标准气体的制备方法-称量法

时间:2024.5.8

标准气体的制备方法-称量法

一、适用范围

称量法是国际标准化组织推荐的方法。它只适用于组分之间、组分与气瓶内壁不发生反应的气体,以及在实验条件下完全处于气态的可凝结组分。

任何可凝结组分,当在最低使用温度下其分压超过它的饱和蒸气压的70%时,就不能使用。

二.所需设备

标准气体配制装由气体充填装置、气体称量装置、气瓶及气瓶预处理装置组成。

1.气体充填装置及面板

气体充填装置由真空机组、电离真空计、压力表、气路系统、气路系统由高压、中压和低压真空系统三部分组成,使组分气体和稀释气体的充灌彼此独立,避免相互玷污。采用性能良好的阀门、压力表和真空计,尽量简化气路,减少接口,以保证系统的气密性能。采用特殊设计的气瓶连接件以减少磨损。

2.气体称量装置

组分气体的称量是制备标准气体的关键,由于气瓶本身质量较大(一般为2一20kg),而充人的组分气体质量相对较小(2-20g),因此对天平要求很高。需采用大载荷(20kg)、小感量(10mg)的高精密天平称量充人气瓶的原料气体,用电子天平[最大载荷(16kg)、感量(0.1g)]称量充人气瓶的稀释气体。为了准确称量质量很大的气瓶中所充填的很少量的气体,除了对天平有很高要求外,还要求保证一定的称量量(对于组分气体质量过于小的,采用多次稀释法配制)。在称量操作中必须采取各种措施以保证称量达到高准确度。

(1)采用形状相同,质量相近的参比气瓶进行称量(即在天平的一侧放置一个参比气瓶,另一侧放待测气瓶加祛码,使之平衡)。

参比瓶称量可以抵消气瓶浮力、气瓶表面水分吸附、静电等影响。

(2)在待称气瓶一侧进行缺码加减操作,以消除天平的不等臂误差

(3)在气瓶充分达到平衡后进行称量。

(4)轻拿轻放、保持气瓶清洁,避免玷污及磨损。

(5)称量操作进行三次,取平均值。

3.气瓶及气瓶预处理装置

一般采用2L,4L,8L气瓶充装标准气体。

气瓶预处理装置用于气瓶的清洗、加热及抽空。加热的温度在一定范围内可以任意设置,钢瓶一般加热到80℃,时间2一4h,度为10Pa


第二篇:标准表法气体流量标准装置的研制


检测与仪表??

???????????????

化工自动化及仪表,2010,37(2):34~38?ControlandInstrumentsinChemicalIndustry???

?

标准表法气体流量标准装置的研制

齐利晓,孙立军,张?涛,李?刚

(天津大学电气与自动化工程学院流量实验室,天津300072)

??摘要:?在分析标准表法气体流量标准装置基本工作原理的基础上对装置结构进行了设计,重点对装置管道

压力损失进行了分析计算,对风机选型进行了分析,对装置整体不确定度分配进行了计算,并确定了标准表、温度传感器和压力传感器的选型方案。给出了对装置进行流量稳定性测试及仪表检定实验的结果。对标准表法流量标准装置的普及应用及对流量计研究水平的整体提高有重要意义。??关键词:?标准表;管道压损;气体流量标准装置;不确定度

??中图分类号:TH814?文献标识码:A?文章编号:1000?3932(2010)02?0034?05

1?引?言

标准装置按计量器具可分为称量法、容积法和标准表法。其中,标准表法流量标准装置是传递标准装置。它利用流体力学连续性原理,将标准表和被检表串联,由标准表和相关参数测量仪表给出标准流量,与被检表输出的流量比较,确定被检表的技术指标。与其它方法的流量标准装置相比具有结构简单、工作效率高、操作方便、投资少和建设周期短的优点,特别是可以给出更宽的

