食品生物化学名词解释和简答题答案

时间:2024.5.14

试题一

四、名词解释 1. 两性离子(dipolarion) 2.米氏常数(Km值) 3.生物氧化(biological oxidation)

4.糖异生 (glycogenolysis)

5.必需脂肪酸(essential fatty acid)

五、问答

1.简述蛋白质变性作用的机制。

2.DNA分子二级结构有哪些特点?

5.简述tRNA在蛋白质的生物合成中是如何起作用的?

四、名词解释

1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。

2.米氏常数(Km值):用Km值表示,是酶的一个重要参数。Km值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M或mM)。米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。

3.生物氧化: 生物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP。

4.糖异生:非糖物质(如丙酮酸 乳酸 甘油 生糖氨基酸等)转变为葡萄糖的过程。

5.必需脂肪酸:为人体生长所必需但有不能自身合成,必须从事物中摄取的脂肪酸。在脂肪中有三种脂肪酸是人体所必需的,即亚油酸,亚麻酸,花生四烯酸。

五、问答

1. 答:

维持蛋白质空间构象稳定的作用力是次级键,此外,二硫键也起一定的作用。当某些因素破坏了这些作用力时,蛋白质的空间构象即遭到破坏,引起变性。

2.答:

按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行。两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系。维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小。

5.答:

在蛋白质合成中,tRNA起着运载氨基酸的作用,将氨基酸按照mRNA链上的密码子所决定的氨基酸顺序搬运到蛋白质合成的场所——核糖体的特定部位。tRNA是多肽链和mRNA之间的重要转换器。①其3ˊ端接受活化的氨基酸,形成氨酰-tRNA②tRNA上反密码子识别mRNA链上的密码子 ③ 合成多肽链时,多肽链通过tRNA暂时结合在核糖体的正确位置上,直至合成终止后多肽链才从核糖体上脱下。

试题二

四、名词解释

1.分子杂交(molecular hybridization)

2.酶的比活力(enzymatic compare energy)

3. 氧化磷酸化(oxidative phosphorylation)

5.脂肪酸的β-氧化(β- oxidation)

五、问答

1.什么是蛋白质的空间结构?蛋白质的空间结构与其生物功能有何关系?

2.简述酶作为生物催化剂与一般化学催化剂的共性及其个性?

3.磷酸戊糖途径有什么生理意义?

4.用反应式说明α-酮戊二酸是如何转变成谷氨酸的,有哪些酶和辅因子参与?

5.遗传密码如何编码?有哪些基本特性?

四、名词解释

1. 分子杂交(molecular hybridization):不同的DNA片段之间,DNA片段与RNA片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程称为分子杂交。

2.酶的比活力:比活力是指每毫克蛋白质所具有的活力单位数.

3. 氧化磷酸化:在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP磷酸化生成ATP的作用,称为氧化磷酸化。氧化磷酸化是生物体内的糖、脂肪、蛋白质氧

化分解合成ATP的主要方式。

5. 脂肪酸的β-氧化:脂肪酸的β-氧化作用是脂肪酸在一系列酶的作用下,在α碳原子和β碳原子之间断裂,β碳原子氧化成羧基生成含2个碳原子的乙酰CoA和比原来少2个碳原子的脂肪酸。

五、问答

1.答:

蛋白质的空间结构是指蛋白质分子中原子和基团在三维空间上的排列、分布及肽链走向。蛋白质的空间结构决定蛋白质的功能。空间结构与蛋白质各自的功能是相适应的。

2.答:

(1)共性:用量少而催化效率高;仅能改变化学反应的速度,不改变化学反应的平衡点,酶本身在化学反应前后也不改变;可降低化学反应的活化能。

(2)个性:酶作为生物催化剂的特点是催化效率更高,具有高度的专一性,容易失活,活力受条件的调节控制,活力与辅助因子有关。

3.答:

(1)产生的5-磷酸核糖是生成核糖,多种核苷酸,核苷酸辅酶和核酸的原料。

(2)生成的NADPH+H+是脂肪酸合成等许多反应的供氢体。

(3)此途径产生的4-磷酸赤藓糖与3-磷酸甘油酸可以可成莽草酸,进而转变为芳香族氨基酸。

(4)途径产生的NADPH+H+可转变为NADH+H+,进一步氧化产生ATP,提供部分能量。

4.答:

(1)谷氨酸脱氢酶反应:

α-酮戊二酸 + NH3? +NADH → 谷氨酸 + NAD+ + H2O

(2)谷氨酸合酶-谷氨酰胺合酶反应:

谷氨酸 + NH3? +ATP →谷氨酰胺 +ADP + Pi + H2O

谷氨酰胺 +α-酮戊二酸 + 2H → 2谷氨酸

还原剂(2H):可以是NADH、NADPH和铁氧还蛋白

5.答:

mRNA上每3个相邻的核苷酸编成一个密码子,代表某种氨基酸或肽链合成的起始或终止信(4种核苷酸共组成64个密码子)。其特点有:①方向性:编码方向是5ˊ→3ˊ;②无标点性:密码子连续排列,既无间隔又无重叠;③简并性:除了Met和Trp各只有一个密码

子之外,其余每种氨基酸都有2—6个密码子;④通用性:不同生物共用一套密码;⑤摆动性:在密码子与反密码子相互识别的过程中密码子的第一个核苷酸起决定性作用,而第二个、尤其是第三个核苷酸能够在一定范围内进行变动。

试题三

四、名词解释

1.盐析(salting out)

3.底物水平磷酸化(substrate level phosphorylation)

五、问答

1.为什么说三羧酸循环是糖、脂和蛋白质三大物质代谢的共通路?

4.糖代谢与脂类代谢的相互关系?

5.简述DNA复制的过程?

四、名词解释

1.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为盐析。

3.底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成ATP(或GTP)的过程称为底物水平磷酸化。此过程与呼吸链的作用无关,以底物水平磷酸化方式只产生少量ATP。

五、问答

1.答:

(1)三羧酸循环是乙酰CoA最终氧化生成CO2和H2O的途径。

(2)糖代谢产生的碳骨架最终进入三羧酸循环氧化。

(3)脂肪分解产生的甘油可通过有氧氧化进入三羧酸循环氧化,脂肪酸经β-氧化产生乙酰CoA可进入三羧酸循环氧化。

(4)蛋白质分解产生的氨基酸经脱氨后碳骨架可进入三羧酸循环,同时,三羧酸循环的

中间产物可作为氨基酸的碳骨架接受氨后合成必需氨基酸。所以,三羧酸循环是三大物质代谢共同通路。

4.答:

(1)糖转变为脂肪:糖酵解所产生的磷酸二羟丙同酮还原后形成甘油,丙酮酸氧化脱羧形成乙酰辅酶A是脂肪酸合成的原料,甘油和脂肪酸合成脂肪。

(2)脂肪转变为糖:脂肪分解产生的甘油和脂肪酸,可沿不同的途径转变成糖。甘油经磷酸化作用转变成磷酸二羟丙酮,再异构化变成3-磷酸甘油醛,后者沿糖酵解逆反应生成糖;脂肪酸氧化产生乙酰辅酶A,在植物或微生物体内可经乙醛酸循环和糖异生作用生成糖,也可经糖代谢彻底氧化放出能量。

(3)能量相互利用:磷酸戊糖途径产生的NADPH直接用于脂肪酸的合成,脂肪分解产生的能量也可用于糖的合成。

5.答:

DNA复制从特定位点开始,可以单向或双向进行,但是以双向复制为主。由于DNA双链的合成延伸均为5′→3′的方向,因此复制是以半不连续的方式进行,可以概括为:双链的解开;RNA引物的合成;DNA链的延长;切除RNA引物,填补缺口,连接相邻的DNA片段。

(1)双链的解开 在DNA的复制原点,双股螺旋解开,成单链状态,形成复制叉,分别作为模板,各自合成其互补链。在复制叉上结合着各种各样与复制有关的酶和辅助因子。

(2)RNA引物的合成 引发体在复制叉上移动,识别合成的起始点,引发RNA引物的合成。移动和引发均需要由ATP提供能量。以DNA为模板按5′→3′的方向,合成一段引物RNA链。引物长度约为几个至10个核苷酸。在引物的5′端含3个磷酸残基,3′端为游离的羟基。

