R、L、C串联谐振电路的研究

时间:2024.3.31

串联谐振电路的研究

一.实验目的

1.加深理解电路发生谐振的条件、特点,掌握电路品质因数(电路值)、通频带的物理意义及其测定方法;

2.学习用实验方法绘制串联电路不同Q值下的幅频特性曲线;

3.熟练使用信号源、频率计和交流毫伏表。

二.原理说明

在图23—1所示的串联电路中,电路复阻抗

时,ZR 同相,电路发生串联谐振,谐振角频率

谐振频率

    在图23-1电路中,若为激励信号,为响应

信号,其幅频特性曲线如图23-2所示,在时,


A=1, U RU 时, U RU ,呈带通特性。 A=0.707,即 U R=0.707 U 所对应的两个频率 L 为下限频率和上限频率, L为通频带。通频带的宽窄与电阻 R有关,不同电阻值的幅频特性曲线如图23-3所示。

电路发生串联谐振时,URUULUC=QUQ称为品质因数,与电路的参数R、LC有关。值越大,幅频特性曲线越尖锐,通频带越窄,电路的选择性越好,在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。在本实验中,用交流毫伏表测量不同频率下的电压UURULUC,绘制

联电路的幅频特性曲线,并根据计算出通频带,根据计算出品质因数.

三.实验设备

1.信号源(含频率计)2.交流毫伏表

3.EEL—33组件(含实验电路)或EEL-52组件

四.实验内容

A.适合EEL—Ⅱ

实验电路如图23-4所示(在EEL—33组件上),图中:L=16.5mH,RC可选不

同数值,信号源输出正弦波电压作为输入

电压,调节信号源正弦波输出电压,并

用交流毫伏表测量,使输入电压的有效

=1V,并保持不变,信号源正弦波

输出电压的频率用频率计测量。

1.测量串联电路谐振频率

选取R=50Ω,C=9000PF,调节信号

源正弦波输出电压频率,由小逐渐变大(注意要维持信号源的输出电压不变,用交流毫伏表不断监视),并用交流毫伏表测量电阻R两端电压UR,当UR的读数为最大时,读得频率计上的频率值即为电路的谐振频率0,并测量此时的UCUL值(注意及时更换毫伏表的量限),将测量数据记入自拟的数据表格中。

2.测量串联电路的幅频特性

在上述实验电路的谐振点两侧,调节信号源正弦波输出频率,按频率递增或递减500Hz或1KHz,依次各取7个测量点,逐点测出URULUC 值,记入表23-1中。

表23-1 幅频特性实验数据一

3、在上述实验电路中,改变电阻值,使R=100W,重复步骤1、2的测量过程,将幅频特性数据记入表23-2中。

表23-2 幅频特性实验数据二

B.适合EEL—Ⅰ、Ⅳ、Ⅴ

1.按图23—5组成监视、测量电路,用交流毫伏表测电压,用示波器监视信号源输出,令其输出幅值等于1V,并保持不变。

2.找出电路的谐振频率f,其方法是,将毫伏表接在R(51Ω)两端,令信号源的频率由小逐渐变大(注意要维持信号源的输出幅度不变),当UR的读数为最大时,读得频率计上的频率值即为电路的谐振频率fo,并测量U与U之值(注意及时更换毫伏表的量限)。

3.在谐振点两侧,按频率递增或递减500Hz或1kHz,依次各取8个测量点,逐点测出UR,U,U之值,记入数据表格。

4.改变电阻值(R为100Ω),重复步骤2,3的测量过程

五.实验注意事项

1.测试频率点的选择应在靠近谐振频率附近多取几点,在改变频率时,应调整信号输出电压,使其维持在1V不变;

2.在测量ULUC数值前,应将毫伏表的量限改大约十倍,而且在测量ULUC时毫伏表的“+”端接电感与电容的公共点4。

六.预习与思考题

1.根据实验1、3的元件参数值,估算电路的谐振频率,自拟测量谐振频率的数据表格;

2.改变电路的哪些参数可以使电路发生谐振,电路中的数值是否影响谐振频率?

3.如何判别电路是否发生谐振?测试谐振点的方案有哪些?

4.电路发生串联谐振时,为什么输入电压不能太大,如果信号源给出1V的电压,电路谐振时,用交流毫伏表测,应该选择用多大的量限?为什么?

5.要提高串联电路的品质因数,电路参数应如何改变?