?流量范围。

量计和热能表等)为标准器,使流体在相同时间间隔内连续通过标准流量计和被检流量计,比较两者的输出流量值,从而确定被检流量计的计量性能

[2]

??相对于液体流量测量,我国气体流量测量还有很多问题需要解决。流量标准装置,尤其是气体流量标准装置的研究、建立和应用是流量计量和测试技术发展的主要环节,应该引起普遍重视

[1]

??标准表法流量标准装置结构简单、投资少、建设周期短,特别适合于中小型仪表生产厂家对仪表的检定。为了对不同口径、不同原理的气体流量计进行检定、性能测试,本文设计了标准表法气体流量标准装置并对管道压力损失进行了分析计算,对风机选型进行了分析,对装置整体不确定度分配进行了计算,并确定了标准表、温度传感器和压力传感器的选择方案,给出了对装置进行流量稳定性测试及仪表检定实验的结果。2?装置结构设计与分析

2.1?标准表法流量标准装置的原理

??标准表法流量标准装置的标准表部分可以由单台标准表构成,如图1(a)所示,也可以由多台标准表并联组成,如图1(b)所示。

??其主要工作原理:以标准流量计(可以是速度

标准表法气体流量标准装置的研制

标准表法气体流量标准装置的研制

图1?标准表法装置基本原理

2.2?标准表法气体流量标准装置结构设计

??装置设计要求:?能够对DN15、DN25、DN40、DN50、DN65、DN80、DN100、DN125、DN150、DN200口径的气体流量计进行检定; 除DN200口径管道外,其它各种口径的最大流速均达到42m/s;!装置整体标准不确定度在0.5%以内;?流量稳定性达到1.5%。

??根据上述要求,设计装置的整体结构如图2所示。装置包含DN25、DN40、DN50、DN80、DN100、

:?

?第2期???????????齐利晓等.标准表法气体流量标准装置的研制

&35&

DN150、DN200共七条主实验管道。DN15、DN65、DN125三条管道通过分别在DN25、DN80和DN150管道中加入套管进行实现。其中DN80~DN200的四条管道由离心风机提供气源,DN25~DN50的三条管道由罗茨风机提供气源。装置采用如图(1)a所示的由单台标准表作为每条实验管道标准表的形式进行设计。装置以单台标准表作为每条实验管道的标准表,它有结构简单、管路压损小、管道风量稳定、仪表检定效率高的优点。避免了以并联标准表为每条实验管道的标准表时,装置必须加两个大的汇流管,结构复杂,风机容易出现性能不稳,甚至喘震及管路振动的问题。为了保证装置流量稳定性,管道入口处直接接大气,风机在管网末端采用吸气方式,使空气从管道入口流经被检表和标准表,这样由大气在管道入口处作为无限大气源,气源稳定,从

标准表法气体流量标准装置的研制

而保证装置流量稳定性。

式中:R???管网总压损,Pa;Rm???单位长度上的摩擦阻力,Pa/m;L???各直管段的长度,m;Rz???局部阻力损失,Pa;?j???通风系统排气口的气体密度,kg/m。

??Rm是由气体微团与管壁摩擦引起的摩擦损失或摩擦阻力,在圆形管道中,其计算公式如下

?Rm=

?2

%?D2

2

43

[4]

3

:

(2)

式中: ???摩擦阻力系数,Ns/m;D???圆管直径,m;

????气体的密度,kg/m,空气取为

3

1.2kg/m;????管道中气流速度,m/s。

??以DN100管道为例,其直管段长度共5.5m,采用碳钢管道,查表可得其摩擦阻力系数为0.022,则:

?RmL=

=

?2

%?%LD2

0.0221.22

%%42%5.5=1281Pa0.12

[3]

[4]

(3)

??Rz是气流经过某些局部管段产生涡流引起的局部损失或局部阻力,计算公式如下

?Rz=?2?2

:

(4)