(3)DNA链的延长 当RNA引物合成之后,在DNA聚合酶Ⅲ的催化下,以四种脱氧核糖核苷5′-三磷酸为底物,在RNA引物的3′端以磷酸二酯键连接上脱氧核糖核苷酸并释放出PPi。DNA链的合成是以两条亲代DNA链为模板,按碱基配对原则进行复制的。亲代DNA的双股链呈反向平行,一条链是5′→3′方向,另一条链是3′→5′方向。在一个复制叉内两条链的复制方向不同,所以新合成的二条子链极性也正好相反。由于迄今为止还没有发现一种DNA聚合酶能按3′→5′方向延伸,因此子链中有一条链沿着亲代DNA单链的3′→5′方向(亦即新合成的DNA沿5′→3′方向)不断延长。

(4)切除引物,填补缺口,连接修复 当新形成的冈崎片段延长至一定长度,其3′-OH端与前面一条老片断的5′断接近时,在DNA聚合酶Ⅰ的作用下,在引物RNA与DNA片段的连接处切去RNA引物后留下的空隙,由DNA聚合酶Ⅰ催化合成一段DNA填补上;在DNA连接酶的作用下,连接相邻的DNA链;修复掺入DNA链的错配碱基。这样以两条亲代DNA链为模板,就形成了两个DNA双股螺旋分子。每个分子中一条链来自亲代DNA,另一条链则是新合成的。

试题四

四、名词解释

1.蛋白质的变性(denaturation)

3.呼吸链(respiratory chain)

5.乙酰CoA羧化酶系(acetyl-CoA carnoxylase)

五、问答

1.糖酵解的中间物在其它代谢中有何应用?

2.蛋白质有哪些重要功能 ?

3.举例说明氨基酸的降解通常包括哪些方式?

4.糖代谢与蛋白质代谢的相互关系?

1. 蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。

3.呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量 来源。

5. 乙酰CoA羧化酶系:大肠杆菌乙酰CoA羧化酶含生物素羧化酶、生物素羧基载体蛋白(BCCP)和转羧基酶三种组份,它们共同作用催化乙酰CoA的羧化反应,生成丙二酸单酰-CoA。

五、问答

1.答:

(1)琥珀酰CoA主要来自糖代谢,也来自长链脂肪酸的 ω-氧化。奇数碳原子脂肪酸,通过 氧化除生成乙酰CoA,后者进一步转变成琥珀酰CoA。此外,蛋氨酸,苏氨酸以及缬氨酸和异亮氨酸在降解代谢中也生成琥珀酰CoA。

(2)琥珀酰CoA的主要代谢去路是通过柠檬酸循环彻底氧化成CO2和H2O。琥珀酰CoA在肝外组织,在琥珀酸乙酰乙酰CoA转移酶催化下,可将辅酶A转移给乙酰乙酸,本身成为琥珀酸。此外,琥珀酰CoA与甘氨酸一起生成δ-氨基-γ-酮戊酸(ALA),参与血红素的合成。

2.答:

蛋白质的重要作用主要有以下几方面:

(1)生物催化作用 酶是蛋白质,具有催化能力,新陈代谢的所有化学反应几乎都是在酶的催化下进行的。

(2)结构蛋白 有些蛋白质的功能是参与细胞和组织的建成。

(3)运输功能 如血红蛋白具有运输氧的功能。

(4)收缩运动 收缩蛋白(如肌动蛋白和肌球蛋白)与肌肉收缩和细胞运动密切相关。

(5)激素功能 动物体内的激素许多是蛋白质或多肽,是调节新陈代谢的生理活性物质。

(6)免疫保护功能 抗体是蛋白质,能与特异抗原结合以清除抗原的作用,具有免疫功能。

(7)贮藏蛋白 有些蛋白质具有贮藏功能,如植物种子的谷蛋白可供种子萌发时利用。

(8)接受和传递信息 生物体中的受体蛋白能专一地接受和传递外界的信息。

(9)控制生长与分化 有些蛋白参与细胞生长与分化的调控。

(10)毒蛋白 能引起机体中毒症状和死亡的异体蛋白,如细菌毒素、蛇毒、蝎毒、蓖麻毒素等。

3.答:

(1)脱氨基作用:包括氧化脱氨和非氧化脱氨,转氨基作用,联合脱氨基作用,分解产物为α-酮酸和氨。

(2)脱羧基作用:氨基酸在氨基酸脱羧酶的作用下脱羧,生成二氧化碳和胺类化合物。

(3)羟化作用:有些氨基酸(如酪氨酸)降解时首先发生羟化作用,生成羟基氨基酸,再脱羧生成二氧化碳和胺类化合物。

4. 答:

(1)糖是蛋白质合成的碳源和能源:糖分解代谢产生的丙酮酸、α-酮戊二酸、草酰乙酸、磷酸烯醇式丙酮酸、4-磷酸赤藓糖等是合成氨基酸的碳架。糖分解产生的能量被用于蛋白质的合成。

(2)蛋白质分解产物进入糖代谢:蛋白质降解产生的氨基酸经脱氨后生成α-酮酸,α-酮酸进入糖代谢可进一步氧化放出能量,或经糖异生作用生成糖。

5. 答:

(1)复制过程是半保留的。

(2)细菌或病毒DNA的复制通常是由特定的复制起始位点开始,真核细胞染色体DN复制则可以在多个不同部位起始。

(3)复制可以是单向的或是双向的,以双向复制较为常见,两个方向复制的速度不一定相同。

(4)两条DNA链合成的方向均是从5’向3’方向进行的。

(5)复制的大部分都是半不连续的,即其中一条领头链是相对连续的,其他随后链则是不连续的。

(6)各短片段在开始复制时,先形成短片段RNA作为DNA合成的引物,这一RNA片段以后被切除,并用DNA填补余下的空隙。


第二篇:食品生物化学名词解释


13.蛋白质的四级结构:指多亚基蛋白质分子中各个具

生物化学名词解释集锦

第一章 蛋白质

1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。

2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。 3. 氨基酸等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示。

4.稀有氨基酸:指存在于蛋白质中的20 种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。 5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。

6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。

8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。

7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。

9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。

15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构组合体。

11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。

有三级结构的多肽链以适当方式聚合所呈现的三维结构。

10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 12.氢键:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。

14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。

16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。如蛋白质分子中的疏水侧链避开水相而相互聚集而形成的作用力。

17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当两个原子之间的距离为它们的范德华半径之和时,范德华力最强。

18.二硫键:通过两个(半胱氨酸)巯基的氧化形成的共价键。

18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为盐析。

19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。

20.蛋白质变性:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。

21.蛋白质复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。 22.蛋白质沉淀:在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用。 23.凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。

1

24.层析:按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。

1.氨基酸:是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。

2.茚三酮反应:在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。 3.肽键:一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。

4.肽:两个或两个以上氨基通过肽键共价连接形成的聚合物。

5.肽单位:又称为肽基,是肽键主链上的重复结构。是由参于肽链形成的氮原子,碳原子和它们的4个取代成分:羰基氧原子,酰氨氢原子和两个相邻α-碳原子组成的一个平面单位。

6.透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。

7.离子交换层析:使用带有固定的带电基团的聚合树脂或凝胶层析柱

8.凝胶过滤层析:也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。

9.亲合层析:利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。

10.高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。 11.SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只是按照分子的大小,而不是根据分子所带的电荷大小分离的。

12.等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。

13.双向电泳:等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。

14.Edman降解:从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。

15.同源蛋白质:来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白。

16.α-螺旋:蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。

17.β-折叠: 蛋白质中常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(由N到C方向)或者是反平行排列。

18.β-转角:多肽链中常见二级结构,是连接蛋白质分子中的二级结构,使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环。常见的转角含有4个氨基酸残基有两种类型:转角I的特点是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往是甘氨酸。这两种转角中的第二个残侉大都是脯氨酸。

