高数知识点总结(2)

时间:2024.4.13

专接本高数知识点总结(下册)

——北雁友情提供

向量代数与空间解析几何

空间直角坐标系

       卦限:三个坐标面把空间分成八部分,每一部分即为一个卦限(上下同为逆时针)。

       空间两点间的距离:

向量代数

       向量概念(略)。

向量的表示法

几何表示法(有向线段)

       向量相等:模相等、彼此平行且指向相同

       逆向量:与向量a大小相等而方向相反的向量称为a的逆向量

       单位向量:模为1

       零向量:模为0,记为,零向量方向不定,也可以说任意

向量的加、减法与数的乘法

       向量加法规则

       平行四边形法则:两向量的和是以为邻边的平行四边形OACB的对角线,即向量,记为=+ (如右图)

       三角形法则:(见图如右侧)

向量加法运算规律

       (1)a+b=b+a               (2)(a+b)+c=a+(b+c)

       (3)a+0=a                    (4)a+(-a)=0

向量减法(即向量加法的逆运算)  

       数与向量的乘积:数量与向量a的乘积是一个向量,记为a

       a的模等于|a|与||的乘积,即|a|=|||a|

       a的方向:当>0时,与a同向;当<0时,与a反向;=0时,它是零向量。

数量与向量的乘积规律

       (1)(a)=()a                 (2)(+)a=a+a(对数量分配率)

       (3)(a+b)=a+b(对向量分配率)

       单位向量:把与a同向,模为1的向量叫做a的单位向量,记为

              显然有= 或         a=|a|

向量在轴上的投影(见书)

向量的坐标表示

       向量的模 

       方向余弦:

                         其中把叫做向量的方           向余弦

                     ++=1(任何向量的方向余弦的平方和恒等于1)

              a的方向余弦,就是的坐标,即       ={}

    方向数:与方向余弦成比例的一组实数l,m,n,即(向量的方向数不是唯一的)

向量的数量积

    定义:两个非零向量a,b的数量积等于两个向量的模和它们间夹角余弦的乘积,记为,即(0

              |b|cos(ab)就是向量b在向量a的方向上的投影

    零向量与任何向量的数量积为0

数量积运算规律

    (1)ab=ba             (2)a(b+c) = ab+ac

    (3)(ab)=(a) b=a(b)

    推论:(1)aa=         (2)a,b向量垂直   ab=0

结论:两个非零向量a与b互相垂直的充要条件是ab =0

数量积的坐标表达式

(1) ab=

(2)

两向量互相垂直的充要条件是

两向量的向量积

定义:两向量ab的向量积食一个向量c,记为c=ab

C的模

C的方向垂直于ab,即c垂直于ab决定的平面

向量积运算规律(见书17页)

    (1)a×b=-b×a     

结论:两个非零向量a与b互相平行的充要条件是a×b=0

推论:i×i=0    j×j=0     k×k=0

向量积的坐标表示

两向量平行条件坐标表达式

平面及其方程

曲面方程概念(见书21页)

平面的点法式方程:  

(设为平面的任意一点,向量n={A,B,C}为平面的一个法线向量)

平面的一般式方程:(其中A,B,C不同时为零)

重要结论:平面方程中,如缺x,y,z中的某一项,平面就平行或通过(D=0)某个轴,如缺其中两项,则平面就平行或重合(D=0)与那两项所决定的坐标平面

平面的截距式方程:

两平面的夹角及平面平行、垂直条件

       两平面的夹角公式:两平面法线向量分别为,

             

       两平面垂直的充要条件:

       两平面平行的充要条件: 

空间直线及其方程

       直线参量式方程:设有一点及一个已知向量(l,m,n不

全为零)

       直线的标准式方程:(条件同参量式方程)

       直线的一般式方程: (直线为两平面交线)

空间两直线的夹角及直线平行、垂直条件

       两向量夹角余弦公式:

       两直线垂直的充要条件:

       两直线平行的充要条件:

直线与平面的夹角及平行、垂直条件

       直线L标准式方程:

       平面的方程为:

       直线与平面夹角的正弦为:

       直线与平面垂直的充要条件:

       直线与平面平行的充要条件:


第二篇:高数B(2)6~10章知识点总结


第6章 定 积 分

§6. 1  定积分的概念与性质

1概念  定积分表示一个和式的极限

其中:

几何意义:表示所围曲边梯形面积的代数和

可积的必要条件:在区间上有界

可积的充分条件:(可积函数类)

(1)若上连续,则必存在;

(2)若上有界,且只有有限个第一类间断点,则必存在;

(3)若上单调、有界,则必存在。

2. 性质

(1) ;        

(2) ; 

(3) ;         

(4)

(5)

(6)若, 则

推论1:若, 则

推论2:   

(7)若, 则

(8)若上连续,上不变号,存在一点

 

特别地,若,则至少存在一点,或,使得

  

(9)若上连续,则其原函数可导,且

(10)若上连续,且,则

§6. 2  定积分的计算

1. 换元法          

2. 分部法   ,或

3. 常用公式

(1)

(2),其中为连续偶函数

(3),其中

(4)

(5)

(6) 

(7)

(8)

(9)

(10)

§6. 3  广义积分

1. 无限区间的积分(无穷积分)

(1)定义与性质

,若极限存在,则原积分收敛;

,若极限存在,则原积分收敛;

,必须右边两积分都收敛,原积分才收敛;

,具有相同敛散性;

,即收敛积分和仍收敛

(2)审敛法

比较审敛法:

,则

比较法的极限形式:

,则

柯西审敛法:

,则

特别地,

绝对收敛与条件收敛:

2. 无界函数的积分(瑕积分)

(1)定义与性质

),若极限存在,则原积分收敛;

),若极限存在,则原积分收敛;

),两积分都收敛,原积分才收敛;

,具有相同敛散性;

,即收敛积分和仍收敛

(2)审敛法

比较审敛法:设非负,且

,则

比较法的极限形式:若,则

柯西审敛法:若,或,则

特别地,

§6. 5  典型例题解析

1.变限积分的求导与应用

解题思路 

(1)利用公式

(2)若被积函数含积分限变量,需用变量代换化为变限积分的一般形式求解;

(3)变限积分是由积分限位置变量决定的函数,它与积分变量无关。利用变限积分的求导同样可以分析函数的特性。

2.利用定积分定义求和式的极限

解题思路  若将积分区间等分,,取,则

3. 利用定积分的性质求极限

解题思路 

(1)若极限含定积分,可利用定积分的中值定理求解;或利用定积分的估值性质建立不等式,用夹逼定理求解;

(2)若极限含变限积分,可利用罗必达法、夹逼定理和周期函数的定积分性质求解。

5利用换元法求定积分

解题思路

(1)计算定积分时,必须考虑积分变元的变化范围和应用牛—莱公式的条件。

(2)应用第一类换元法(凑微分法)直接求解;

(3)若被积函数含,分别令

(4)作变量代换时须相应改变积分限。一般地,积分区间为,令;积分区间为,令

(5)被积函数为,或型积分变量代换条件:积分上下限不变或换位,变换前后形式为  ;或  

6利用分部法求定积分

解题思路  一般计算方法与不定积分分部法类似。

(1)若被积函数含,将取作,其余部分取作

(2)若被积函数含变限积分,将变限积分取作,其余部分取作;或将原积分化为二重积分,再改变积分次序求解。

7利用公式求定积分

解题思路  利用恒等变形和变量替换法将积分或部分积分化为已知公式标准型求解

8利用积分区间的对称性计算定积分

解题思路 

(1)若被积函数是奇、偶函数,用奇偶函数的定积分性质求解

(2)若被积函数不是是奇、偶函数作负代换求解;

(3)若为连续偶函数,则,注意,可直接验证,则 

9分段函数及含绝对值号函数的定积分

解题思路:

(1)以函数分段点将积分区间分为相应子区间,利用定积分的对区域可加性求解;

(2)当被积函数是给定函数的复合函数时,用变量代换化为给定函数的形式求解;