式中:!???管件局部阻力损失系数。

??以标准表涡街流量计为例,其局部阻力损失系数!为2.2,则:

2%422=2328Pa?Rz=?=2.2%22

[3]

(5)

??管网中各部件静阻力的大小与其阻力系数成正比,与其所通过的气流平均速度的平方成正比

[3,4]

而气流平均速度又是由风量和流通面积所决定的。

图2?标准表法气体流量标准装置结构示意图

因此,对于认为介质是不可压缩的通风系统而言,上式可写成

?R=

[4]

:

??装置工作原理是:根据被检仪表口径选择相应实验管道,通过系统测控计算机对风机变频器进行设置,从而将管道中的流量调至检定点流量值;在被检流量计检定规程规定的一次测量时间内,计算机同时采集被检表和标准表输出的流量信号,并分别利用温度、压力值对流量进行修正得到相应的标况流量,再与标准表测量的流量值进行比较,得到被检表指示流量值的误差及仪表系数;通过多次测量得到被检仪表的重复性及线性度误差。

??限于篇幅以下重点对装置管网压损、风机选型进行分析。

2.3?装置管网压损分析??按照狭义的管网特性

?R=

[3~5]

#

RmL+

#R

z

+

?j22

?=Kq?2

(6)

式中:q????风量;K???管网特性系数。??通过式(1)对通风机系统管网中各部件静阻力的计算,得到该管网的总损失R,再按照式(6)计算出任意风量下管网的特性系数,K=

R

有了管网2。q?

特性系数K,就可以在一定的比例尺的q?-R平面坐标图上做出该管网的特性曲线。通风机在某一风量下所能达到的全压ptf应等于该风量下管网的总损失R,这样通风机才能稳定的工作。

??表1为装置各条管道的压损计算结果,其中风量是以每条管道最大风速42m/s为准计算的;设计时DN200管道风速不做要求,但表1中对DN200管道的风量计算仍以42m/s为准。需要指出的是K,(即不计其工作场所:

(1)

的工作压力)管网的总损失为

[4]

R

m

L+

#

?j2

Rz+?

&36&

化工自动化及仪表??????????????第37卷?

表1?管道的压损计算

管道(DN)R/Pa3-1

q?/m&h

3-1-1

K/Pa&(m&h)

20015xxxxxxxxxxxx402515722373367450777xxxxxxxxxxxx818285809045475026711857xxxxxxxxxxxx19075271.522.754.016.5510.4515.9927.0343.06114.4335

2.4?装置风机选型分析

??风机选型有不同的方法,设计时采用无因次特性参数选型。其步骤为:?根据换算后的性能参数和转速求出风机比转速ns; 根据生产实际需要和限制,查与ns相近的几种类型风机的无因次性能曲线,得到与对应的无因次性能参数q??、p?、P 及?;!综合比较选出一种最合适的类型。??风机比转速ns由下式计算

?

ns=5.54%n%

?p3/4

3

[6]

套管),压损大、流量低,没有适合其设计要求的离心风机,应考虑选用罗茨风机。

??罗茨风机最大特点是:压力在允许范围内加以调节时流量之变动甚微,压力选择范围很宽,具有强制输气的特征,且其结构简单。罗茨风机在一定流量下,其压力变化范围宽,而装置管道本身流量、压损相对罗茨风机都不高,所以其选型相对离心风机简单。结合管道风量、压损,查罗茨风机性能表,本

(7)

:

装置采用LSR100?1WD型罗茨风机,其升压可达19.6kPa,流量409m/h,满足装置设计需求。3?装置不确定度分析

??根据装置设计要求标准不确定度为0.5%,对装置不确定度进行如下分析。标准表法装置合成不确定度数学模型为

?

