初中函数知识点总结大全(含有高中衔接内容)

时间:2024.3.31

一次函数

一、定义与定义式:

        自变量x和因变量y有如下关系:

             y=kx+b

        则此时称y是x的一次函数。

       

特别地,当b=0时,y是x的正比例函数。

        即:y=kx (k为常数,k≠0)

二、一次函数的性质:

       1.y的变化值与对应的x的变化值成正比例,比值为k

        即:y=kx+b (k为任意不为零的实数 b取任何实数)

       2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:

        1.作法与图形:通过如下3个步骤

(1)列表;

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

       2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

       3.k,b与函数图像所在象限:

        当k>0时,直线必通过一、三象限,y随x的增大而增大;

        当k<0时,直线必通过二、四象限,y随x的增大而减小。

        当b>0时,直线必通过一、二象限;

        当b=0时,直线通过原点

        当b<0时,直线必通过三、四象限。

        特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

        这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:

        已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

        (1)设一次函数的表达式(也叫解析式)为y=kx+b。

        (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②

        (3)解这个二元一次方程,得到k,b的值。

        (4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:

        1.当时间t一定,距离s是速度v的一次函数。s=vt。

        2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

六、常用公式:(不全,希望有人补充)

        1.求函数图像的k值:(y1-y2)/(x1-x2)

        2.求与x轴平行线段的中点:|x1-x2|/2

        3.求与y轴平行线段的中点:|y1-y2|/2

        4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2  (注:根号下(x1-x2)与(y1-y2)的平方和)

二次函数

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax^2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点A(x? ,0)和     B(x?,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a   k=(4ac-b^2)/4a   x?,x?=(-b±√b^2-4ac)/2a

III.二次函数的图像

在平面直角坐标系中作出二次函数y=x^2的图像,

可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线

x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

P ( -b/2a ,(4ac-b^2)/4a )

当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

    Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h<0时,则向左平行移动|h|个单位得到.

  当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;

  当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

  3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.

  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x?-x?|

  当△=0.图象与x轴只有一个交点;

  当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

  5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

反比例函数

形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:

反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

如图,上面给出了k分别为正和负(2和-2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数

当K<0时,反比例函数图像经过二,四象限,是增函数

反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:

1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。

2.对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

对数函数

 对数函数的一般形式为 ,它实际上就是指数函数 的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

指数函数

指数函数的一般形式为 ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得

如图所示为a的不同大小影响函数图形的情况。

可以看到:

(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2) 指数函数的值域为大于0的实数集合。

(3) 函数图形都是下凹的。

(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。

(7) 函数总是通过(0,1)这点。

(8) 显然指数函数无界。 

奇偶性

注图:(1)为奇函数(2)为偶函数

1.定义

  一般地,对于函数f(x)

  (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

  (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

  (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

  (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

  说明:①奇、偶性是函数的整体性质,对整个定义域而言

  ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

  (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

  ③判断或证明函数是否具有奇偶性的根据是定义

2.奇偶函数图像的特征:

  定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。

   f(x)为奇函数《==》f(x)的图像关于原点对称

  点(x,y)→(-x,-y)

    奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

  偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。 

3.   奇偶函数运算

(1) . 两个偶函数相加所得的和为偶函数.

(2) . 两个奇函数相加所得的和为奇函数.

(3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.

(4) . 两个偶函数相乘所得的积为偶函数.

(5) . 两个奇函数相乘所得的积为偶函数.

(6) . 一个偶函数与一个奇函数相乘所得的积为奇函数.

定义域

(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;

 值域

名称定义

函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合

常用的求值域的方法

(1)化归法;(2)图象法(数形结合),

(3)函数单调性法,

(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等

关于函数值域误区

定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。

“范围”与“值域”相同吗?

“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。


第二篇:初中函数知识点总结


函数知识点总结(掌握函数的定义、性质和图像)

(一)平面直角坐标系

1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系

2、各个象限内点的特征:

第一象限:(+,+)      点P(x,y),则x>0,y>0;

第二象限:(-,+)      点P(x,y),则x<0,y>0;

第三象限:(-,-)      点P(x,y),则x<0,y<0;

第四象限:(+,-)      点P(x,y),则x>0,y<0;

3、坐标轴上点的坐标特征:

   x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。

4、点的对称特征:已知点P(m,n),

关于x轴的对称点坐标是(m,-n),  横坐标相同,纵坐标反号

关于y轴的对称点坐标是(-m,n)  纵坐标相同,横坐标反号

关于原点的对称点坐标是(-m,-n)  横,纵坐标都反号

5、平行于坐标轴的直线上的点的坐标特征:

平行于x轴的直线上的任意两点:纵坐标相等;

平行于y轴的直线上的任意两点:横坐标相等。

6、各象限角平分线上的点的坐标特征:

第一、三象限角平分线上的点横、纵坐标相等。

   第二、四象限角平分线上的点横、纵坐标互为相反数。

7、点P(x,y)的几何意义:

点P(x,y)到x轴的距离为 |y|,

点P(x,y)到y轴的距离为 |x|。

点P(x,y)到坐标原点的距离为

8、两点之间的距离:

X轴上两点为A、B  |AB|

Y轴上两点为C、D  |CD|

已知A、B   AB|=

9、中点坐标公式:已知A、B M为AB的中点

    则:M=( , )

10、点的平移特征:  在平面直角坐标系中,

将点(x,y)向右平移a个单位长度,可以得到对应点( x-a,y);

将点(x,y)向左平移a个单位长度,可以得到对应点(x+a ,y);

将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b);

将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b)。

注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。

(二)函数的基本知识:

基本概念

1、变量:在一个变化过程中可以取不同数值的量。

   常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

   *判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应

3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:

  (1)关系式为整式时,函数定义域为全体实数;

  (2)关系式含有分式时,分式的分母不等于零;

  (3)关系式含有二次根式时,被开放方数大于等于零;

  (4)关系式中含有指数为零的式子时,底数不等于零;

  (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5函数的图像

一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.

6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

7描点法画函数图形的一般步骤

第一步:列表(表中给出一些自变量的值及其对应的函数值);

第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);

第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8函数的表示方法

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

(三)正比例函数和一次函数

1、正比例函数及性质

一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.

注:正比例函数一般形式 y=kx (k不为零)  ① k不为零  ② x指数为1 ③  b取零

当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.

(1) 解析式:y=kx(k是常数,k≠0)

(2) 必过点:(0,0)、(1,k)

(3) 走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四象限

(4) 增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小

(5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴

2、一次函数及性质

一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.

注:一次函数一般形式 y=kx+b (k不为零)   ① k不为零  ②x指数为1  ③ b取任意实数

一次函数y=kx+b的图象是经过(0,b)和(-,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

(1)解析式:y=kx+b(k、b是常数,k0)

(2)必过点:(0,b)和(-,0)

(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限

            b>0,图象经过第一、二象限;b<0,图象经过第三、四象限

直线经过第一、二、三象限    直线经过第一、三、四象限

直线经过第一、二、四象限    直线经过第二、三、四象限

注:y=kx+b中的k,b的作用:

1、k决定着直线的变化趋势

      ① k>0  直线从左向右是向上的   ② k<0  直线从左向右是向下的

2、b决定着直线与y轴的交点位置

① b>0  直线与y轴的正半轴相交   ② b<0  直线与y轴的负半轴相交

(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.

(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.

(6)图像的平移: 当b>0时,将直线y=kx的图象向上平移b个单位;

当b<0时,将直线y=kx的图象向下平移b个单位.

3、一次函数y=kx+b的图象的画法.

根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.

注:对于y=kx+b 而言,图象共有以下四种情况:

1、k>0,b>0      2、k>0,b<0   3、k<0,b<0     4、k<0,b>0

 

4、直线y=kx+b(k≠0)与坐标轴的交点.

  (1)直线y=kx与x轴、y轴的交点都是(0,0);

  (2)直线y=kx+b与x轴交点坐标为与 y轴交点坐标为(0,b).

5、用待定系数法确定函数解析式的一般步骤:

  (1)根据已知条件写出含有待定系数的函数关系式;

  (2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;

  (3)解方程得出未知系数的值;

  (4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.

6、两条直线交点坐标的求法:

   方法:联立方程组求x、y 

   例题:已知两直线y=x+6  与y=2x-4交于点P,求P点的坐标?

7、直线y=k1x+b1与y=k2x+b2的位置关系

(1)两条直线平行:k1=k2且b1b2

(2)两直线相交:k1k2

(3)两直线重合:k1=k2且b1=b2

平行于轴(或重合)的直线记作.特别地,轴记作直线

8、正比例函数与一次函数图象之间的关系

一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).

9、一元一次方程与一次函数的关系

任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.

10、一次函数与一元一次不等式的关系

任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.

11、一次函数与二元一次方程组

    (1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=的图象相同.

(2)二元一次方程组的解可以看作是两个一次函数y=和y=的图象交点.

12、函数应用问题 (理论应用 实际应用)

(1)利用图象解题  通过函数图象获取信息,并利用所获取的信息解决简单的实际问题.

(2)经营决策问题  函数建模的关键是将实际问题数学化,从而解决最佳方案,最佳策略等问题.建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知题.

(四)反比例函数

一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。

取值范围: ① k ≠ 0; ②在一般的情况下 , 自变量 x 的取值范围可以是 不等于0的任意实数 ; ③函数 y 的取值范围也是任意非零实数。

反比例函数的图像属于以原点为对称中心的中心对称的双曲线

反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

反比例函数的性质:

1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

   2.k>0时,函数在x<0和 x>0上同为减函数;k<0时,函数在x<0和x>0上同为增函数。

   定义域为x≠0;值域为y≠0。

   3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

   4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2,则S1=S2=|K|

5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。       

6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B两点关于原点对称。

   7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n2 +4k·m≥(不小于)0。 (k/x=mx+n,即mx^2+nx-k=0)

   8.反比例函数y=k/x的渐近线:x轴与y轴。

   9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称. (第5点的同义不同表述)

