10.5热力学第二定律的微观解释

时间:2024.5.13

普通高中课程标准实验教科书—物理选修3-3[人教版]

        热力学第二定律的微观解释

【教学目标】

一、 知识与技能

1、知道有序和无序,宏观态和微观态的概念

2、知道熵的概念,知道任何自然过程中,一个孤立系统的总熵不会

3、了解热力学第二定律的微观意义。

二、 过程与方法

1、学会通过现象总结规律的科学方法

2、知道熵的概念,知道任何自然过程中一个孤立系统的总熵不会减少

三、 情感、态度与价值观

通过对热力学第二定律微观意义的探究,激发学习物理的动力。

【重点、难点分析】:

重点:热力学第二定律的微观意义。

难点:对熵和熵增加原理的理解。

【课时安排】:  1课时        

【课前准备】:

投影仪、投影片

【教学设计】:

 一.引入新课:

教师:(复习提问)用投影片出示下列问题

1.什么是热传导的方向性?

2.机械能和内能之间相互转化的方向性指的是什么?

3.什么是第二类永动机?为什么第二类永动机不可能制成?

4.热力学第二定律的两种表述方式是什么?

学生思考回答后,教师指出:系统的宏观表现源于组成系统的微观粒子的统计规律。本节课就要从微观的角度说明为什么涉及热运动的宏观过程会有一定的方向性。

二.进行新课:

本节课以自主学习为主

(一)、自主学习,完成下列题目:

1、有序和无序,宏观态和微观态

一切自然过程总是沿着分子热运动的--------的方向进行。

2、熵

在任何自然过程中一个孤立系统的--------不会减少。

3、热力学第二定律的微观解释

从微观的角度看,热力学第二定律是一个--------规律;一个孤立系统总是从熵--------的状态向熵--------的状态发展,而熵较大代表着较为--------,所以自发的宏观过程总量向--------更大的方向发展。

(二)、重、难点突破:

1.有序和无序  宏观态与微观态

教师:先引导学生阅读教材有关内容,以“扑克牌”为例,体会“有序”和“无序”的含义,从而进一步体会“宏观态”和“微观态”的含义。

教师:(讲解)

当我们以系统的分子数分布而不区分具体的分子来描写的系统状态叫热力学系统的宏观态;如果使用分子数分布并且区分具体的分子来描写的系统状态叫热力学系统的微观态。

在热力学系统中,由于存在大量粒子的无规则热运动,任一时刻各个粒子处于何种运动状态完全是偶然的,而且又都随时间无规则地变化。系统中各个粒子运动状态的每一种分布,都代表系统的一个微观态,系统的微观态的数目是大量的,在任意时刻系统随机地处于其中任意一个微观态。

下面我们以上图所示的情况为例来进一步加以说明。假设容器中体积相等的AB两室内具有abcd一共4个全同的分子,它们在AB两室内的分布情况共有16种方式。具体分布如下:

(0,4)(0,abcd

( l,3)[(abcd),(bacd),(cabd),(dabc)]

(2,2)[(abcd),(acbd),(adbc),(bcad),(bdac),(cdab)]

(3,l)[(bcd,a),(acd,b),(abd,c),(abc,d)]

(4,0)abcd,0)

上面的分布表达中,如(2,2)表示一个宏观态(即AB两室内各有2个分子但不区分具体分子)而(abcd)表示一个微观态(ab分子在A室内,cd分子在B室内)由上表可清楚地看出,不同的宏观态包含着不同数量的微观态,其中以AB两室各有2个分子的宏观态包含的微观态数目最多(6个)而以4个分子全部分布在A室或全部分布在B室的宏观态所包含的微观态数目最少(都是1个)。

如果一个“宏观态”对应的“微观态”比较多,就说这个“宏观态”是比较无序的。

2.气体向真空的扩散

教师:引导学生阅读教材有关内容。

教师讲解:一个箱子被挡板分为左、右两室,假设左室气体只有a,b,c,d4个分子,右室为真空,撤去挡板后,气体由左向右扩散,由于各个微观态出现的概率是一样的,从宏观上看,我们看到“左2右2”这种均匀分布的可能性最大,而分子重新集中在一个室中,另一个室变成真空的可能性小。而实际上,气体系统中分子个数相当多,因此,撤去挡板后实际上我们只能看到气体向真空中扩散,而不可能观察到气体分子重新聚集在一室的现象。

从无序的角度上看,热力学系统是由大量作无序运动的分子组成的,因为任何热力学过程都伴随着分子的无序运动状态的变化,当撤去挡板的一瞬间,分子仍聚集在左室,对于左右两室这一个整体来讲,这显然是一种高度有序的分布,当气体分子自由扩散后,气体系统就变得无序了,因此,气体的自由扩散过程是沿着无序性增大的方向进行的,因此,一切自然过程总是沿着分子热运动的无序性增大的方向进行。这就是热力学第二定律的微观意义。