19.纤维蛋白:一类主要的不溶于水的蛋白质,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为 单个细胞或整个生物体提供机械强度,起着保护或结构上的作用。

2

20.球蛋白:紧凑的,近似球形的,含有折叠紧密的多肽链的一类蛋白质,许多都溶于水。典形的球蛋白含有能特异的识别其它化合物的凹陷或裂隙部位。

21.角蛋白:由处于α-螺旋或β-折叠构象的平行的多肽链组成不溶于水的起着保护或结构作用蛋白质。 22.胶原蛋白:是动物结缔组织最丰富的一种蛋白质,它是由原胶原蛋白分子组成。原胶原蛋白是一种具有右手超螺旋结构的蛋白。每个原胶原分子都是由3条特殊的左手螺旋的多肽链右手旋转形成的。

23.伴娘蛋白:与一种新合成的多肽链形成复合物并协助它正确折叠成具有生物功能构向的蛋白质。伴娘蛋白可以防止不正确折叠中间体的形成和没有组装的蛋白亚基的不正确聚集,协助多肽链跨膜转运以及大的多亚基蛋白质的组装和解体。

24.肌红蛋白:是由一条肽链和一个血红素辅基组成的结合蛋白,是肌肉内储存氧的蛋白质,它的氧饱和曲线为双曲线型。

25.血红蛋白: 是由含有血红素辅基的4个亚基组成的结合蛋白。血红蛋白负责将氧由肺运输到外周组织,它的氧饱和曲线为S型。

26.波尔效应:CO2浓度的增加降低细胞内的pH,引起红细胞内血红蛋白氧亲和力下降的现象。

27.别构效应:又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性丧失的现象。 28.镰刀型细胞贫血病: 血红蛋白分子遗传缺陷造成的一种疾病,病人的大部分红细胞呈镰刀状。其特点是病人的血红蛋白β—亚基N端的第六个氨基酸残缺是缬氨酸,而不是下正常的谷氨酸残基。

胶体性质:布朗运动,丁达尔现象,不能透过半透膜,粘度大

氨基酸三个重要反应:

(1)茚三酮反应:Pro产生黄色物质,其它为蓝紫色 (2)Edman反应:氨基酸的α氨基酸在弱碱性条件先下能与苯异硫氰酸脂生成

3

2. 磷酸二酯键(phosphodiester bonds):单核苷酸中,核苷的戊糖与磷酸的羟基之间形成的磷酸酯键。 (3)桑格反应:氨基酸的α氨基与2,4-二硝基氟苯在弱碱性溶液中反应生成黄色的二硝基苯基氨基酸 1.不同蛋白质种含氮量颇为接近,平均为 16% . 3. 蛋白质能稳定地分散在水中,主要靠两个因素:水化膜和电荷层

4.碱性氨基酸有三种,包括 精氨酸、组氨酸和赖氨酸 。 5.维系蛋白质一级结构的化学键是肽键 6.蛋白质最高吸收峰波长是 280nm . 7.维系蛋白质分子中α-螺旋的化学键是氢键。 8.蛋白质的二级结构形式有α-螺旋、β-片层、β-转角和无规则卷曲等

9. 在280nm波长处有吸收峰的氨基酸为酪氨酸、色氨酸 1. 蛋白质的结构的层次性:

(1) 一级结构:是指氨基酸在肽键中的链接方式排列顺序及二硫键的位置。

(2) 二级结构:指多肽链骨架的几何走向,即多肽酶的螺旋和折叠,包括α-螺旋、β-折叠、β-转角、无规则卷曲

(3) 三级结构:具有二级结构的多肽链进一步折叠、卷曲形成的复杂的球状结构,多肽链所发生的盘旋是由蛋白质分子中氨基酸残基侧链(R基因)的顺序决定的。 (4) 四级结构:由具有三级结构的亚基以次级键缔合而成的空间结构

(5) 在二级结构和三级结构之间还有超二级结构和结构域

2.蛋白质一级结构,空间结构与功能的关系 (1)蛋白质分子结构与功能关系的高度统一性 (2)一级结构决定高级结构

(3)蛋白质的空间结构是蛋白质发挥生物功能的基础,空间结构的改变必然导致功能的改变,所以生物体内各种分子间复杂、专一、灵活而多样的功能表现都是因为蛋白质具有其相应的空间结构。 第二章 核酸

1. 单核苷酸(mononucleotide):核苷与磷酸缩合生成的磷酸酯称为单核苷酸。

3. 不对称比率(dissymmetry ratio):不同生物的碱基组成由很大的差异,这可用不对称比率(A+T)/(G+C)示。

4. 碱基互补规律(complementary base pairing):在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在G?C(或C?G)和A=T(或T=A)之间进行。

5. 反密码子(anticodon):在tRNA 链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA 链上的密码子。反密码子与密码子的方向相反。

6. 顺反子(cistron):基因功能的单位;一段染色体,它是一种多肽链的密码;一种结构基因。

7. 核酸的变性、复性(denaturation、renaturation):当呈双螺旋结构的DNA 溶液缓慢加热时,其中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的变性。在适宜的温度下,分散开的两条DNA 链可以完全重新结合成和原来一样的双股螺旋。这个DNA 螺旋的重组过程称为“复性”。

8. 退火(annealing):当将双股链呈分散状态的DNA 溶液缓慢冷却时,它们可以发生不同程度的重新结合而形成双链螺旋结构,这现象称为“退火”。

9. 增色效应(hyper chromic effect):当DNA 从双螺旋结构变为单链的无规则卷曲状态时,它在260nm 处的吸收便增加,这叫“增色效应”。

10. 减色效应(hypo chromic effect):DNA 在260nm 处的光密度比在DNA 分子中的各个碱基在260nm 处吸收的光密度的总和小得多(约少35%-40%), 这称为“减色效应”。

11. 噬菌体(phage):一种病毒,它可破坏细菌,并在其中繁殖。也叫细菌的病毒。

12. 发夹结构(hairpin structure):RNA 是单链线形分子,只有局部区域为双链结构。这些结构是由于RNA 单链分子通过自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹结构。

4

13. DNA 熔解温度:引起DNA 发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称为熔解温度(Tm)。

14. 分子杂交(molecular hybridization):不同的DNA 片段之间,DNA 片段与RNA 片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程称为分子杂交。

15. 环化核苷酸(cyclic nucleotide):单核苷酸中的磷酸基分别与戊糖的3’-OH 及5’-OH形成酯键,这种磷酸内酯的结构称为环化核苷酸。

1.核苷:是嘌呤或嘧啶碱通过共价键与戊糖连接组成的化合物。核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖键连接。

2.核苷酸:核苷的戊糖成分中的羟基磷酸化形成的化合物。

3.cAMP:3ˊ,5ˊ-环腺苷酸,是细胞内的第二信使,由于某部些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。

4.DNA:含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是是通过3ˊ,5ˊ-磷酸二脂键连接的。DNA是遗传信息的载体。

5.RNA:通过3ˊ,5ˊ-磷酸二脂键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸。

6.mRNA:一类用作蛋白质合成模板的RNA .

7.rRNA:作为组成成分的一类 RNA,是细胞内最丰富的 RNA .