2

2

2

3

式中:ns???比转速;n???风机实际转速,r/min;q????风机风量,m/s;p???全压,Pa。

??由于设计对DN200管道风速不做要求,风机选型时只考虑DN15~DN150管道中的风量和压损。从表1可以看出DN15~DN150管道中,最大压损为9045Pa,DN150管道最大流量q?max为2671m/h(0.742m/s),DN15管道最大流量为27m/h(0.0075m/s)。设计装置时,工作状态假设为标况。

??装置设计时按实际流量和全压选择的风机,按照最大流量和压损计算的比转速:

?

ns=5.54%n%

?p

3/4

[3]

:

2

2

2

2

1/2

u=(u1+u2+u3+u4+u5+u6+u7)

(10)

33

式中:u1???标准流量计定点使用时A类标准不确定度;u2???计时器的A类标准不确定度;u3???计时器的B类标准不确定度;u4???标准流量计不带配套仪表一起检定时引起的流量测量不确定度,带配套仪表的标准流量计应带配套仪表一起检定,否则,应考虑配套仪表的不确定度;u5???标准流量计检定和使用的流体条件不同时引起的流量测量不确定度;u6???数据采集、信号处理、数据处理及通讯不确定度所引起的流量测量不确定度;u7???检定标准流量计的流量标准装置的合成不确定度。??其中,?采用标准瞬时流量计检定瞬时流量计,不需要配备计时器

[2]

3

3

0.742

=5.54%2900%=15

9045

(8)

??查找风机选型手册,选取9?19型,机号为No.6.3的风机。

??由DN15管道的流量和全压(留有20%的裕量)计算的比转速:

?

ns=5.54%n%

?p

,故u2=u3=0; 标准流量

[3]

计为涡街流量计,其传感器与配套转换器为一体的,检定时是一起检定的

,故u4=0;!标准流量计误

[6]

差为?1个脉冲,采集脉冲数不少于2000个脉冲,其不确定度为1/2000,按规程可以不计

.3=1

10854

(9)

#KiKi

,故u6=0。

[2]

=5.54%2900%

??对定点使用仪表系数的标准流量计,有

?si=

:

(11)

??通常风机的比转速在15~80之间,混流通风机的比转速在80~120之间,轴流通风机的比转速在100~500之间,DN15管道的风机比转速已远超出了通风机应用的范围。

??通过对每条管道进行同样的计算可以得到:所选9?19型No.6.3离心通风机适用于DN200、DN150(包括DN125套管)、DN100、DN80(包括DN65套管;、DN、DNDN15

式中:si???第i个检定点的A类标准不确定度;#Ki???第i个检定点的仪表系数标准偏差,1/m;

3

Ki???第i个检定点的仪表系数平均值,1/m。

3

??当每条标定管线只有一台标准表时,有

?

u1=(si)max

[2]

:

(12)

??对于u1,根据涡街流量计检定记录,各条标定:

?

?

第2期???????????齐利晓等.标准表法气体流量标准装置的研制

(si)max=0.23%

(13)

?rmax=

%0.2

==0.08%X0273.15-20

&37&

(21)

??故取u1=0.23%。

??标准流量计检定和使用时均采用气体介质,因气体具有压缩性,故配用了温度和压力变送器。对温度、压力测量不确定度的规定:温度(压力)测量不确定度所引起的流量测量不确定度应不超过标准装置扩展不确定度的1/5。否则,标准装置合成标准不确定度应考虑温度(压力)测量不确定度式计算:

?ucr=

2

式中:r???示值相对误差;%???绝对误差;X0???标准表的示值。

??按检定规程要求,在标准装置合成标准不确定度中,可以不考虑温度测量不确定度带来的影响。??所选压力变送器测量范围为绝对压力70~110kPa,精度等级为0.075时,同样按检定规程要求,在标准装置合成标准不确定度中,可以不考虑压力测量不确定度带来的影响。

??根据以上分析,本装置不确定度为:

?

u=(u1+u7)

2

2

1/2

[3]

??根据误差理论,合成相对不确定度,可以根据下

#

m

cri(xi)u(xi)

22

(14)(22)

i=1

xi?f

式中:ucr???合成不确定度;cri=???相对灵

yi敏度,也是xi的相对不确定度在ucr中所占的比例(权重)。

??用涡街流量计测量管道中的空气的流量不确定度,其测量模型为:

?q?N=

TNPP

q=KN&&q?

