若,则      (2)若,则      (当且仅当时取“=”)

(3)若,则  (当且仅当时取“=”)

3.若,则 (当且仅当时取“=”)

,则 (当且仅当时取“=”)

,则  (当且仅当时取“=”)

4.若,则  (当且仅当时取“=”)

,则  (当且仅当时取“=”)

5.若,则(当且仅当时取“=”)

『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.

(2)求最值的条件“一正,二定,三取等”

(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

应用一:求最值

例1:求下列函数的值域

(1)y=3x 2+      (2)yx

解:(1)y=3x 2+≥2= ∴值域为[,+∞)

(2)当x>0时,y=x+≥2=2;

当x<0时, y=x+= -(- x-)≤-2=-2

∴值域为(-∞,-2]∪[2,+∞)

解题技巧

技巧一:凑项

例  已知,求函数的最大值。

     解:因,所以首先要“调整”符号,又不是常数,所以对要进行拆、凑项,

当且仅当,即时,上式等号成立,故当时,

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数

例1. 当时,求的最大值。

解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到为定值,故只需将凑上一个系数即可。

,即x=2时取等号  当x=2时,的最大值为8。

评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

变式:设,求函数的最大值。

解:∵

当且仅当时等号成立。

技巧三: 分离

例3. 求的值域。

解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。

,即时,(当且仅当x=1时取“=”号)。

技巧四:换元

解析二:本题看似无法运用均值不等式,可先换元,令t=x+1,化简原式在分离求最值。

,即t=时,(当t=2即x=1时取“=”号)。

评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。

技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数的单调性。

例:求函数的值域。

解:令,则

,但解得不在区间,故等号不成立,考虑单调性。

因为在区间单调递增,所以在其子区间为单调递增函数,故

所以,所求函数的值域为

练习.求下列函数的最小值,并求取得最小值时,x 的值.

(1) (2)  (3)

2.已知,求函数的最大值.;3.,求函数的最大值.

条件求最值

1.若实数满足,则的最小值是          .

分析:“和”到“积”是一个缩小的过程,而且定值,因此考虑利用均值定理求最小值,

解: 都是正数,

时等号成立,由即当时,的最小值是6.

变式:若,求的最小值.并求x,y的值

技巧六:整体代换

多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。

2:已知,且,求的最小值。

错解:,且  故  。

错因:解法中两次连用均值不等式,在等号成立条件是,在等号成立条件是,取等号的条件的不一致,产生错误。因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。

正解:

当且仅当时,上式等号成立,又,可得时, 。

变式: (1)若,求的最小值

(2)已知,求的最小值

技巧七

已知xy为正实数,且x 2+=1,求x的最大值.

分析:因条件和结论分别是二次和一次,故采用公式ab≤。

同时还应化简中y2前面的系数为 ,  xxx·

下面将x,分别看成两个因式:

x·≤==  即x=·x

技巧八:

已知ab为正实数,2baba=30,求函数y=的最小值.

分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。

法一:a=,      ab=·b

a>0得,0<b<15

tb+1,1<t<16,ab==-2(t+)+34∵t+≥2=8

ab≤18       ∴ y≥ 当且仅当t=4,即b=3,a=6时,等号成立。

法二:由已知得:30-aba+2ba+2b≥2    ∴ 30-ab≥2

u= 则u2+2u-30≤0, -5≤u≤3

∴≤3,ab≤18,∴y

点评:①本题考查不等式的应用、不等式的解法及运算能力;②如何由已知不等式出发求得的范围,关键是寻找到之间的关系,由此想到不等式,这样将已知条件转换为含的不等式,进而解得的范围.

变式:1.已知a>0,b>0,ab-(ab)=1,求ab的最小值。
2.若直角三角形周长为1,求它的面积最大值。

技巧九、取平方

5、已知xy为正实数,3x+2y=10,求函数W=+的最值.

解法一:若利用算术平均与平方平均之间的不等关系,≤,本题很简单

+ ≤==2

解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。

W>0,W2=3x+2y+2·=10+2·≤10+()2·()2 =10+(3x+2y)=20

∴ W≤=2

变式: 求函数的最大值。

解析:注意到的和为定值。

,所以

当且仅当=,即时取等号。   故

评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。

总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。

应用二:利用均值不等式证明不等式

1.已知为两两不相等的实数,求证:

1)正数abc满足abc=1,求证:(1-a)(1-b)(1-c)≥8abc
例6:已知a、b、c,且。求证:

分析:不等式右边数字8,使我们联想到左边因式分别使用均值不等式可得三个“2”连乘,又,可由此变形入手。

解:a、b、c。同理。上述三个不等式两边均为正,分别相乘,得

。当且仅当时取等号。

应用三:均值不等式与恒成立问题

例:已知,求使不等式恒成立的实数的取值范围。

解:令

 。 ,

应用四:均值定理在比较大小中的应用:

例:若,则的大小关系是      .