8.tRNA:一类携带激活氨基酸,将它带到蛋白质合成部位并将氨基酸整合到生长着的肽链上RNA。tRNA含有能识别模板mRNA上互补密码的反密码。

10.转化:一个外源DNA 通过某种途径导入一个宿主菌,引起该菌的遗传特性改变的作用。

11.转导:借助于病毒载体,遗传信息从一个细胞转移到另一个细胞。

12.碱基对:通过碱基之间氢键配对的核酸链中的两个核苷酸。

13.夏格夫法则:所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C),既嘌呤的总含量相等(A+G=T+C)。DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。另外,生长和发育阶段`营养状态和环境的改变都不影响DNA的碱基组成。

15.大沟和小沟:绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的。 16.DNA超螺旋:DNA本身的卷曲一般是DNA双`螺旋的弯曲欠旋(负超螺旋)或过旋(正超螺旋)的结果。 17.拓扑异构酶:通过切断DNA的一条或两条链中的磷酸二酯键,然后重新缠绕和封口来改变DNA连环数的酶。拓扑异构酶Ⅰ、通过切断DNA中的一条链减少负超螺旋,增加一个连环数。某些拓扑异构酶Ⅱ也称为DNA促旋酶。 18.核小体:用于包装染色质的结构单位,是由DNA链缠绕一个组蛋白核构成的。

19.染色质: 是存在与真核生物间期细胞核内,易被碱性染料着色的一种无定形物质。染色质中含有作为骨架的完整的双链DNA,以及组蛋白`非组蛋白和少量的DNA。 20.染色体:是染色质在细胞分裂过程中经过紧密缠绕`折叠`凝缩和精细包装形成的具有固定形态的遗传物质存在形式。简而言之,染色体是一个大的单一的双链DNA分子与相关蛋白质组成的复合物,DNA中含有许多贮存和传递遗传信息的基因。

26.核酸内切酶: 核糖核酸酶和脱氧核糖核酸酶中能够水解核酸分子内磷酸二酯键的酶。

27.核酸外切酶:从核酸链的一端逐个水解核甘酸的酶。 28.限制性内切酶:一种在特殊核甘酸序列处水解双链DNA的内切酶。Ⅰ型限制性内切酶既能催化宿主DNA的甲

5

基化,又催化非甲基化的DNA的水解;而Ⅱ型限制性内切酶只催化非甲基化的DNA的水解。

29.限制酶图谱:同一DNA用不同的限制酶进行切割,从而获得各种限制酶的切割位点,由此建立的位点图谱有助于对DNA的结构进行分析。

30.反向重复序列:在同一多核甘酸内的相反方向上存在的重复的核甘酸序列。在双链DNA中反向重复可能引起十字形结构的形成。

31.重组DNA技术:也称之为基因工程.利用限制性内切酶和载体,按照预先设计的要求,将一种生物的某种目的基因和载体DNA重组后转入另一生物细胞中进行复制`转录和表达的技术。

32.基因:也称为顺反子.泛指被转录的一个DNA片段。在某些情况下,基因常用来指编码一个功能蛋白或DNA分子的DNA片段。是指DNA分子上具有遗传效应的特定核苷酸序列的总称,是DNA分子中最小的功能单位,基因包含于DNA大分子中,存在于染色体上,基因在遗传中具有独立性和完整性。

33.tRNA的二级结构是 三叶草型,三级结构是倒L型。 在核酸中占9%-10%并可用于计算核酸含量的元素为磷元素

核酸分类及功能:

脱氧核糖核酸:生物繁殖、遗传、变异 核糖核酸:蛋白质的生物合成 核酸化学组成:

核酸完全水解产生嘌呤和嘧啶等碱性物质、戊糖(核糖或脱氧核糖)和磷酸的混合物。 核酸部分水解则产生核苷和核苷酸。 核酸一般性质:

(1)两性解离/一般呈酸性(在中性溶液中带负电荷),微溶于水,不溶于有机溶剂

(2)线性大分子(粘度高。抗剪切力差) (3)可用电泳或离子交换(色谱)进行分离

(4)核酸紫外吸收性质:DNA和RNA溶液中加入溴化乙锭(EB),在紫外光下发出荧光 ,最大吸收峰值260nm 组成DNA、RNA的核苷酸有哪些?

组成DNA的四种核苷酸是dAMP、dGMP、dCMP和dTMP; 组成RNA的四种核苷酸是AMP、GMP、CMP和UMP。 DNA的双螺旋结构特点是什么? DNA的双螺旋结构特点是:

①DNA分子由两条相互平行但走向相反的脱氧多核苷酸链组成,以右手螺旋方式绕同一公共轴盘。

②.两链以-脱氧核糖-磷酸-为骨架,在外侧;碱基垂直螺旋轴,居双螺旋内側,与对側碱基形成氢键配对(互补配对形式:A=T; G=C) 。

③.螺旋直径为2nm;相邻碱基平面距离0.34nm,螺旋一圈螺距3.4nm,一圈10对碱基。

④DNA双螺旋结构稳定的因素:a.氢键维持双链横向稳定性;b.碱基堆积力维持双链纵向稳定性。 mRNA、tRNA、rRNA各自的功能是什么? mRNA的功能:蛋白质合成的直接模板。

tRNA的功能:活化、搬运氨基酸到核糖体,参与蛋白质的翻译。

rRNA的功能:参与组成核蛋白体,作为蛋白质生物合成的场所。

第三章 酶与辅酶

1.米氏常数:用Km 值表示,是酶的一个重要参数。Km 值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M 或mM)。是酶的特征常数,只与酶性质有关,不受底物浓度和酶浓度的影响。同一酶对于不同底物有不同的Km值。

2.底物专一性:酶的专一性是指酶对底物及其催化反应的严格选择性。通常酶只能催化一种化学反应或一类相似的反应,不同的酶具有不同程度的专一性,可分为三种类型:绝对专一性、相对专一性、立体专一性。 3.辅基:酶的辅因子或结合蛋白质的非蛋白部分,与酶或蛋白质结合得非常紧密,用透析法不能除去。 4.单体酶:只有一条多肽链的酶称为单体酶,它们不能解离为更小的单位。

5.寡聚酶:有几个或多个亚基组成的酶称为寡聚酶。寡聚酶中的亚基可以是相同的,也可以是不同的。亚基间以非共价键结合,容易为酸碱,高浓度的盐或其它的变性剂分离。寡聚酶的分子量从35 000 到几百万。

6

6.活化能:将1mol反应底物中所有分子由其态转化为过度态所需要的能量。

2.脱脯基酶蛋白:酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。

3.全酶:具有催化活性的酶,包括所有必需的亚基,辅基和其它辅助因子。

4.酶活力单位:酶活力单位的量度。1个酶活力单位是指在特定条件(25?C,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。

14.活性中心:在酶分子表面有必需基团组成的能和底物结合并催化底物发生反应,生成相应产物的部分区域,包括结合部位和催化部位两个部位。

12.酶原:酶的无活性前体,通常在有限度的蛋白质水解作用后,转变为具有活性的酶。

13.酶的比活力:比活力是指每毫克蛋白质所具有的活力单位数,可以用下式表示:比活力= 蛋白质量(mg) 6.多酶体系:由几个酶彼此嵌合形成的复合体称为多酶体系。多酶复合体有利于细胞中一系列反应的连续进行,以提高酶的催化效率,同时便于机体对酶的调控。多酶复合体的分子量都在几百万以上。

7.激活剂:凡是能提高酶活性的物质,都称激活剂,其中大部分是离子或简单的有机化合物。

8.抑制剂:能使酶的必需基团或酶活性部位中的基团的化学性质改变而降低酶的催化活性甚至使酶的催化活性完全丧失的物质。

9.变构酶:或称别构酶,是代谢过程中的关键酶,它的催化活性受其三维结构中的构象变化的调节。 10.同工酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。 11.诱导酶:是指当细胞中加入特定诱导物后诱导产生的酶,它的含量在诱导物存在下显著增高,这种诱导物往往是该酶底物的类似物或底物本身。

7.活性部位:酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很进的一些氨基酸残基组成。

8.酸-碱催化:质子转移加速反应的催化作用。 9.共价催化:一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。许多酶催化的基团转移反应都是通过共价方式进行的。

10.靠近效应:非酶促催化反应或酶促反应速度的增加是由于底物靠近活性部位,使得活性部位处反应剂有效浓度增大的结果,这将导致更频繁地形成过度态。 11.初速度:酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。 12.米氏方程:表示一个酶促反应的起始速度(υ)与底物浓度([s])关系的速度方程:υ=υmax[s]/(Km+[s]) 14.催化常数(Kcat):也称为转换数。是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量。催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total)。或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔])。 15.双倒数作图:称为Lineweaver_Burk作图。一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图。x和y轴上的截距分别代表米氏常数和最大反应速度的倒数。