PNT?T

3

式中:u1=0.23%;u7???检定标准流量计的流量标准装置的合成不确定度。4?装置实验测试4.1?最大流量实验

??为了检验装置风量设计的效果,对七条主管道进行了最大风量实验,结果如表2所示。实测最大风量是指调节风机流量的变频器在最大频率50Hz时风机能给管道提供的风量。

表2?最大流量实验

风机

管道(DN)设计最大流量

3-1

q?1/m&h实测最大流量

3-1

q?2/m&h偏差%/%

200

离心风机150100

80760678

罗茨风机

504025297190355274

75121

(15)

式中:q?;TN???标况下温N???标况下流量,m/s

TN

度,K;PN???标况下压力,Pa;KN=。

PN??由cri=

?crT=

T?q?Nq?N(16)

xi?f

,可得:yi

47502671xxxxxxxxxxxx1263.4

6.2

KNPq?T

=&(-)=-1P&q?TKN&

T?crP=

P?q?N

=

q?NKNqP?&=1P&qT?

KN&

T

T

-5.1-10.71344.261.3

??表中偏差%的计算公式为:

(17)

?%=

q?2-q?1

%100%q?1

(23)

??将式(16)、式(17)代入式(14),可得:

?ucr=

+u+u

q?

P

??

(18)

%为负值表明实测流量低于设计流量,为正值

??可见温度、压力测量影响权重均为(1),故按前

述规定,整套装置的标准不确定度为0.5%,装置不确定度较高,必须最大程度降低各种因素对装置不确定度的影响,根据温度(压力)测量不确定度所引起的流量测量不确定度应不超过标准装置扩展不确定度的1/5这一规定,可知,只要温度、压力测量的不确定度均在0.1%以内,则:

?

u5=0

(19)

表示实测流量高于设计流量。由表2数据可知,以离心风机为气源的四条管道中,风量最大偏差为-10.7%,符合相关文献提出的在风机选型中误差在20%之内的说法;罗茨风机提供的风量均高于设计要求,这是因为,罗茨风机与离心风机相比,在相同风量下,能够提供更大的压损,在选型时,罗茨风机选定的流量就优于设计要求值。整体风量均在设计预期范围之内。4.2?流量稳定性实验

??为提高装置流量稳定性,管网入口端直接接大气,风机在管网末端吸气,由于无限大大气作为气源,有利于保证装置有较高的稳定性。采用累积时间内流量稳定性对装置进行流量稳定性检定。检定

[3]

方法为:在每条管道最大流量和最小流量下进行检定,连续记录反应流量大小的输出信号qi(i=1,,n[2]

??否则,需要考虑温度和压力变送器的不确定度。??取温度变送器测量范围为-20~60?,最大绝对误差?0.2?,转换为开尔文温标后,在其量程范围内,最小示值相对误差为:

?rmin=

%0.2==0.06%X0273.15+60

(20)

?:

&38&

化工自动化及仪表??????????????第37卷?

?q=

#

n

qi

(24)

[2]

式中:Eq???流量稳定性;k???覆盖因子,取k=2;jmin的定义,定义单调下降函数rj=时,rj?0.1。

min

i=1

n

??相对误差为

:

(25)

Rj

,当j=jminR0

qi-q

?Ei=%100%

q

??相关函数为

?Rj=

??表3为各管道流量稳定性计算结果,实测中n取60,表中Eqmin为最小流量稳定性,Eqmax为最大流量稳定性。这里所指最大流量是指每个定点使用的

[2]

:

(25)

#E&E

i

i=1

n-j

i+j

n-j

[2]

?(j=0,1,2,+,n-1)