分析:∵ ∴

   ∴R>Q>P。


第二篇:不等式的实际应用


不等式的实际应用

主备人:刘玲 领导签字_____________

【学习目标】:掌握不等式解决的常见题型和方法

做差法 均值不等式法 二次函数法 【学习重点】 利用不等式解决实际问题

【学习难点】 把握题意,建立合理的不等式模型。

【课前准备及检测】

阅读教材,完成下面的问题。

1 比较aa?m,的大小,其中b>a>0,m>0. bb?m

2 某工厂第一年产量为A。第二年增长率为a,第三年的增长率为b。这两年的平均增长率为x,则( )

A x?a?ba?ba?ba?b B x? C x? D x? 2222

3 某金店用一不准确的天平(两臂不等长)称黄金,某顾客要购买10克黄金,售货员先将5克的砝码放在左盘,将黄金放在右盘,使之平衡后给顾客,然后又将5克的砝码放入右盘,将另一黄金放于左盘,使之平衡后又给顾客,则顾客时间所得黄金( )

A 大于10克 B 小于10克 C 等于10克 D 小于等于10 克

【合作探究】

题型一 用二次不等式解决实际问题

例1 有纯药液一桶,倒出8升后用水补满,然后又倒出4升后再用水补满,此时桶中的农药不超过容积的28%,问桶的容积最大为多少升?

题型二 用均值不等式解决实际问题。

例2 某公路段在某时间段内的车流量y(千辆/小时)之间有函数关系:

y?920v(v?0)。 2v?3v?1600

(1)在这段时间内,当汽车的平均速度v为多少时流量y最大?最大值是多少?

(2)为保证在该时间段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?

【反思与总结】

解决实际应用题的一般步骤

【达标检测】

1 某游泳馆出售冬季学生游泳卡,每张240元,使用规定:不记名,每卡每次只限一人,每天只限1次,某班有48名同学,老师打算组织同学们集体去游泳,除需购买游泳卡外,每次还要包1辆车,包车费均为40元,若使每位同学游泳8次,每人至少交多少钱?

【选做部分】

2 某出版社出版一种书,固定成本是5000元,每本书的变动成本是0.50元,售价为10.50元,该出版社销售科付出的总劳务费与销量的平方成正比,比例系数是

到不亏损,最低发行量应是多少?

1,出版社要做625

更多相关推荐:
一元一次不等式总结及练习题

一元一次不等式和一元一次不等式组一.不等关系2.(非负数=大于等于0)=(0和正数=不小于0)(非正数=小于等于0)=(0和负数=不大于0)二.不等式基本性质1.不等式的两边加上(或减去)同一个整式,不等号的方…

一元一次不等式总结及练习题

第一章一元一次不等式和一元一次不等式组一.不等关系2.(非负数=大于等于0)=(0和正数=不小于0)(非正数=小于等于0)=(0和负数=不大于0)二.不等式基本性质1.不等式的两边加上(或减去)同一个整式,不等…

一元一次不等式总结与习题训练

一元一次不等式一、不等式的解和解集对于一个含有未知数的不等式,任何一个使这个不等式成立的未知数的值,都叫做这个不等式的解。一个不等式所有解的集合通称为解集;二、解不等式求不等式解集的过程叫做解不等式。三、用数轴…

不等式总结

1.不等式的定义:a-b0ab,a-b=0a=b,a-b0ab。?①其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。?②可以结合函数单调性的证明这个熟悉的知识背…

不等式总结

8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。9.解一元一次不等式的一般顺序:(1)去分母(运用不等式性质2、3)(2)去括号(3…

不等式总结

不等式总结一、不等式的性质1.(不等式建立的基础)两个实数a与b之间的大小关系?(1)a-b>0?a>b;??(2)a-b=0?a=b;??(3)a-b<0?a<b.??(4)???若a、b?R,则?(5)??…

精品北师大必修五不等式总结

高二不等式单元知识总结一、不等式的性质1.两个实数a与b之间的大小关系?(1)a-b>0?a>b;??(2)a-b=0?a=b;??(3)a-b<0?a<b.?a?(4)b>1?a>b;??a若a、b?R?,则…

不等式与不等式组知识点总结及习题

不等式与不等式组1定义:用符号〉,=,〈号连接的式子叫不等式。2性质:①不等式的两边都加上或减去同一个整式,不等号方向不变。②不等式的两边都乘以或者除以一个正数,不等号方向不变。③不等式的两边都乘以或除以同一个…

不等式与不等式组知识点总结

不等式和不等式组不等式的解集用数轴表示不等式的解集解一元一次不等式一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需…

高中数学不等式方法总结

一元二次不等式:一元一次不等式的解法:(依据、步骤、注意的问题,利用数轴表示)例1、已知关于x的不等式在x2?(3?a2)x?2a?1?0(–2,0)上恒成立,求实数a的取值范围.例2.关于x的不等式y?log…

高考不等式知识点总结

①(对称性)a?b?b?a②(传递性)a?b,b?c?a?c③(可加性)a?b?a?c?b?c(同向可加性)a?b,c?d?a?c?b?d(异向可减性)a?b,c?d?a?c?b?d④(可积性)a?b,c?0?…

必修五-不等式知识点总结

高中数学必修5第三章不等式复习一、不等式的主要性质:(1)对称性:a?b?b?a(2)传递性:a?b,b?c?a?c(3)加法法则:a?b?a?c?b?c;a?b,c?d?a?c?b?d(4)乘法法则:a?b,…

不等式总结(40篇)