18.反竞争性抑制作用: 抑制剂只与酶-底物复合物结合而不与游离的酶结合的一种酶促反应抑制作用。这种抑制使Km和υmax都变小但υmax/Km不变。

19,丝氨酸蛋白酶: 活性部位含有在催化期间起亲核作用的丝氨残基的蛋白质。

21.调节酶:位于一个或多个代谢途径内的一个关键部位的酶,它的活性根据代谢的需要而增加或降低。

22.别构调节酶:那称为别构效应物。结合在别构酶的调节部位,调节酶催化活性的生物分子。别构调节物可以是是激活剂,也可以是抑制剂。

23.别构调节剂:结合在别构调节酶的调节部位调节该酶催化活性的生物分子,别构调节剂可以是激活剂,也可以是抑制剂。

24.齐变模式:相同配体与寡聚蛋白协同结合的一种模式,按照最简单的齐变模式,由于一个底物或别构调节剂的结合,蛋白质的构相在T(对底物亲和性低的构象)和R(对底物亲和性高的构象)之间变换。这一模式提出所有蛋白质的亚基都具有相同的构象,或是T构象,或是R构象。

25.序变模式:相同配体与寡聚蛋白协同结合的另外一种模式。按照最简单的序变模式,一个配体的结合会诱导它结合的亚基的三级结构的变化,并使相邻亚基的构象发生很大的变化。按照序变模式,只有一个亚基对配体具有高的亲和力。

酶的概念及其化学本质:酶是生物体内产生的具有催化活性的蛋白质,是生物催化剂。其化学本质是蛋白质,还有少量RNA。

酶原的激活:酶原是不具催化活性的酶的前体。某种物质作用于酶原使之转变成有活性的酶的过程称为酶原的激活。酶原激活的本质是:酶活性中心的形成或暴露的过程。

酶的共价修饰:酶蛋白肽链上某些氨基酸残基,在另一种酶的催化下,发生可逆的共价修饰,从而改变酶的活性,酶的这种调节方式称为化学修饰调节

变构(酶)调节:体内一些代谢物可以与某些酶分子活性中心外的某一部位可逆结合,使酶发生变构并改变其催化活性,对酶催化活性的这种调节方式称为..受变构调节的酶称为变构酶

蛋白酶及肽酶:蛋白酶种类很多,作用是分解蛋白质或肽分子中的肽键。根据蛋白酶作用的部位不同,将其分为内肽酶和外肽酶。内肽酶水解蛋白质多肽链内部的肽键,通常称之为蛋白酶。外肽酶作用于多肽酶两端的肽键。

比活力:是表示酶制剂纯度的一个指标,指每毫克酶蛋

7

白(或每毫克蛋白氮)所含的酶活力单位数(有时也用每克酶制剂或每毫升酶制剂含多少活力单位来表示),即:比活力=活力单位数/酶蛋白(氮)毫克数。

填空题

1.酶的催化作用不同于一般催化剂,主要是其具有高效性 和 特异性 的特点。

2.根据酶对底物选择的严格程度不同,又将酶的特异性分为 绝对特异性、相对特异性、立体异构特异性。 3.影响酶促反应速度的主要因素有底物浓度、酶浓度、温度、pH值、激活剂、抑制剂 。

4.磺胺药物的结构和对氨基苯甲酸结构相似,它可以竞争性抑制细菌体内的二氢叶酸合成酶的活性(或二氢叶酸的合成)。

5.所有的酶都必须有催化活性中心 。

6.化学路易士气(有机砷化合物)是巯基酶的抑制剂。有机磷农药是生物体内 羟基酶 (胆碱酯酶)的抑制剂。 7.含LDH1丰富的组织是心肌,含LDH5丰富的组织是肝脏。

8.酶蛋白决定酶的特异性,辅助因子决定反应的类型、可起传递电子或原子的作用。 酶的催化特征

(1)反应条件温和 (2)催化效率高 (3)转移性强 (4)能够自动调控 竞争性抑制剂和非竞争性抑制剂及其区别?

竞争性抑制剂:某些和底物结构相似的物质,当存在于酶促反应系统中时,能够同底物竞争地与酶活性中心结合。妨碍底物与酶形成中间产物。从而使酶活性受到抑制,这种方式称竞争性抑制。

非竞争性抑制剂:抑制剂和底物可同时结合在酶的不同部位,即抑制剂与酶结合后不妨碍再与底物结合,但所形成的酶-底物-抑制剂三元复合物不能发生反应 区别:

竞争性抑制剂: 作用的特点:

(1)抑制剂和底物结构相似; (2)抑制作用的部位在活性中心;

(3)抑制作用的强弱取决于抑制剂浓度与底物的比值, a. 可利用增加底物浓度的方法解除其抑制 b. 底物与抑制剂结合在酶的同一部位

8

c. 最大反应速度不变,km值增大 非竞争性抑制剂:

a. 抑制剂与底物结合在酶的不同部位 b.底物与抑制剂结合在酶的不同部位 c.最大反应速度变小,km不变 磺胺类药物作用的机理。

答:细菌利用对氨基苯甲酸、二氢蝶呤及谷氨酸作原料,在二氢叶酸合成酶的催化下合成二氢叶酸,后者还可转变为四氢叶酸,是细菌合成核酸所不可缺的辅酶。磺胺药的化学结构与对氨基苯甲酸十分相似,故能与对氨基苯甲酸竞争二氢叶酸合成酶的活性中心,造成该酶活性抑制,进而减少四氢叶酸和核酸的合成,最终导致细菌繁殖生长停止。

影响酶促反应的因素及影响 (1) 温度对酶反应的影响

○1一方面是温度升高,酶促反应速度加快。

○2另一方面,温度升高,酶的高级结构将发生变化或变性,导致酶活性降低甚至丧失。

○3因此大多数酶都有一个最适温度。 在最适温度条件下,反应速度最大。 (2)酶浓度对酶反应的影响

在酶促反应体系的pH,温度等条件不变的情况下,底物浓度足够大时,酶的浓度与酶促反反应速度成正比关系。 (3) 底物浓度的影响

a. 在低底物浓度时, 反应速度与底物浓度成正比,表现为一级反应特征。

b. 当底物浓度达到一定值,几乎所有的酶都与底物结合后,反应速度达到最大值(Vmax),此时再增加底物浓度,反应速度不再增加,表现为零级反应。 (4)PH对酶反应的影响

在最适pH时,酶的活性最高,酶促反应速度最大。 试用分子活化能学说和中间产物学说解释酶的作用机理 (1)活化能学说内容:一个反应能够发生、关键是反映体系中的分子必须具备一定能量,即分子处于活化状态,活化分子比一般分子多含的能量,称为活化能,反应体系中活化分子越多反映越快。因此,增加活化能的分子数量,是加快化学反应的唯一途径,可通过两条途径实现此目的:

○1向反应体系中加入能量,如热量等

○2降低反应活化能,酶的作用就是降低反应活化能 (2)中间产物学说:酶在催化和产物,化学反应时,首先与底物形成不稳定的中间产物,最后再分解为酶,即酶将原来活化能较高的反应分成两个活化能较低的反应来进行,从而加快反应速度。

维生素

1.维生素:一类动物本身不能合成,但对动物生长和健康又是必需的有机物,所以必需从食物中获得。许多辅酶都是由维生素衍生的。

2.水溶性维生素:一类能溶于水的有机营养分子。其中包括在酶的催化中起着重要作用的B族维生素以及抗坏血酸等。

3.脂溶性维生素:由长的碳氢链或稠环组成的聚戊二烯化合物。脂溶性维生素包括A,D,E,和K,这类维生素能被动物贮存。

4.辅酶:某些酶在发挥催化作用时所需的一类辅助因子,其成分中往往含有维生素。辅酶与酶结合松散,可以通过透析除去。

5.辅基:是与酶蛋白质共价结合的金属离子或一类有机化合物,用透析法不能除去。辅基在整个酶促反应过程中始终与酶的特定部位结合。

6.尼克酰胺腺嘌呤二核苷酸(NAD+)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+):含有尼克酰胺的辅酶,在某些氧化还原中起着氢原子和电子载体的作用,常常作为脱氢酶的辅。