3.熵

教师:教师:引导学生阅读教材有关内容。

教师讲解:对于由大量分子构成的系统而言,宏观态包含的微观态数目往往很大,这不利于实际计算。为此,玻耳兹曼引进了熵的概念,并定义系统的熵为Ω,后来普朗克把它写成 Ω,式中 k叫做玻耳兹曼常数,S为系统的熵,Ω为一个宏观状态所对应的微观状态数目。

引入熵后,关于自然过程的方向性就可以表述为:在任何自然过程中,一个孤立系统的总熵不会减小。从微观角度看,热力学的第二定律是一个统计规律。一个孤立系统总是从熵小的状态向熵大的状态发展,而熵值较大代表着较为无序,所以自发的宏观过程总是向无序度更大的方向发展。因此,热力学第二定律又叫做熵增加原理。

三.随堂练习:

例1 一个物体在粗糙的平面上滑动,最后停止。系统的熵如何变化?

解析:因为物体由于受到摩擦力而停止运动,其动能变为系统的内能,增加了系统分子无规则运动的程度,使得无规则运动加强,也就是系统的无序程度增加了,所以系统的熵增加。

四.课堂总结、点评

这节课我们学习了热力学第二定律的微观意义。从微观上解释,一切自然过程总是沿着分子热运动的无序性增大的方向进行。

在热力学中,引入了熵的概念后,热力学第二定律又称为熵增加原理:在任何自然过程中,一个孤立系统的总熵不会减小。

五.课余作业

完成P67 “问题与练习”的题目。课下阅读教材66页“科学漫步”。

【教学反思】

思维方法是解决问题的灵魂,是物理教学的根本;亲自实践参与知识的发现过程是培养学生能力的关键,离开了思维方法和实践活动,物理教学就成了无源之水、无本之木。学生素质的培养就成了镜中花,水中月。

★资料袋:

浅说熵

熵这个概念最早是由德国的物理学家克劳修斯最早提出的,英文写法是Entropy,后来当时任浙大教授的胡刚复再翻译这个词的时候写成了熵,一直沿用至今。

熵的提出是热力学发展的结果,也被认为是热力学发展史上的一块里程碑。

牛顿发表了伟大的力学三定律后,欧洲的工业革命开启了热学发展的春天,而在这个春天开放的第一朵鲜花就是蒸汽机,随着瓦特蒸汽机的问世不仅宣告了热机时代的到来,也开始了人们对热机循环的研究。

德国的一位医生迈尔最早总结出了:能量守恒及转化定律——热力学第一定律。再向后,法国年轻的工程师卡诺将对热机的研究向前推进了一大步,他提出的两个著名推论,热机的卡诺循环为后来者打下了坚实的基础。1850年,克劳修斯总结出:不可能把热量从低温物体传向高温物体而不引起其他变化。1851年英国的开尔文勋爵又提出了:不可能从单一热源吸收热量使之完全转化为有用功而不引起其他变化。上述两个结论就是关于热力学第二定律的最早描述。

1906年,又是一位德国人斯脱提出了不可能把一个物体的温度降到绝对零度。此即热力学第三定律。

而熵也随着热力学第二定律的提出在19世纪中期登上了舞台。当时,克劳修斯正在研究热机循环,他试图找到一个量在热机循环再回到原状态时保持不变。最后他发现了这个关系:系统内含的热量与绝对温度的比值不变,即。于是他定义一个系统的熵:。自从这个新玩意被提出来以后,许多科学家都开始了对它意义的研究。克劳修斯指出:熵是一个状态量,只有当一个系统的温度、压强等趋于稳定均匀的时候才有意义。

1877年,波尔兹曼在一篇方程论文中运用统计力学的方法第一次将熵和概率联系在了一起,这就是著名的波尔兹曼方程:k:波尔兹曼常数;W代表系统内一定宏观态中可能存在的分子组态数,通常称为“微观量”)。波尔兹曼方程将宏观态和微观态联系在了一起,并指出所谓熵对应着分子分布的概率。分子分布总是自发向概率最大的状态,即平衡态改变。现在我们可以对熵有一个感性的认识:墒代表了系统的混乱程度,熵越大分子的分布越趋于无序。对于一个系统,熵会自发性的增大。从微观上看,自发的热力学过程总是使分子由有序走向无序。这就是著名的熵增加原理。