七.实验报告要求

1.电路谐振时,比较输出电压UR与输入电压U是否相等?是否相等?试分析原因。

2.根据测量数据,绘出不同值的三条幅频特性曲线:

R=f(f),  =f(f),  =f(f)

3.计算出通频带与值,说明不同值时对电路通频带与品质因素的影响;

4.对两种不同的测值的方法进行比较,分析误差原因;

5.回答思考题1、2、5;

6.试总结串联谐振的特点。


第二篇:实验八 R、L、C串联电路的谐振实验


实验八  RLC串联电路的谐振实验

一、实验目的

1、研究交流串联电路发生谐振现象的条件。

2、研究交流串联电路发生谐振时电路的特征。

3、研究串联电路参数对谐振特性的影响。

二、实验原理

1、R L C串联电压谐振   

    在具有电阻、 电感和电容元件的电路中,电路两端的电压与电路中的电流一般是不同相的。如果我们调节电路中电感和电容元件的参数或改变电源的频率就能够使得电路中的电流和电压出现了同相的情况。电路的这种情况即电路的这种状态称为谐振。R、L、C串联谐振又称为电压谐振。   

    在由线性电阻R、电感L、电容c组成的串联电路中,如图8-1所示。

图8-1   R L C串联电路图

    当感抗和容抗相等时,电路的电抗等于零即

                  XL  =  XC ;             ; 2πf L  =

                           X  =  w L  -       =  0

则                        j  =  arc tg   =  0

    即电源电压u与电路中电流i同相,由于是在串联电路中出现的谐振故称为串联谐振。

    谐振频率用f 0表示为

                               

                              f  =  f 0   =

    谐振时的角频率用w 0表示为

                           w  =  w

    谐振时的周期用T0表示为

                               T  =  T=  2 p

    串联电路的谐振角频率ω 0频率f 0,周期T0,完全是由电路本身的有关参数来决定的,它们是电路本身的固有性质,而且每一个R、L、C串联电路,只有一个对应的谐振频f 0

周期T0。因而,对R、L、C串联电路来说只有将外施电压的频率与电路的谐振频率相等时候,电路才会发生谐振。在实际应用中,往往采用两种方法使电路发生谐振。一种是当外施电压频率f固定时,改变电路电感L或电容C参数的方法,使电路满足谐振条件。另一种是当电路电感L或电容C参数固定时,可用改变外施电压频率f的方法,使电路在其谐振频率下达到谐振。总之,在R、L、C串联电路中,f、L、C三个量,无论改变哪一个量都可以达到谐振条件,使电路发生谐振。

2、R L C串联电压谐振特征   

    串联谐振具有以下主要特征:

    (1) 电路的阻抗

  | Z |  =                =  R

    电路对电源呈现电阻性,其值很小。电源供给电路的能量全被电阻所消耗,电源与电路之间不发生能量互换。能量互换只能发生在电感线圈L与电容器C之间。

    (2) 电路的电流

                                  I  =  I=

    当电源电压U不变的情况下,见图7-2所示。电路的电流将在谐振时达到最大值。电流的大小决定于电阻的大小,电阻R越小,电流就越大,当电阻R趋近于零时,则电流趋向无穷大。当电阻R越大时则电流就越小。

         图8-2 电流随频率变化曲线   图8-3  串联谐振相量图   图8-4  Q与谐振曲线关系

    (3) 电路的电压

    由于X C = X L,于是U L = U C。见图8-3所示, L与  C在相位上相反,互相抵消,对整个电路中不起作用,因此电源电压   等于电阻上的电压。但是,UL和UC 的单独作用不容忽视;因为

U L =  I X L  = X L

U C  =  I X = X C

当XL = XC > R时,UL和UC都高于电源电压。当XL = XC < R时,UL和UC都低于电源电压。当XL = XC » R时,UL和UC将远远高于电源电压多少倍。这是我们研究和十分注意的关键问题。

    (4) 电路的品质因数

电路中的U C或U L与电压U之比值称为电路的品质因数,用Q表示,即

Q  =   =  =

    可见品质因数Q也是由电路的参数决定的。当L和C值不变,只改变R值。R值越小,Q值越大则谐振曲线越尖锐,R值越大则Q值越小谐振曲线越平坦。见图8- 4所示。

三、实验内容及步骤

如左图所示,本次实验选用交流电压源(Sources元器件库中的AC voltage source),所有的测量仪器也需换成交流测量模式。基于R、L、C串联电路谐振的性质,可在实验电路中直接串联1个电流表,在R、L、C元器件上各并联1个电压表,合理改变电源的频率,可以找到这样一个频率值,可使得电流表的读数最大,R

图8-5 R、L、C串联谐振电路示意图

上电压表的读数与电源电压值相等,L、C上电压表读数相等,即:

                        I = I0 = U/R       UR = U        U L = U C                  (8.1)

则这个频率值即是该电路的谐振频率。

实验步骤如下:

(1)    打开EWB软件,选中主菜单Circuit/Schematic Options/Grid选项中的Show grid,使得绘图区域中出现均匀的网格线,并将绘图尺寸调节到最佳。

(2)    在Sources元器件库中调出1个Ground(接地点)和1个AC voltage source(交流电压源)器件,从Basic元器件库中调出1个Resistor(电阻)、1个Inductor(电感)和1个Capacitor(电容)器件,最后从Indicators元器件库中调出1个Ammeter(电流表)、3个Voltmeter(电压表)器件,按下图8-6所示排列好。

(3)    将各元器件的标号、参数值亦改变成与下图8-6所示一致。

图8-6   R、L、C串联谐振实验电路图

(4)    将所有的元器件通过连线连接起来。注意:电压源、电流表、电压表的正负极性

(5)    检查电路有无错误。

(6)    对该绘图文件进行保存,注意文件的扩展名(.ewb)要保留。

(7)    按下EWB界面右上方按纽“1”对该保存过的绘图文件进行仿真。

(8)    按下EWB界面右上方按纽“0”停止仿真,读取各电压表、电流表的读数,看是否符合(8.1)式中的三个公式。若符合,将此时电源的频率、各测量读数填入表8-1的相应表格中;若不符合,调整电源频率值,重复步骤(7)、(8),直至测量读数符合(8.1)式为止,此时的电源频率值即谐振频率。

(9)    在(8)中找到的谐振频率上下各选择两个频率值,测量这四种情况下个电压表和电流表的读数并记录到表8-1中。

表8-1                             电阻取620Ω时串联谐振测量表

(10)改变电阻的阻值由原来的620Ω为2.2KΩ,重复步骤(3)——(9),记录数据到表8-2。

(11)实验完成后,将保存好的绘图文件另存到教师指定的位置,并结合实验数据完成实验报告的撰写。

表8-2                             电阻取2.2kΩ时串联谐振测量表

四、注意事项

1、  每个EWB电路中均必须接有接地点,且与电路可靠连接(即接地点与电路的连接处有黑色的结点出现)。

2、  双击交流电压源(AC voltage source),得到AC voltage source Properties元器件属性对话框,在Value/Voltage中设定电源的电压值(本实验为3V),在Value/Frequency中设定电源频率(本实验即通过调节此频率得到电压表、电流表的读数符合谐振性质而找到谐振频率的),Value/Phase中设定电源的相位为0Deg即可。

3、  改变电阻的阻值时,需要在Resistor(电阻)器件的元器件属性(Resistor Properties)对话框中选择Value/Resistance(R)选项,在其后的框中填写阻值,前一框为数值框,后一框为数量级框,填写时注意两个框的不同。

4、  测量电流时应该把电流表串联在电路中进行测量,EWB中电流表粗线接线端为电流流入方向,另一个接线端为电流流出方向,使用时应特别注意电流表的极性,即电流流入、流出方向。

5、  测量电压时应该把直流电压表并联在电路中进行测量,EWB中电压表粗线接线端要与欲测电路的负极相连,另一个接线端则与欲测电路的正极相连,使用时应特别注意电压表的极性。

6、  基于绘图美观的考虑,可将电流表、电压表通过工具栏中的“翻转”快捷键调整到与待测器件或电路平行的状态再连线。

7、  本次实验所用电压表和电流表均为交流模式,即在Voltmeter(电压表)、Ammeter(电流表)器件的元器件属性(Voltmeter Properties、Ammeter Properties)对话框中选择Value/mode/AC选项,另在Label/Label对话框中可为电压表、电流表命名。

8、  绘制好的实验电路必须经认真检查后方可进行仿真。若仿真出错或者实验结果明显偏离实际值,请停止仿真后仔细检查电路是否连线正确、接地点连接是否有误等情况,排除误点后再进行仿真,直到仿真正确、测量得到理想的读数。

9、  在读取电压表的读数时,为消除网格线对读数的影响,可取消主菜单Circuit/Schematic Options/Grid选项中的Show grid,设置好后将看到绘图区中的网格线已消去,此时即可读数了。

10、交流电压表、电流表上显示的读数为数值,并非向量,直接记录数据即可。

11、文件保存时扩展名为“.ewb”。关闭文件或EWB软件后想再次打开保存后的文件时,必须打开EWB软件后通过主菜单File/open选项或者工具栏中的“打开”快捷键来实现。

五、实验拓展

本次实验主要做的是测量R、L、C串联电路的谐振频率及性质的实验,有兴趣的同学可以设计一个测量R、L、C并联谐振频率的实验电路,研究一下并联谐振的性质。

六、预习要求

1、复习R、L、C串联谐振理论。

2、熟悉实验目的、明确实验内容及步骤。

七、思考题

1、实验中如何判断电路达到谐振状态?