7.黄素单核苷酸(FMN):一种核黄素磷酸,是某些氧化还原反应的辅酶。

8.硫胺素焦磷酸:是维生素B1的辅形式,参与转醛基反应。

9.黄素腺嘌呤二核苷酸(FAD):是某些氧化还原反应的辅酶,含有核黄素。

10.磷酸吡哆醛:是维生素B6(吡哆醇)的衍生物,是转氨酶,脱羧酶和消旋酶的酶。

11.生物素:参与脱羧反应的一种酶的辅助因子。

9

12.辅酶A:一种含有泛酸的辅酶,在某些酶促反应中作为酰基的载体。

13.类胡萝卜素:由异戊二烯组成的脂溶性光合色素。 14.转氨酶:那称为氨基转移酶,在该酶的催化下,一个α-氨基酸的氨基可转移给别一个α-酮酸。

维生素主要功能:对物质代谢过程起调节作用,在机体的生长、代谢、发育过程中发挥着重要的作用。 B族维生素与辅助因子的关系

辅助因子的名称 所含维生素 转运功能 NAD+、NADP+ 维生素PP 氢原子 FAD、FMN 维生素B2 氢原子 TPP 维生素B1 醛基 CoA 泛酸 酰基 硫辛酸 硫辛酸 酰基 钴胺素类 维生素B12 烷基 生物素 生物素 二氧化碳 磷酸吡哆醛 维生素6 氨基 四氢叶酸 叶酸 一碳单位

将维生素D3羟化成25-羟维生素D3的器官是肝脏。

第四章 生物氧化与氧化磷酸化

1.生物氧化: 生物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2 和H2O的同时,释放的能量使ADP 转变成ATP。

2.呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源。

3.氧化磷酸化:在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP 磷酸化生成ATP 的作

用,称为氧化磷酸化。氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成ATP 的主要方式。

4.磷氧比::氧化磷酸化过程中某一代谢过程消耗无机磷酸和氧的比值。电子经过呼吸链的传递作用最终与氧结合生成水,在此过程中所释放的能量用于ADP 磷酸化生成ATP。经此过程消耗一个原子的氧所要消耗的无机磷酸的分子数(也是生成ATP 的分子数)称为磷氧比值(P/O)。如NADH 的磷氧比值是3,FADH2 的磷氧比值是2。 5.底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成ATP(或GTP)的过程称为底物水平磷酸化。此过程与呼吸链的作用无关,以底物水平磷酸化方式只产生少量ATP。 6.电子传递磷酸化:生物氧化过程中产生的电子或氢经电子传递链传递给氧时可生成很多能量,这一过程可与磷酸化偶联从而将一部分能量转移给ADP生成ATP,这种ATP的生成机制称为电子传递磷酸化。

6.能荷:能荷是细胞中高能磷酸状态的一种数量上的衡量,能荷大小可以说明生物体中ATP-ADP-AMP 系统的能量状态。能荷=[ATP]+12 [ADP][ATP]+[ADP]+[AMP] 3.化学渗透理论:一种学说,主要论点是底物氧化期间建立的质子浓度梯度提供了驱动ADP和ATP和Pi形成ATP的能量。

4.解偶联剂:一种使电子传递与ADP磷酸化之间的的紧密偶联关系解除的化合物,eg2,4-二硝基苯酚。 5.P/O比:在氧化磷酸化中,每1/2O2被还原成ADP的摩尔数。电子从NADH传递给O2时,P/O=3,而电子从FADH2传递给O2时,P/O=2。

6.高能化合物:在标准条件下水解时,自由能大幅度减少和化合物。一般是指水解释放的能量能驱动ADP磷酸化合成ATP的化合物。

反馈调节:代谢终末段的某一产物,可返回影响代谢初的某步反应,并对代谢全程起限速作用,这种调节方式称反馈调节

10

生物转化:来自体内外的非营养物质在肝脏进行氧化、还原、水解和结合反应,这一过程称为.. 化学渗透学说:

(1)呼吸链中递氢体和递电子体在线粒内膜中交替排列,有特定的位置和次序,形成有方向性的质子转移氧化还原系统。

(2)递氢体具有氢泵的作用。递氢体从内膜内侧接受底物脱去的一对氢(2H),将其中的电子(e)传给其后的递电子体,而将2H+泵出内膜。

(3)H+不能自由通过内膜。泵出内膜外侧的H+不能自由返回内膜内侧,从而形成膜两侧的质子浓度差和电位差,即膜外质子浓度高、电位高,膜内质子浓度低、电位低。这种电化学梯度是合成ATP的动力。

(4)由质子浓度梯度和电位梯度生成的能量促成ATP的形成。当两个质子穿过膜上的ATP酶再回到内膜内部时,由ADP和无机磷酸就会以特殊的方式形成一个ATP分子。

第五章 糖 代 谢

1.糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖的过程。糖异生不是糖酵解的简单逆转。虽然由丙酮酸开始的糖异生利用了糖酵解中的七步进似平衡反应的逆反应,但还必需利用另外四步酵解中不曾出现的酶促反应,绕过酵解过程中不可逆的三个反应。 2.Q 酶:Q 酶是参与支链淀粉合成的酶。功能是在直链淀粉分子上催化合成(α-1,6)糖苷键,形成支链淀粉。 3.乳酸循环:指肌肉缺氧时产生大量乳酸,大部分经血液运到肝脏,通过糖异生作用肝糖原或葡萄糖补充血糖,血糖可再被肌肉利用,这样形成的循环称乳酸循环。 4.发酵:厌氧有机体把糖酵解生成NADH 中的氢交给丙酮酸脱羧后的产物乙醛,使之生成乙醇的过程称之为酒精发酵。如果将氢交给病酮酸丙生成乳酸则叫乳酸发酵。 5.变构调节:变构调节是指某些调节物能与酶的调节部位结合使酶分子的构象发生改变,从而改变酶的活性,称酶的变构调节。

9.磷酸戊糖途径:磷酸戊糖途径指机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖

脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为中间代谢物的过程,又称为磷酸已糖旁路。 10.D-酶:一种糖苷转移酶,作用于α-1,4 糖苷键,将一个麦芽多糖的片段转移到葡萄糖、麦芽糖或其它多糖上。

11.糖核苷酸:单糖与核苷酸通过磷酸酯键结合的化合物,是双糖和多糖合成中单糖的活化形式与供体。 1.醛糖:一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基。

2.酮糖:一类单糖,该单糖中氧化数最高的C原子(指定为C-2)是一个酮基。

3.异头物:仅在氧化数最高的C原子(异头碳)上具有不同构形的糖分子的两种异构体。

4.异头碳:环化单糖的氧化数最高的C原子,异头碳具有羰基的化学反应性。

5.变旋:吡喃糖,呋喃糖或糖苷伴随它们的α-和β-异构形式的平衡而发生的比旋度变化。

7.糖苷:单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物。

8.糖苷键:一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O—糖苷键和N—糖苷键。 10.多糖:20个以上的单糖通过糖苷键连接形成的聚合物。多糖链可以是线形的或带有分支的。

11.还原糖:羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。

12.淀粉:一类多糖,是葡萄糖残基的同聚物。有两种形式的淀粉:一种是直链淀粉,是没有分支的,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连。

13.糖原: 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连。

14.极限糊精:是指支链淀粉中带有支链的核心部位,该部分经支链淀粉酶水解作用,糖原磷酸化酶或淀粉磷酸化酶作用后仍然存在。糊精的进一步降解需要α-(1→6)糖苷键的水解。

15.肽聚糖:N-乙酰葡萄糖胺和N-乙酰唾液酸交替连接的杂多糖与不同的肽交叉连接形成的大分子。肽聚糖是许多细菌细胞壁的主要成分。

16.糖蛋白:含有共价连接的葡萄糖残基的蛋白质。 17.蛋白聚糖:由杂多糖与一个多肽连组成的杂化的在分子,多糖是分子的主要成分。

1.巴斯德效应:氧存在下,酵解速度放慢的现象。 2.回补反应:酶催化的,补充柠檬酸循环中间代谢物供给的反应,例如由丙酮酸羧化酶生成草酰乙酸的反应。 4.戊糖磷酸途径:那称为磷酸已糖支路。是一个葡萄糖-6-磷酸经代谢产生NADPH和核糖-5-磷酸的途径。该途径包括氧化和非氧化两个阶段,在氧化阶段,葡萄糖-6-磷酸转化为核酮糖-5-磷酸和CO2,并生成两分子NADPH;在非氧化阶段,核酮糖-5-磷酸异构化生成核糖-5-磷酸或转化为酵解的两用人才个中间代谢物果糖-6-磷酸和甘油醛-3-磷酸。