标准流量计在所有工作点里的最大流量,与装置最大流量实验中的将变频器调至50Hz的最大流量不同。

??稳定性为

?Eq=k

2n

:

|Rj|

1/2

#

mijn

(26)

j=0

表3?流量稳定性计算结果

风机

管道(DN)Eqmin/%Eqmax/%

2001.221.30

150

1.341.42

离心风机

1251001.341.261.421.47

80

1.261.45

65

1.191.49

501.471.28

罗茨风机40251.150.41.461.43

15

0.41.43

??取管道中稳定性数值最大的作为整套装置的流量稳定性,由表3可知装置流量稳定性优于1.5%。4.3?仪表检定实验

??对每条管道都进行仪表检定实验,被检表选用和标准表相同口径的涡街流量计,表4为DN200管道的检定记录。检定过程中,每个流量点检定三次

表4?DN200涡街流量计检定结果

检定流量各点平均仪表3-1-3系数/1&m700156.681750159.282800155.884900150.25

各点重复

性%0.2590.0640.1560.094

仪表系数线性度

-3

/%[7~9]

表检定实验的结果。装置整体精度为?0.5%,可以对?1.5%及以下精度的差压、涡轮、涡街、转子等多种气体流量计进行检定和开展研究工作。标准表法流量标准装置结构简单、投资少、建设周期短,特别适合于中小型仪表生产厂家对仪表的检定,对它进行研究设计,有利于标准装置的普及,对流量计的研发以及生产水平的提高具有重要意义。

参考文献:

[1]?苏彦勋,梁国伟,盛?建.流量计量与测试[M].北京:中国

计量出版社,2007.

[2]?JJG643?2003,标准表法流量标准装置[S].国家质量监督检

验检疫总局,2003.

[3]?孙?研.通风机选型实用手册[M].北京:机械工业出版社,1999.[4]?商景泰.通风机实用技术手册[M].北京:机械工业出版社,2005.[5]?华绍曾,杨学宁.实用流体阻力手册[M].北京:国防工业出

版社,1985.

[6]?杨诗成,王喜魁.泵与风机[M].北京:中国电力出版社,2007.[7]?JJG198?1994,速度式流量计检定规程[S].国家技术监督

局,1994.

[8]?王?翥,佟晓筠,陈晓娟.提高涡街流量计精度的一种补偿

算法及实现[J].化工自动化及仪表,2005,32(3):78-80.[9]?孙志强,张宏建.压电式与差压式涡街流量计测量性能比

较[J].化工自动化及仪表,2007,34(6):75-78.

154.772.917

??从表中数据可以看出,涡街流量计定点使用时,各点具有良好重复性,远优于非定点使用的线性度误差,这也说明,涡街流量计可以以定点使用的方式在高精度标准表法流量标准装置中作为标准表使用。5?结束语

??重点对装置管道的压力损失进行了分析计算,对风机选型进行了分析,对装置整体不确定度分配进行了计算,并确定了标准表、温度传感器和压力传感器的选择方案,给出了对装置进行流量稳定性测试及仪

ResearchofGasFlowStandardFacilitiesbyMasterMeterMethod

QILi?xiao,SUNLi?jun,ZHANGTao,LIGang

(SchoolofElectricalEngineering&Automation,TianjinUniversity,Tianjin300072,China)

Abstract:Theworkingprincipleanddesignmethodsaboutgasflowstandardfacilitiesbymastermetermethodwerediscussed.Thepressurelossofthepipeandtheselectionofthefanswereanalyzed.Thedistributionofthefacilityuncertaintywascalculated.Theselectionofthetemperaturetransmitterandpressuretransmitterwasmade.Theflowratestabilitytestandvortexflow?metercalibrationtestweregiven.It.smiportanttothepopularityofthefacilityandiportanttommiprovetheresearchoftheflow?meter.K:pipel;gasflowd;

更多相关推荐:
常见气体的制备方法小结

常见气体的制备方法小结注意事项1气密性的检查2试管口稍向下倾斜3若用排水法做完实验先撤导气管后撤酒精灯

高中化学的气体制备方程式总结

1常见气体的制取和检验转氧气制取原理含氧化合物自身分解制取方程式2KClO32KCl3O2装置略微向下倾斜的大试管加热检验带火星木条复燃收集排水法或向上排气法氢气制取原理活泼金属与弱氧化性酸的置换制取方程式Zn...