(3)令绝对值表达式为零,去掉绝对值符号,再用分段函数积分法求解。

10.含定积分、变限积分方程的求解

解题思路 

(1)若方程含定积分,令定积分为,方程两边再取相同积分限的定积分求解;

(2)若方程含变限积分,方程两边求导化为微分方程求解;

11.利用定积分定义,性质和几何意义有关命题的证明技巧

解题思路  (1)利用已知不等式将函数改写为和式的极限,再由定积分的定义求证;(2)当函数单减时,曲边梯形的面积个窄条矩形面积之和;

12.应用介质定理、微分和积分中值定理的命题

解题思路 

(1)若结论不含,则将结论改写为的形式,左边设为辅助函数,用介质定理、微分和积分中值定理求解;

(2)若结论含,将结论左边改写为某微分中值定理的标准形式(右边含),再由此作辅助函数(有时需将所含定积分化为积分上限的函数),用微分和积分中值定理求解;

(3)若结论为含的微分方程,可由观察法或解方程求出辅助函数,用微分和积分中值定理求解。

13.定积分不等式的证明

解题思路

 常用定理:定积分的比较定理,估值定理,函数单调性判别法,微分与积分中值定理,泰勒公式;

常用不等式:,柯西不等式

常用等式:

(1)利用换元法、分部法或周期函数的定积分性质直接求证;

(2)若仅知被积函数连续:作辅助函数,将结论所含定积分化为变限积分,移项使右边为零,左边即为辅助函数,再用函数单调性或求证。

(3)若已知被积函数可导,且至少有一端点:将函数化为变限积分,即,或求证;

(4)若已知被积函数二阶可导:将被积函数按泰勒公式展开并缩放,利用定积分比较定理求证。

14.广义积分的计算

解题思路  分清积分的类型。一般将无穷积分,瑕积分化为常义积分,再取极限求解;混合型广义积分则须拆分积分区间,按无穷积分和瑕积分分别求解。

§6. 4  定积分的应用

1.定积分的微元法

设所求量A可表为,则,于是

2.直角坐标下平面图形的面积

(1)由轴所围的平面图形的面积

(2)由轴所围的平面图形的面积

(3)由轴所围的平面图形的面积

(4)由参数方程表示的曲线所围面积可作换元处理

3.极坐标下平面图形的面积

一般若平面图形的边界是圆或圆弧,可考虑用极坐标求解。

(1)由所围的平面图形的面积

(2)由闭合曲线所围的平面图形,若极点在图形内部,则面积

4.平行截面面积已知的立体体积

已知平行截面面积为,或,则其体积

,或

(1)一曲线绕坐标轴一周的旋转体体积

(2)两曲线绕坐标轴的一周的旋转体体积

(3)曲边梯形面积轴或一周的体积为

,或

曲边梯形面积轴或一周的体积为

,或

5.定积分在经济分析中的应用

(1)由边际函数求原函数

原经济函数为其边际函数的不定积分;原经济函数的增量为其边际函数的定积分,即

(2)由边际函数求最优问题

最低成本:  

最大收益:  

最大利润:  

(3)消费者剩余和生产者剩余

消费者剩余:;生产者剩余:

其中,均衡价格,均衡供需量,需求函数,供给函数。

(4)资本现值和投资问题

资本现值:;        纯收入贴现值:

其中,收入率,按连续复利的折算因子,投资时间,投资额

17.定积分在几何方面的应用

解题思路  (1)将无限分割,小曲边梯形宽为,高为,则面积微元,再将这无穷多个小曲边梯形面积微元“加”起来得曲边梯形的面积

(2)将无限分割,小区间宽为,截面积为,则体积微元,再将这无穷多个圆形薄片体积微元“加”起来得曲边梯形的面积绕轴一周的体积

(3)将无限分割,小曲边扇形圆心角为,半径为,则面积微元,再将这无穷多个小曲边扇形面积微元“加”起来,得曲边扇形的面积

第7章  多元函数微积分

§7. 1  多元函数微分学

1.多元函数,极限与连续

(1)空间直角坐标系

空间任意一点都与一个三元有序数组一一对应,称为点M的坐标,记为。空间任意两点之间的距离为

(2)曲面与方程

在空间直角坐标系中,任何一个方程,都表示一张曲面;曲面上任一点的坐标都满足方程;不在曲面上的点不满足方程。

平面:(任何一个三元一次方程都表示空间的一张平面)