6.糖醛酸途径:从葡萄糖-6-磷酸或葡萄糖-1-磷酸开始,经UDP-葡萄糖醛酸生成葡萄糖醛酸和抗坏血酸的途径。但只有在植物和那些可以合成抗坏血酸的动物体内,才可以通过该途径合成维生素C。

7.无效循环:也称为底物循环。一对酶催化的循环反应,该循环通过ATP的水解导致热能的释放。Eg葡萄糖+ATP=葡萄糖6-磷酸+ADP与葡萄糖6-磷酸+H2O=葡萄糖+P i反应组成的循环反应,其净反应实际上是ATP+H2O=ADP+Pi。

11

8.磷酸解作用::通过在分子内引入一个无机磷酸,形成磷酸脂键而使原来键断裂的方式。实际上引入了一个磷酰基。

9.半乳糖血症:人类的一种基因型遗传代谢缺陷,是由于缺乏1-磷酸半乳糖尿苷酰转移酶,导致婴儿不能代谢奶汁中乳糖分解生成的半乳糖。

10.尾部生长:一种聚合反应机理经过私有化的单体的头部结合到聚合的尾部,连接到聚合物尾部的单体的尾部又生成了接下一个单体的受体。

糖的有氧氧化:葡萄糖或糖原在有氧条件下,经历糖酵解途径、丙酮酸脱氢脱羧和TCA循环彻底氧化,生成C02和水,并产生大量能量的过程。

血糖:指血液当中的葡萄糖,主要来源是膳食中消化吸收入血的葡萄糖及肝糖原分解产生的葡萄糖,另外还有糖异生作用由中间代谢物合成的葡萄糖。 TCA调控及意义

三羧酸循环:又称TCA循环,是糖有氧氧化的第三个阶段,由乙酰辅酶A和草酰乙酸缩合生成柠檬酸开始,经历四次氧化及其他中间过程,最终又生成一分子草酰乙酸,如此往复循环,每一循环消耗一个乙酰基,生成CO2和水及大量能量。 意义:

(1)是有机体获得生命活动所需能量的最有效方式 (2)是糖、脂、蛋白质等物质代谢和转化的中心枢纽 (3)形成多种重要的中间产物 糖酵解的定义及意义

EMP途径:又称糖酵解途径。指葡萄糖在无氧条件下经过一定反应历程被分解为丙酮酸并产生少量ATP和NADH+H+的过程。是绝大多数生物所共有的一条主流代谢途径。由10步酶促反应组成。通过该途径,一分子葡萄糖转化为两分子丙酮酸,同时净生成两分子ATP和两分子NADH。 意义:

(1)是葡萄糖在生物体内进行有氧或无氧分解的共同途

12

径,通过糖酵解,生物体获得生命活动所需要的能量; (2)形成多种重要的中间产物,为氨基酸、脂类合成提供碳骨架;

(3)为糖异生提供基本途径。 催化糖代谢关键部位的酶

TCA循环:柠檬酸合成酶 (限速酶)、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶

糖酵解:己糖激酶 、磷酸果糖(限速酶)、丙酮酸激酶

第六章 脂类代谢

1.必需脂肪酸:为人体生长所必需但有不能自身合成,必须从事物中摄取的脂肪酸。在脂肪中有三种脂肪酸是人体所必需的,即亚油酸,亚麻酸,花生四烯酸。 2.α-氧化:α-氧化作用是以具有3-18碳原子的游离脂肪酸作为底物,有分子氧间接参与,经脂肪酸过氧化物酶催化作用,由α碳原子开始氧化,氧化产物是D-α-羟脂肪酸或少一个碳原子的脂肪酸。

3. 脂肪酸的β-氧化:脂肪酸的β-氧化作用是脂肪酸在一系列酶的作用下,在α碳原子和β碳原子之间断裂,β碳原子氧化成羧基生成含2个碳原子的乙酰CoA 和比原来少2 个碳原子的脂肪酸。

4. 脂肪酸ω-氧化:ω-氧化是C5、C6、C10、C12脂肪酸在远离羧基的烷基末端碳原子被氧化成羟基,再进一步氧化而成为羧基,生成α,ω-二羧酸的过程。 5. 乙醛酸循环:是某些植物,细菌和酵母中柠檬酸循环的修改形式,在其异柠檬酸和苹果酸之间反应顺序有改变,以及乙酸是用作能量和中间物的一个来源。某些植物和微生物体内有此循环,他需要二分子乙酰辅酶A的参与;并导致一分子琥珀酸的合成。通过该循环可以收乙乙酰CoA经草酰乙酸净生成葡萄糖。乙醛酸循环绕过了柠檬酸循环中生成两个CO2的步骤。

6. 柠檬酸穿梭:就是线粒体内的乙酰CoA 与草酰乙酸缩合成柠檬酸,然后经内膜上的三羧酸载体运至胞液中,在柠檬酸裂解酶催化下,需消耗ATP 将柠檬酸裂解回草酰乙酸和,后者就可用于脂肪酸合成,而草酰乙酸经还原后再氧化脱羧成丙酮酸,丙酮酸经内膜载体运回线粒体,在丙酮酸羧化酶作用下重新生成草酰乙酸,这样就可又一次参与转运乙酰CoA 的循环。

7.乙酰CoA 羧化酶系:大肠杆菌乙酰CoA 羧化酶含生物素羧化酶、生物素羧基载体蛋白(BCCP)和转羧基酶三种组份,它们共同作用催化乙酰CoA 的羧化反应,生成丙二酸单酰-CoA。

8.脂肪酸合酶系统:脂肪酸合酶系统包括酰基载体蛋白(ACP)和6 种酶,它们分别是:乙酰转酰酶;丙二酸单酰转酰酶;β-酮脂酰ACP 合成酶;β-酮脂酰ACP 还原酶;β-羟;脂酰ACP 脱水酶;烯脂酰ACP 还原酶。 1.脂肪酸:是指一端含有一个羧基的长的脂肪族碳氢链。脂肪酸是最简单的一种脂,它是许多更复杂的脂的成分。 2.饱和脂肪酸:不含有—C=C—双键的脂肪酸。 3.不饱和脂肪酸:至少含有—C=C—双键的脂肪酸。 4.必需脂肪酸:维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,Eg亚油酸,亚麻酸。 5.三脂酰苷油:那称为甘油三酯。一种含有与甘油脂化的三个脂酰基的酯。脂肪和油是三脂酰甘油的混合物。 6.磷脂:含有磷酸成分的脂。Eg卵磷脂,脑磷脂。 7.鞘脂:一类含有鞘氨醇骨架的两性脂,一端连接着一个长连的脂肪酸,另一端为一个极性和醇。鞘脂包括鞘磷脂,脑磷脂以及神经节苷脂,一般存在于植物和动物细胞膜内,尤其是在中枢神经系统的组织内含量丰富。 8.鞘磷脂:一种由神经酰胺的C-1羟基上连接了磷酸毛里求胆碱(或磷酸乙酰胺)构成的鞘脂。鞘磷脂存在于在多数哺乳动物动物细胞的质膜内,是髓鞘的主要成分。 9.卵磷脂:即磷脂酰胆碱(PC),是磷脂酰与胆碱形成的复合物。