氧气制备方法总结

如果让你到实验室制取一瓶氧气你需要解决哪些问题1反应原理2实验装置3收集方法4实验步骤等2注意事项试管口应略向下倾斜防止药品中湿存的水分受热后变成水蒸气遇冷水倒流回试管底部使试管炸裂导管伸入试管内只要稍露出橡皮...

高中化学气体制备、离子检验总结

根据气体的密度溶解性稳定性可将气体的收集方法分为三种1排水集气法适用于收集不溶于水或微溶于水且不与水发生反应的气体收集的气体纯度高易判断是否集满装置见图a2向上排空气集气法适用于收集不跟空气发生反应且密度比空气...

全忘光了- -【 高中化学的气体制备方程式总结

1常见气体的制取和检验转氧气制取原理含氧化合物自身分解制取方程式2KClO32KCl3O2装置略微向下倾斜的大试管加热检验带火星木条复燃收集排水法或向上排气法氢气制取原理活泼金属与弱氧化性酸的置换制取方程式Zn...

高中化学的气体制备方程式总结

1常见气体的制取和检验转氧气制取原理含氧化合物自身分解制取方程式2KClO32KCl3O2装置略微向下倾斜的大试管加热检验带火星木条复燃收集排水法或向上排气法氢气制取原理活泼金属与弱氧化性酸的置换制取方程式Zn...

高中化学的气体制备方程式总结

高中化学的气体制备方程式总结1常见气体的制取和检验转氧气制取原理含氧化合物自身分解制取方程式2KClO32KCl3O2装置略微向下倾斜的大试管加热检验带火星木条复燃收集排水法或向上排气法氢气制取原理活泼金属与弱...

南京农业大学有机化学考研实验题第四章

第四章天然产物的提取天然产物种类繁多广泛存在于自然界中多数天然产物的提取物具有特殊的生理效能可用作药物香料和染料天然产物的分离提纯和鉴定是有机化学中一个十分活跃的领域我国有着独特和丰富的天然中药资源因而对中药有...

物质的鉴别推断与提纯知识总结

物质的鉴别一初中化学常见物质的颜色二初中化学敞口置于空气中质量改变的一质量增加的1由于吸水而增加的氢氧化钠固体氯化钙浓硫酸2由于跟水反应而增加的氧化钙3由于跟二氧化碳反应而增加的氢氧化钠氢氧化钙二质量减少的由于...

总结〗化学方法提纯和分离物质的“四原则”和“三必须”

必修1高一化学教学案归纳几种分离和提纯方法2三必须是一除杂试剂必须过量二过量试剂必须除尽因为过量试剂带入新的杂质三除杂途径选最佳例题有下图所示的ABCDE五种仪器请选择仪器的编号完成下列填空ABCDE1可用酒精...

26物质的分离与提纯

26物质的分离和提纯教学目标知识技能复习常见物质分离和提纯的实验知识掌握常见物质分离提纯的一般方法能力培养通过对常见物质分离与提纯以及分离提纯物质一般方法的复习巩固培养学生综合抽象的逻辑思维能力语言表达能力实验...

计算方法总结

第一章基本概念x1x2xmxm1xm2xmn1xx1x2xmxm1xm2xmnxmn1x若xx1mn及其以前的非零数字称为准确数字准确到n位小数x10n称x2各位数字都准确的近似数称为有效数各位准确数字称为有效...

气体制备方法总结(8篇)