柱面: 其母线平行于轴,准线为平面曲线

球面:

椭球面:

旋转抛物面: 其图形为平面曲线z轴所成曲面

双曲抛物面:

(3)多元函数

二原函数:        

二元函数表示一张空间曲面,而其在平面上的投影即为函数的定义域。

多元函数:        

(4)二元函数的极限与连续

的某去心邻域内有定义,当以任意方式趋近于时,函数的值趋近于确定的常数,则称是函数趋近时极限。记为

,或

处连续,则

(5)性质与定理:多元函数的和,差,积,商仍为连续函数(商的分母不为零);多元连续函数的复合函数仍为连续函数;有界闭区域D上的连续函数必有最值(有界);有界闭区域D上的连续函数必能取得介于最大值与最小值之间的任何值;多元基本初等函数在其定义区间内为连续函数多元初等函数在其定义区间内为连续函数

2.多元函数微分法

(1)二元函数的偏导数

(2)二元函数的全微分

偏导数存在是可全微分的必要条件,偏导数连续是可全微分的充要条件。

(3)复合函数微分法

        (称为全导数)

     

     

  

(4)一阶全微分形式不变性

(5)隐函数微分法,设是由方程确定,则

(6)二阶偏导数与全微分

若函数的两阶混合偏导数连续,则混合偏导数相等,即

3.多元函数的极值和最值

(1)无条件极值  设二阶可偏导

必要条件:    

充分条件:设,则

(2)条件极值  设,求在条件下的极值

作拉格朗日函数: 

  解出就是可能极值点

注意:从中解出代入,化为的一元函数极值问题来解决;条件极值点唯一时即为所求最值点。

(3)多元函数的最值  

§7. 2  二 重 积 分

1二重积分的定义

 (为面积元素)

由定义知,二重积分为一个确定的数值。从几何上可以解释为:若在区域上,,则二重积分表示以区域为底,以曲面为顶的曲顶柱体的体积。

2二重积分的性质

(1)

(2)    (

(3)  (表示的面积)

(4)若,则

     

(5)若,则

(6)若在区域上连续,则在上至少存在一点,使得

(7)二次积分的无关性质,

3二重积分的计算

(1)直角坐标系下的计算(

为  ,则

为  ,则

为  ;或,则

注意:如下积分须改变积分次序:

(2)利用域的对称性和函数奇偶性简化计算

关于轴对称(),则

关于轴对称(),则

关于原点对称(被过原点的直线切割的一半),则

关于对称,则

(3)极坐标系下的计算(

若极点在区域外部,,则

若极点在区域边界上,,则

若极点在区域内部,,则

注意:凡积分域为:圆、圆环、扇形、环扇形宜用极坐标计算。

(4)二重积分变量替换公式

其中,平面上区域  平面上区域,则该变换的雅可比行列式为,且

§7. 3  典型例题解析

1.利用多元函数的概念解题

解题思路 

(1)利用函数与复合函数的定义求函数的解析式;

(2)利用初等函数的定义域与性质求多元函数的定义域。

2.利用多元函数的极限和连续的定义解题

解题思路 

(1)利用多元函数极限的定义求极限;

(2)利用等价无穷小的替换、变量替换、夹逼定理等一元函数的方法求极限;

(3)利用不同路径的不同极限值判断极限不存在;

(4)二元函数连续与间断与一元函数类似,关键是二元函数极限的求法不同。

3.多元复合函数的偏导数和其微分法

解题思路 

(1)分清函数复合的结构,利用链导法求解;

(2)求某点偏导数时,可先把(或)的值代入求对(或)的偏导数,这样可简化计算;