在熵增原理提出后,克劳修斯将其推广到了整个宇宙,并提出了一个似乎颇为严密的推理:由于宇宙中各个变化均向着无序的方向进行,宇宙的离散度不断增加,最终宇宙会变成一个巨大的无线电辐射场,而且宇宙中所有的机械运动会转化为热运动,热量停止传递。如此宣告宇宙末日的理论一提出便引起了轩然大波。进入二十世纪后,热力学得到了长足的发展,人们对熵也有了新的认识,经典热力学认为熵只有在平衡态时才有意义,而随着非平衡态理论的建立,人们逐渐意识到系统在远离平衡态时,由于其约束条件超过了某个临界值,系统会变的非常不稳定,这时任何一个微小的扰动都会使系统进入一个离平衡态更远的稳定状态,这样自发形成的有序结构称为耗散结构。耗散结构的提出以及后来的混沌理论逐渐向我们展示了宇宙的复杂及不确定,原始经典的熵已经显得力不从心。但科学终究是发展的,任何理论现有的缺陷及不足都将是它们完善的突破口。

相信在新世纪里,熵能带给我们更多惊喜。


第二篇:10[1].5-10.6热力学第二定律的微观解释


导学案:10.5-10.6热力学第二定律的微观解释能源和可持续发展

目标导航1.了解有序和无序,宏观态和微观态的概念。

2.了解热力学第二定律的微观意义。 3.了解熵的概念,知道熵是反映系统无序程度的物理量。

4.知道随着条件的变化,熵是变化的。

诱思导学

1.有序和无序

有序:只要确定了某种规则,符合这个规则的就叫做有序。

无序:不符合某种确定规则的称为无序。

无序意味着各处都一样,平均、没有差别,有序则相反    有序和无序是相对的。

2.宏观态和微观态

宏观态:符合某种规定、规则的状态,叫做热力学系统的宏观态。

微观态:在宏观状态下,符合另外的规定、规则的状态叫做这个宏观态的微观态。

系统的宏观态所对应的微观态的多少表现为宏观态无序程度的大小。如果一个“宏观态”对应的“微观态”比较多,就说这个“宏观态”是比较___________的,同时也决定了宏观过程的方向性——从有序到无序。

3.热力学第二定律的微观意义

一切自然过程总是沿着分子热运动的____________________________的方向进行。

4.熵和系统内能一样都是一个状态函数,仅由系统的状态决定。从分子运动论的观点来看,熵是分子热运动无序(混乱)程度的定量量度。

一个系统的熵是随着系统状态的变化而变化的。在自然过程中,系统的熵是增加的。

在____________________________中,熵是增加的,叫做熵增加原理。对于其它情况,系统的熵可能增加,也可能减小。

从微观的角度看,热力学第二定律是一个统计规律:一个孤立系统总是从熵小的状态向熵大的状态发展,而熵值较大代表着较为__________,所以自发的宏观过程总是向无序程度更大的方向发展。

典例探究例1 一个物体在粗糙的平面上滑动,最后停止。系统的熵如何变化?

基础训练

1.一定质量的气体被压缩,从而放出热量,其熵怎样变化?

2.保持体积不变,将一个系统冷却,熵怎样变化?

3某地的平均风速为5m/s,已知空气密度是1.2kg/m3,有一风车,它的车叶转动时可形成半径为12m的圆面,如果这个风车能将此圆内10%的气流的动能转变为电能,则该风车带动的发电机功率是多大?

4如图甲所示,用面积为S的活塞在气缸内封闭着一定质量的空气,活塞上放一砝码,活塞和砝码的总质量为m.现对气缸缓缓加热,使气缸内的空气温度从T1升高到T2,空气柱的高度增加了ΔL,已知加热时气体吸收的热量为Q,外界大气压强为p0.求:

(1)此过程中被封闭气体的内能变化了多少?

(2)气缸内温度为T1时,气柱的长度为多少?

(3)请在图乙的VT图上大致作出该过程的图象(包括在图线上标出过程的方向).

5(07河北)如图所示,质量为m的活塞将一定质量的气体封闭在气缸内,活塞与气缸之间无

摩擦,a态是气缸放在冰水混合物中气体达到的平衡状态,

b态是气缸从容器中移出后,在室温(27℃)中达到的平衡

状态,气体从a态变化到b态的过程中大气压强保持不变。

若忽略气体分子之间的势能,下列说法中正确的是(      )

A.与b态相比,a态的气体分子在单位时间内撞击活塞的个数较多

B.与a态相比,b态的气体分子对活塞的平均作用力较大

C.ab两态的气体分子对活塞的平均作用力相等

D.从a态到b态,气体的内能增加,外界对气体做功,气体向外界释放了热量

6下列说法中正确的是(       )

A.物体吸热后温度一定升高   B.物体温度升高一定是因为吸收了热量

C.0℃的冰化为0℃的水的过程中内能不变

D.100℃的水变为100℃的水汽的过程中内能增大

7如图所示,导热气缸开口向下,内有理想气体,缸内活塞可以自由滑

动且不漏气,活塞下挂一个砂桶,桶内装满砂子时,活塞恰好静止。现

在把砂桶底部钻一个小洞,细砂缓慢流出,并缓慢降低气缸外部环境温

度,则(       )