2、电路达到谐振状态时,所测数据是否附合UR = U及UL = UC的关系?若不附合UR = U

    及UL = UC的关系试分析原因?   

3、谐振时UC及UL是否一定比U大?什么情况比U大?什么情况比U小?

八、实验报告

1、写出实验名称、目的、内容及步骤。

2、画出实验电路图。

3、填写表8-1、表8-2。

4、根据实验内容所测得的数据用座标纸在同一座标上绘出两组R、L、C串联谐振I-f曲                        

   线,如图8-7所示。


5、回答思考题。                                 

                                

       图8-7  R、L、C串联谐振I-f曲线图

更多相关推荐:
RLC串联谐振电路的实验报告

RLC串联谐振电路的实验研究一摘要从RLC串联谐振电路的方程分析出发推导了电路在谐振状态下的谐振频率品质因数和输入阻抗并且基于Multisim仿真软件创建RLC串联谐振电路利用其虚拟仪表和仿真分析分别用测量及仿...

串联谐振电路实验报告

实验三串联谐振电路一实验目的1加深对串联谐振电路条件及特性的理解2掌握谐振频率的测量方法3理解电路品质因数及通频带的物理意义和其测定方法4测定RLC串联谐振电路的频率特性曲线二实验原理RLC串联电路如图所示改变...

RLC串联电路的谐振特性研究 实验报告

大学物理实验设计性实验班级姓名学号指导教师实验报告实验题目RLC串联电路谐振特性的研究一目的1研究LRC串联电路的幅频特性2通过实验认识LRC串联电路的谐振特性二仪器及用具DH4503RLC电路实验仪电阻箱数字...

串联谐振电路实验报告

串联谐振电路学号1028401083姓名赵静怡一实验目的1加深对串联谐振电路条件及特性的理解2掌握谐振频率的测量方法3理解电路品质因数Q和通频带的物理意义及其测量方法4测量RLC串联谐振电路的频率特性曲线5深刻...

串联谐振电路实验报告

实验三串联谐振电路学号姓名成绩一实验原理及思路RLC串联电路如图71所示改变电路参数LC或电源频率时都可能使电路发生谐振us图71RLC谐振串联电路该电路的阻抗是电源角频率的函数ZRjL7110时电路中的电流与...

串联谐振电路实验报告

实验名称串联谐振电路一实验目的1加深对串联谐振电路条件及特性的理解2掌握谐振频率的测量方法3理解电路品质因数Q和通频带的物理意义及其测量方法4测定RLC串联谐振电路的频率特性曲线5深刻理解和掌握串联谐振的意义及...

串联谐振电路实验报告

串联谐振电路实验者指导老师一实验目的1加深对串联谐振电路条件及特性的理解2掌握谐振频率的测量方法3理解电路品质因数及通频带的物理意义和其测定方法4测定RLC串联谐振电路的频率特性曲线5深刻理解和掌握串联电路谐振...

实验二R·L·c串联谐振电路的研究

实验九RL串联电路谐振现象实验二RL串联谐振电路的研究一实验目的1学习RLC串联电路的通用谐振曲线的测定法2利用实验方法测定谐振频率利用谐振曲线求通频带二原理和说明1RLC线性串联电路中感抗XLL1容抗XCC1...

实验指导RLC串联谐振电路的研究

实验三日光灯电路和功率因数的提高一实验目的1进步理解交流电路中电压电流的相量关系2进一步理解感性负载电路提高功率因数的意义和方法3熟悉日光灯的工作原理学会联接日光灯电路4学习交流电压表电流表功率表的使用二实验原...

LRC电路谐振特性的研究实验报告

LRC电路谐振特性的研究实验报告实验名称LRC电路谐振特性的研究姓名学号班级实验日期20xx1114温度15同组者一实验目的1研究和测量LRC串并联电路的幅频特性2掌握幅频特性的测量方法3进一步理解回路Q值的物...

电路实验报告交流电路的研究

实验报告实验课程电路实验实验名称交流电路的研究专业班级应用物理1001学生姓名实验时间周二下午第一节电工实验中心一交流电路等效参数的测量一实验目的1学会用交流电压表交流电流表和功率表测量元件的交流等效参数的方法...

实验七 RLC串联谐振电路的研究(共3页)

实验七RLC串联谐振电路的研究一实验目的1测定RLC串联电路的谐振频率加深对其谐振条件和特点的理解2测量RLC串联电路的幅频特性通频带和品质因数Q值二实验原理1RLC串联谐振在图71所示的RLC串联电路中电路的...

串联谐振电路的研究实验报告(17篇)