(3)利用全微分形式不变性,函数对中间变量求全微分,中间变量对自变量求全微分,然后带回求解;

(4)对幂指函数或乘除因子较多的函数可利用取对数求导法公式求解;

(5)对多元复合隐函数分别求偏导数后,有时要联立方程求出各偏导数;

(6)求二阶偏导数时,可对中间变量编号处理,特别注意一阶偏导数仍是多元函数

4.利用偏导数和全微分的概念解题

解题思路 

(1)利用不定积分求二元函数的函数解析式,注意对一个变量积分时,积分常数是另一个变量的函数;

(2)利用二元函数全微分存在条件确定常数

5.多元函数的极值与最值的有关命题

解题思路

(1)利用极值的定义判别函数极值与最值;

(2)利用极值的必要条件和充分条件求函数的无条件极值;

(3)利用拉格朗日乘数法求函数的条件极值;

(4)若极值唯一,则极值即为最值

6.二重积分的计算

解题思路(1)选择坐标系:若积分区域是圆域,圆环域,扇形域,扇环域,或被积函数是的形式宜采用极坐标,其他区域用直角坐标;

(2)选择积分次序:积分域的划分尽可能少,积分函数先易后难;

(3)累次积分的定限原则:后积先定限,限内划射线,先交为下限,后交为上限(后积分的积分限均为常数;射线平行于先积分变量坐标轴且同向);

(4)若二次积分不能用初等函数表示,应考虑交换积分次序:由累次积分限划出积分域,由(3)的方法确定新的累次积分;

(5)利用被积函数的奇偶性与积分域的对称性可以简化计算;

(6)利用二重积分变量替换公式。

7.利用二重积分定义和性质求极限

解题思路

(1)若二元和式的通项为的形式,则可利用二重积分的定义求其极限:将域等分成个矩形曲顶柱体,则第个曲顶柱体体积为,当时,体积微元为

(2)利用二重积分化二次积分求极限;

(3)利用二重积分的中值定理求极限;

(4)交换积分次序,变量替换后用洛必达法则求解;

(5)利用二重积分的对区域可加性求极限。

8.变限二重积分的求导及含二重积分方程的求解

解题思路

(1)变限二重积分的求导一般用变量替换法和累次积分法或分部积分法将二重积分化为积分限函数再求导;

(2)若域已知,求被积函数:设方程所含二重积分为常数,两边再取相同域的二重积分,从而得关于的方程求解;

(3)若方程含变限二重积分,求被积函数:用变限二重积分的求导法将方程化为常微分方程求解。

9.有关二重积分等式和不等式的证明

解题思路

(1)已化为累次积分型可用交换积分次序、分部积分法和无关特性求解;

(2)利用已知不等式和二重积分的无关性质求证;

(3)利用函数的单调性和二重积分的符号性质求证;

(4)利用柯西不等式求证;

(5)利用域的缩放和二重积分的估值定理求证。

第8章  无 穷 级 数

§8. 1  常数项级数

1.级数的概念

(1)数列的各项依次相加所得的表达式称为无穷级数

(2),称为级数的前项部分和。

(3)若,则收敛,且;若不存在,则发散。

收敛原理:收敛    ,使当,对任何自然数

2. 级数的性质

(1)若,则

(2)加上或去掉有限项不影响级数的敛散性

(3)收敛级数加括号后仍收敛于原级数的和

(4)若收敛,则必有

注意:(1)具有相同敛散性;

(2)若收敛,发散,则发散;

(3)若均发散,则敛散性不确定;

(4)若加括号后级数发散,则原级数发散;若加括号后级数收敛,则原级数敛散性不确定;

(5)级数收敛的必要条件常用来判别级数发散。

3. 正项级数审敛法(设为正项级数,

(1)正项级数收敛的充分必要条件是其部分和序列有界。

(2)比较判别法:若),则

比较法的极限形式:若,则

注意:(1)若分母,分子关于的最高次数分别为,则

(2)若当时,,则具有相同敛散性;

(3)当时,,后者较前者趋于的速度快

两个重要级数:

几何级数  级数 

(3)比值/根值判别法:

(4)积分判别法:若上非负单调连续,则

具有相同敛散性

4. 任意项级数

(1)交错级数判别法:若满足,则

收敛,且其和,其余和

常用递减的判别:

(2)任意项级数判别法(符号不定)

定理表明任意项级数的收敛问题可以转化为正项级数的问题,因此可以用正项级数的判别法判定级数是否绝对收敛。

注意:(1)若比值/根值判别法得发散,则必发散;

(2)绝对收敛级数的所有正项(或负项)所构成的级数一定收敛;

(3)条件收敛级数的所有正项(或负项)所构成的级数一定发散。

§8. 2  幂 级 数

1.幂级数的概念

(1)由幂函数构成的级数称为幂级数,即 ,或

(2)阿贝尔定理:

(3)收敛半径,收敛区间,收敛域

,则

2.收敛半径的求法

(1)不缺项情形  若 , 则

(2)缺项情形(以为例)

3.幂级数在收敛区间内的性质

(1)

(2)

(3)

(4)幂级数在其收敛区间内的和函数为连续函数;若幂级数在收敛,则其和函数在连续;若幂级数在收敛,则其和函数在连续。

(5)幂级数在其收敛区间内可以逐项求导或积分,且其收敛区间不变。

4.函数的幂级数展开

(1)泰勒级数  设内具有任意阶导数,且泰勒余项,则处的幂级数为

,则的麦可劳林级数为

(2)若能展开为幂级数,则其展开式唯一,即

(3)常用函数的展开式

 

 

 

   

   

 

§8. 3  典型例题解析

1.常数项级数的审敛法

解题思路

(1)利用已知不等式用比较法求解;

(2)利用无穷大与无穷小的主部原则,用比较法的极限形式求解;

(3)利用比值法、根值法和积分审敛法求解。

2.常数项级数的有关命题的证明

解题思路

(1)利用数列极限的定义证明部分和数列极限存在,从而级数收敛;

(2)对正项级数部分和适当缩放和拆项处理证明其部分和数列有界,从而级数收敛;

(3)利用已知条件及递推关系推出级数收敛的充分必要条件;

(4)利用已知不等式和正项级数的相关审敛法证明级数的敛散性。

3.数项级数的绝对收敛与条件收敛

解题思路

(1)若,则发散;

(2)若,则

(3)若比较法

4.函数项级数与幂级数的审敛法

解题思路

(1)求函数项级数的收敛域,一般是对运用比较法及其极限形式,比值法和根值法;

(2)幂级数收敛域的求法与函数项级数相同,其收敛半径为收敛区间的一半;(3)利用阿贝尔定理和收敛级数的性质求幂级数的收敛域;

(4)利用级数收敛的定义求幂级数的收敛域;

(5)利用数列极限准则确定,求幂级数的收敛域。

5.函数的幂级数展开法

解题思路   直接展开法与间接展开法,通常采用间接展开法。即利用初等变换,求导或积分,将函数化为基本展开式形式求解。

6幂级数的和函数求法

解题思路

(1)

(2)

(3)由已知幂级数建立关于和函数的微分方程求解;

(4)利用幂级数下标变换求和函数;

(5)若幂级数由函数解析式给出,利用函数展开为幂级数和展开式的唯一性求解;

6数项级数的求和法

解题思路 

(1)拆项法:把通项拆成两项差的形式;用级数和的定义求和;

拆项公式

(2)直接法:若通项为(或可化为)等差或等比数列的形式,用级数和的定义求和;(3)阿贝尔法(构造幂级数法):

7.函数项级数有关命题

解题思路

(1)利用级数收敛的必要条件(收敛  )证明极限为零;

(2)利用级数收敛的定义和级数求和的方法求无穷和式的极限;

(3)利用函数幂级数展开式的唯一性,比较系数求函数在处的高阶导数;

(4)利用已知条件及递推关系,用级数收敛定义,比较法或其它审敛法证明级数收敛;