A.气体压强增大,内能可能不变    B.气体对外界作功,气体温度可能降低

C.气体体积减小,压强增大,内能一定减小

D.外界对气体作功,气体内能一定增加

8下列说法正确的是(       )

A.物体放出热量,温度一定降低             B.物体内能增加,温度一定升高

C.热量能自发地从低温物体传给高温物体   D.热量能自发地从高温物体传给低温物体

9下列说法正确的是(         )

A.机械能全部变成内能是不可能的

B.第二类永动机不可能制造成功的原因是因为能量既不会凭空产生,也不会凭空消失,只能从

一个物体转移到另一个物体,或从一种形式转化成另一种形式。

C.根据热力学第二定律可知,热量不可能从低温物体传到高温物体

D.从单一热源吸收的热量全部变成功是可能的

更多相关推荐:
物理化学热力学第二定律总结

热力学第二定律1热力学第二定律通过热功转换的限制来研究过程进行的方向和限度2热力学第二定律文字表述第二类永动机是不可能造成的从单一热源吸热使之完全变为功而不留下任何影响3热力学第二定律的本质加的方向进行a热与功...

热力学第二定律的认识和思考

热力学第二定律的认识和思考摘要热力学第二定律是热力学的基本定律之一是指热永远都只能由热处转到冷处在自然状态下它是关于在有限空间和时间内一切和热运动有关的物理化学过程具有不可逆性的经验总结关键词热力学热力学第二定...

热力学第二定律总结

第三章热力学第二定律总结核心内容不可逆或自发SisoSSamb2QrT1Q0可逆或平衡Tamb不可能对于恒TVW0过程不可逆或自发ATVW0UTSUTS0可逆或平衡反向自发对于恒TpW0过程不可逆或自发GTpW...

热力学第二定律及其思考

热力学第二定律及其思考现在热力学第一定律已经被证明是完全正确的违背热力学第一定律的变化过程是一定不能发生的第一类永动机是不可能造成的但不违背热力学第一定律的变化与过程却未必能自动发生可见利用热力学第一定律并不能...

热力学第二定律论文蒋超

热力学第二定律热力学第二定律是热力学的基本定律之一是指热永远都只能由热处转到冷处在自然状态下它是关于在有限空间和时间内一切和热运动有关的物理化学过程具有不可逆性的经验总结本文综述了该定律的发现演变历程并介绍了它...

热力学第二定律的发展与应用

热力学第二定律的发展与应用Onthesecondlawofthermodynamics39developmentandapplication淮阴工学院数理学院应用物理1101班沈梅玲1104105106Thee...

热力学第二定律的简单论述

热力学第二定律的简单论述摘要热力学第二定律是热力学的基本定律之一是指热永远都只能由热处转到冷处在自然状态下它是关于在有限空间和时间内一切和热运动有关的物理化学过程具有不可逆性的经验总结本文综述了该定律的发现演变...

热力学第一、第二定律论文

热力学第一定律和第二定律是科学界公认的宇宙普遍规律热力学第一定律是对能量守恒和转换定律的一种表述方式热力学第一定律指出热能可以从一个物体传递给另一个物体也可以与机械能或其他能量相互转换在传递和转换过程中能量的总...

高二物理知识点:热力学第二定律

高二物理知识点热力学第二定律让我们重温一下热力学的知识吧克氏表述指出热传导过程是不可逆的氏表述指出功变热确切地说是机械能转化为内能的过程是不可逆的这是一个不可逆过程在实验中重物下降带动叶片转动而对水做功使水的内...

热力学第二定律习题详解

第1页共5页11热力学第二定律习题详解习题册上11习题十一一选择题1你认为以下哪个循环过程是不可能实现的A由绝热线等温线等压线组成的循环B由绝热线等温线等容线组成的循环C由等容线等压线绝热线组成的循环D由两条绝...

工程热力学论文(论热力学第一和第二定律)

工程热力学论文论热力学第一和第二定律键入作者姓名20xx229论热力学第一和第二定律内容提要热力学第一和第二定律是热力学的最基本最重要的理论基础其中热力学第一定律从数量上描述了热能与机械能相互转换时数量的关系热...

热力学第二定律试题

热力学第二定律试题一填空题每题2分1气体经绝热不可逆膨胀0气体经绝热不可逆压缩填gtlt下同21mol单原子理想气体从P1V1T1等容冷却到P2V1T2则该过程的U0S0W03理想气体的等温可逆膨胀过程中00填...

热力学第二定律总结(30篇)