   10.反比例上一点m向x、y轴分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|

   11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。

  12.|k|越大,反比例函数的图象离坐标轴的距离越远。

(五)二次函数

二次函数是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。

 一般式(已知图像上三点或三对的值,通常选择一般式.)

 y=ax^2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(4ac-b^2/4a) ;

顶点式(已知图像的顶点或对称轴,通常选择顶点式.)

  y=a(x+m)^2+k(a≠0,a、m、k为常数)或y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)或(h,k)对称轴为x=-m或x=h,有时题目会指出让你用配方法把一般式化成顶点式;

交点式(已知图像与轴的交点坐标,通常选用交点式)

  y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;

抛物线的三要素:开口方向、对称轴、顶点

顶点

抛物线有一个顶点P,坐标为P ( -b/2a ,4ac-b^2/4a ) ,当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

开口

二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小

决定对称轴位置的因素

一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b号时(即ab0),对称轴在y轴左;当a与b号时(即ab0),对称轴在y轴右。(左同右异)

c的大小决定抛物线轴交点的位置.

时,,∴抛物线轴有且只有一个交点(0,):

,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.

直线与抛物线的交点

(1)轴与抛物线得交点为(0, ).

(2)与轴平行的直线与抛物线有且只有一个交点(,).

(3)抛物线与轴的交点

二次函数的图像与轴的两个交点的横坐标,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:

 ①有两个交点抛物线与轴相交;

 ②有一个交点(顶点在轴上)抛物线与轴相切;

 ③没有交点抛物线与轴相离.

(4)平行于轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.

(5)一次函数的图像与二次函数的图像的交点,由方程组 的解的数目来确定:

①方程组有两组不同的解时有两个交点; ②方程组只有一组解时只有一个交点;③方程组无解时没有交点.

(6)抛物线与轴两交点之间的距离:若抛物线轴两交点为,由于是方程的两个根,故

更多相关推荐:
高中函数知识点总结

函数知识要点一、本章知识网络结构:F:A?B二次函数二、知识回顾:(一)映射与函数1.映射与一一映射2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相…

高一数学:函数知识点总结

函数复习主要知识点一函数的概念与表示1映射1映射设AB是两个集合如果按照某种映射法则f对于集合A中的任一个元素在集合B中都有唯一的元素和它对应则这样的对应包括集合AB以及A到B的对应法则f叫做集合A到集合B的映...

高一数学必修一函数知识点总结

二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作…

高中数学函数知识点总结

高中数学函数知识点总结1对于集合一定要抓住集合的代表元素及元素的确定性互异性无序性2进行集合的交并补运算时不要忘记集合本身和空集的特殊情况注重借助于数轴和文氏图解集合问题空集是一切集合的子集是一切非空集合的真子...

高中数学函数知识点整理

高中数学文科知识点整理袁小林一函数1函数的单调性1定义对于函数fx的某个区间D上的任意两个自变量的值x1x2若x1ltx2都有fx1ltfx2则fx在这个区间上是增函数若x1ltx2都有fx1gtfx2则fx在...

人教版高一数学函数及其性质知识点归纳与习题

第一部分函数及其表示知识点一:函数的基本概念1、函数的概念:一般地,设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:…

高中数学知识点总结 第二章函数

高中数学第二章函数考试内容映射函数函数的单调性奇偶性反函数互为反函数的函数图像间的关系指数概念的扩充有理指数幂的运算性质指数函数对数对数的运算性质对数函数函数的应用考试要求1了解映射的概念理解函数的概念2了解函...

正弦函数知识点总结

第一章三角函数1正角负角零角象限角的概念2与角终边相同的角的集合2kkZ2角的顶点与原点重合角的始边与x轴的非负半轴重合终边落在第几象限则称为第几象限角k360k36090k第一象限角的集合为k36090k36...

最精最全的《函数与导数解题方法知识点技巧总结》

最精最全的函数与导数解题方法知识点技巧总结1高考试题中关于函数与导数的解答题从宏观上有以下题型1求曲线yfx在某点出的切线的方程2求函数的解析式3讨论函数的单调性求单调区间4求函数的极值点和极值5求函数的最值或...

高中数学必修4知识点总结:第一章 三角函数

高中数学必修4知识点总结第一章三角函数正角按逆时针方向旋转形成的角1任意角负角按顺时针方向旋转形成的角零角不作任何旋转形成的角2角的顶点与原点重合角的始边与x轴的非负半轴重合终边落在第几象限则称为第几象限角第二...

高一数学必修一第一章集合与函数知识点总结精华版

高一数学必修1第一章知识点总结第一章集合与函数概念一集合有关概念1集合的含义2集合的中元素的三个特性1元素的确定性如世界上最高的山2元素的互异性如由HAPPY的字母组成的集合HAPY3元素的无序性如abc和ac...

三角函数知识点总结

高中数学第四章三角函数考试内容角的概念的推广弧度制任意角的三角函数单位圆中的三角函数线同角三角函数的基本关系式正弦余弦的诱导公式两角和与差的正弦余弦正切二倍角的正弦余弦正切正弦函数余弦函数的图像和性质周期函数函...

高中函数知识点总结(20篇)