(5)利用函数幂级数展开与幂级数的求和证明等式或不等式。

第9章  微分方程初步

1. 微分方程  含有未知函数的导数或微分的方程

2. 常微分方程  未知函数为一元函数的微分方程

一般形式:;标准形式:

3. 微分方程的阶  未知函数的导数或微分的最高阶数

4. 微分方程的解  满足微分方程的函数。(1)含任意常数的解称为微分方程的通解,阶微分方程的通解含个独立任意常数;(2)不含任意常数(通解中的任意常数已由初始条件求出)的解称为微分方程的特解;(3)解的图形为方程的积分曲线。

§9. 1  一阶微分方程

1. 变量可分离的微分方程

(1)        

(2)  

2. 齐次微分方程

(1)    令,    (变量可分离)

(2)可化为齐次型   

      

3.一阶线性微分方程

非齐次方程:;    齐次方程:

(1)通解公式     

(2)常数变异法:齐次通解,非齐次通解

代入原方程可得 

4. 伯努利方程        

    

5. 全微分方程    (

    

§9. 2  二阶微分方程

1. 高阶特型微分方程

(1)    连续次积分可求解

(2)  令,可化为一阶微分方程

(3)  令,可化为一阶微分方程

2. 二阶线性微分方程解的结构

二阶线性非齐次方程      

二阶线性齐次方程         

(1)若是齐次方程的两个解,则也是齐次方程的解

(2)若是齐次方程的两个线性无关解,则是齐次方程通解

(3)若是齐次方程的通解,是非齐次方程的一个特解,则

(非齐次通解齐次通解非齐次特解)

(4)若,则

    特解

(5)若是非齐次方程的两个解,则是齐次方程的解

3. 二阶常系数线性齐次方程通解的求法

二阶常系数线性齐次方程   

特征方程为,判别式,则通解为

4. 二阶常系数线性非齐次方程特解的求法

二阶常系数线性非齐次方程   

待定系数法:

(1)若,设 

其中,均为次多项式

(2)若,设

(3)若

其中,均为次多项式,

常数变异法:若齐次方程通解为

设非齐次方程特解为 ,代入方程得

  ,其中

微分算子法:,得,则

  

,称微分算子多项式,则特解为

的运算性质:

(1)

(2)

(3)

(4)

其中,除以按升幂排列所得商式,其最高次幂为

注意:表示微分,表示积分;

§9. 3  典型例题解析

1. 变量可分离微分方程解法

解题思路

(1)分离变量后两边取不定积分求通解;

(2)若方程含等形式项时,可利用相应变量代换(或直接用凑微分法)化为可分离变量方程求解;

(3)若方程为(或可化为)型齐次方程,令求解;

2. 一阶线性微分方程解法

解题思路

(1)将方程化为的形式,利用通解公式求解;

(2)利用常数变异法求解;

(3)贝努利型方程可通过变量代换化为一阶线性方程求解。

*3. 全微分方程的解法

解题思路  将方程化为的形式,验证;用凑微分法或公式法求解。通解形式为

4. 一阶微分方程综合题

解题思路

(1)由导数的定义或已知条件列方程求函数解析式;

(2)由积分限函数的导数改写积分方程求函数解析式;

(3)利用偏导数和全导数关系列方程求函数解析式;

(4)利用定积分的性质求函数解析式

5. 高阶特型微分方程的解法

解题思路  若方程不含,令;若方程不含,令;若方程不含,令

6. 二阶常系数线性微分方程的解法

解题思路

(1)写出对应齐次方程的特征方程,由特征根的不同形式写出相应的通解;

(2)用待定系数法、微分算子法或常数变异法求非齐次方程的特解;

(3)非齐次方程的通解齐次方程的通解非齐次方程的特解;

(4)用变量代换法将变系数方程化为常系数方程求解。

7. 二阶微分方程的反问题

解题思路

(1)已知通解求方程:对通解直接求二阶导数即可还原所求方程;或由通解的结构由特征根求出特征方程还原齐次方程;

(2)已知非齐次方程的两个或三个特解求方程:用解的结构定理求解;

(3)已知非齐次方程和其特解求方程所含常数:将特解代入方程比较系数求解。

(4)已知齐次方程和其一个解求方程通解:可设另一个线性无关解为,代入方程求出,从而求出通解;

8. 二阶微分方程综合题

解题思路 

(1)利用偏导数关系及全微分条件列方程求函数解析式;

(2)利用反函数关系进行反函数代换化简方程求解;

(3)利用已知关系建立方程或已知微分方程求幂级数的和函数。

9. 微分方程的几何应用

10. 微分方程在经济分析中的应用

更多相关推荐:
考研高数知识点总结 第一单元 函数

第一单元函数1.1函数函数是变量与变量的一种对应关系。本书变量均取值于实数。1.1.1实数实数:有理数(分数)和无理数(无限不循环)的总称。性质:1、封闭性,实数对四则运算(加减乘除)是封闭的,即任意两个实数进…

高等数学知识点总结

高等数学知识点总结导数公式2tanxsecxctanxcscxsecxsecxtanxcscxcscxcotxaalnalogaxx2arcsinxarccosxarctanx1x21x121x2x1xlnaa...

高数上册知识点总结

高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(y?ax),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。x2?xx?…

高数知识点总结(1)

北雁高数知识点总结QQ7607220xxEmailheblyd163com专接本高数知识点总结上册北雁友情提供函数极限与连续性数列的极限梦想这东西和经典一样永远不会因为时间而褪色反而更显珍贵Classicali...

考研高数精华知识点总结:两个重要极限

凯程考研历史悠久专注考研科学应试严格管理成就学员考研高数精华知识点总结两个重要极限高等数学是考研数学考试中内容最多的一部分分值所占比例也最高为此我们为大家整理分享了考研高数精华知识点总结之闭区间连续函数的性质凯...

考研高数精华知识点总结:极限的性质

凯程考研历史悠久专注考研科学应试严格管理成就学员考研高数精华知识点总结极限的性质高等数学是考研数学考试中内容最多的一部分分值所占比例也最高为此我们为大家整理分享了考研高数精华知识点总结之闭区间连续函数的性质凯程...

考研高等数学知识点总结

高等数学知识点导数公式tgxsec2xctgxcsc2xsecxsecxtgxcscxcscxctgxaxaxlna1logaxxlna基本积分表arcsinx1x21arccosxx21arctgx1x21a...

考研高等数学重点知识点总结

来源凯程考研集训营资料获取课程辅导咨询凯程老师考研高等数学重点知识点总结高等数学是考研数学的重中之重所占的比重较大在数学一三中占56数学二中占78重点难点较多具体说来大家需要重点掌握的知识点有几以下几点1函数极...

20xx考研数学:重要知识点总结

20XX考研数学:重要知识点总结高等数学在考研数学中占有举足轻重的地位,数一、数三有82分,数二有116分,需要用心复习。一些学生反映,教材看了好几遍,习题做了好几本,做题依然无从下手。类似情况的原因是重点把握…

考研数学知识点归纳

考研数学知识点归纳钻石卡高级辅导系统全程全方位系统化解决考研所有问题成功率趋近1001钻石卡高级辅导系统全程全方位系统化解决考研所有问题成功率趋近100220xx年钻石卡高级辅导系统全程全方位系统化解决考研所有...

考研数学冲刺必看知识点汇总3

来源凯程考研集训营资料获取课程辅导咨询凯程老师考研数学冲刺必看知识点汇总3第一章随机事件和概率1随机事件的关系与运算2随机事件的运算律3特殊随机事件必然事件不可能事件互不相容事件和对立事件4概率的基本性质5随机...

20xx考研数学微分中值定理基本知识点总结

凯程考研历史悠久专注考研科学应试严格管理成就学员20xx考研数学微分中值定理基本知识点总结考研数学如何取得高分以下老师为各位同学整理了提高考研数学成绩的技巧供大家参考希望能对大家复习备考有帮助考研数学复习是建立...

高数知识点总结(31篇)