10.脑磷脂:即磷脂酰乙醇胺(PE),是磷脂酰与乙醇胺形成的复合物。

11.脂质体:是由包围水相空间的磷脂双层形成的囊泡(小泡)。

12.生物膜:镶嵌有蛋白质的脂双层,起着画分和分隔细胞和细胞器作用生物膜也是与许多能量转化和细胞内通讯有关的重要部位。

13

13.内在膜蛋白:插入脂双层的疏水核和完全跨越脂双层的膜蛋白。

14.外周膜蛋白:通过与膜脂的极性头部或内在的膜蛋白的离子相互作用和形成氢键与膜的内或外表面弱结合的膜蛋白。

15.流体镶嵌模型:针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶“在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。另外脂和膜蛋白可以进行横向扩散。

16.通透系数:是离子或小分子扩散过脂双层膜能力的一种量度。通透系数大小与这些离子或分子在非极性溶液中的溶解度成比例。

17.通道蛋白:是带有中央水相通道的内在膜蛋白,它可以使大小适合的离子或分子从膜的任一方向穿过膜。 18.(膜)孔蛋白:其含意与膜通道蛋白类似,只是该术语常用于细菌。

19.被动转运:那称为易化扩散。是一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上,然后被转运过膜,但转运是沿着浓度梯度下降方向进行的,所以被动转达不需要能量的支持。

20.主动转运:一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上然后被转运过膜,与被动转运运输方式相反,主动转运是逆着浓度梯度下降方向进行的,所以主动转运需要能量的驱动。在原发主动转运过程中能源可以是光,ATP或电子传递;而第二级主动转运是在离子浓度梯度下进行的。

21.协同运输:两种不同溶质的跨膜的耦联转运。可以通过一个转运蛋白进行同一方向(同向转运)或反方向(反向转运)转运。

22.胞吞(信用):物质被质膜吞入并以膜衍生出的脂囊泡形成(物质在囊泡内)被带入到细胞内的过程 脂肪酸降解:最主要是β-氧化反应,在线粒体中进行

脂肪动员:储存在脂肪组织细胞中的脂肪,经脂肪酶逐步水解为游离脂肪酸和甘油并释放入血,被组织利用的过程称为..

酮体:在肝脏中,脂肪酸不完全氧化生成的中间产物乙酰乙酸、β-羟基丁酸及丙酮统称为酮体。在饥饿时酮体是包括脑在内的许多组织的燃料,酮体过多会导致中毒。

第八章 含氮化合物代谢

1.蛋白酶:以称肽链内切酶(Endopeptidase),作用于多肽链内部的肽键,生成较原来含氨基酸数少的肽段,不同来源的蛋白酶水解专一性不同。

2.肽酶:只作用于多肽链的末端,根据专一性不同,可在多肽的N-端或C-端水解下氨基酸,如氨肽酶、羧肽酶、二肽酶等。

3.氮平衡:正常人摄入的氮与排出氮达到平衡时的状态,反应正常人的蛋白质代谢情况。

4.生物固氮:利用微生物中固氮酶的作用,在常温常压条件下将大气中的氮还原为氨的过程(N2 + 3H2→ 2 NH3)。生物固氮只发生在少数的细菌和藻类中。 5.硝酸还原作用:在硝酸还原酶和亚硝酸还原酶的催化下,将硝态氮转变成氨态氮的过程,植物体内硝酸还原作用主要在叶和根进行。

6.氨的同化:由生物固氮和硝酸还原作用产生的氨,进入生物体后被转变为含氮有机化合物的过程。 7.转氨作用:在转氨酶的作用下,把一种氨基酸上的氨基转移到α-酮酸上,形成另一种氨基酸。

8.尿素循环:尿素循环也称鸟氨酸循环,是将含氮化合物分解产生的氨在肝脏中,由两分子氨一分子二氧化碳在相关酶的催化作用下,转变成尿素的过程,有解除氨毒害的作用。

9.生糖氨基酸:在分解过程中能转变成丙酮酸、α-酮戊二酸乙、琥珀酰辅酶A、延胡索酸和草酰乙酸的氨基酸称为生糖氨基酸。

10.生酮氨基酸:在分解过程中能转变成乙酰辅酶A 和乙酰乙酰辅酶A 的氨基酸称为生酮氨基酸。

11.核酸酶:作用于核酸分子中的磷酸二酯键的酶,分解产物为寡核苷酸或核苷酸,根据作用位置不同可分为核酸外切酶和核酸内切酶。

12.限制性核酸内切酶:能作用于核酸分子内部,并对某些碱基顺序有专一性的核酸内切酶,是基因工程中的重要工具酶。

13.氨基蝶呤:对嘌呤核苷酸的生物合成起竞争性抑制作用的化合物,与四氢叶酸结构相似,又称氨基叶酸。 14.一碳单位:仅含一个碳原子的基团如甲基(CH3-、亚甲基(CH2=)、次甲基(CH≡)、甲酰基(O=CH-)、亚氨甲基(HN=CH-)等,一碳单位可来源于甘氨酸、苏氨酸、丝氨酸、组氨酸等氨基酸,一碳单位的载体主要是四氢叶酸,功能是参与生物分子的修饰。

3.脱氨:在酶的催化下从生物分子(氨基酸或核苷酸)中除去氨基的过程。

4.氧化脱氨:α-氨基酸在酶的催化下脱氨生成相应的α-酮酸的过程。氧化脱氨实际上包括氧化和脱氨两个步骤。(脱氨和水解)

6.乒乓反应:在该反应中,酶结合一个底物并释放一个产物,留下一个取代酶,然后该取代酶再结合第二个底物和释放出第二个产物,最后酶恢复到它的起始状态。 9.苯酮尿症:是由于苯丙氨酸羟化酶缺乏引起苯丙酸堆积的代谢遗传病。缺乏丙酮酸羟化酶,苯丙氨酸只能靠转氨生成苯丙酮酸,病人尿中排出大量苯丙酮酸。苯丙酮酸堆积对神经有毒害,使智力发肓出现障碍。 10.尿黑酸症:是酪氨酸代谢中缺乏尿黑酸酶引起的代谢遗传病。这种病人的尿中含有尿黑酸,在碱性条件下暴露于氧气中,氧化并聚合为类似于黑色素的物质,从而使尿成黑色。 蛋白质降解:

脱氨基:氧化脱氨基作用 、转氨基作用 、联合脱氨基作用 、脱酰胺作用

14

脱羧基

联合脱氨基作用:是体内氨基酸分解代谢主要的脱氨方式。主要有两种反应途径:

一是由L-谷氨酸脱氢酶所催化的氧化脱氨基作用和转氨酶催化的转氨基作用联合脱去氨基;

二是由L-谷氨酸脱氢酶所催化的氧化脱氨基作用和嘌呤核苷酸循环联合作用脱去氨基。

补救途径:利用体内游离的嘌呤或嘌呤核苷、嘧啶或嘧啶核苷经过简单的反应过程,合成嘌呤或嘧啶核苷酸的过程。此合成途径主要在脑、骨髓中进行

第九章 核酸的生物合成

1.半保留复制:双链DNA 的复制方式,其中亲代链分离,每一子代DNA 分子由一条亲代链和一条新合成的链组成。

2.不对称转录:因为1.只以DNA双链中的一条链为模板进行转录而另一条链无转录功能;2.DNA双链的多个基因进行转录的模板并不总在同一条DNA链上。

5.复制叉:复制DNA 分子的Y 形区域。在此区域发生链的分离及新链的合成。

6.领头链:DNA 的双股链是反向平行的,一条链是5/→3/方向,另一条是3/→5/方向,上述的起点处合成的领头链,沿着亲代DNA 单链的3/→5/方向(亦即新合成的DNA沿5/→3/方向)不断延长。所以领头链是连续的。 7.随后链:已知的DNA 聚合酶不能催化DNA 链朝3/→5/方向延长,在两条亲代链起点的3/ 端一侧的DNA 链复制是不连续的,而分为多个片段,每段是朝5/→3/方向进行,所以随后链是不连续的。

8.有意义链:即华森链,华森克里格型DNA 中,在体内被转录的那股DNA 链。简写为Wstrand。

9.光复活:将受紫外线照射而引起损伤的细菌用可见光照射,大部分损伤细胞可以恢复,这种可见光引起的修复过程就是光复活作用。

10.重组修复:这个过程是先进行复制,再进行修复,复制时,子代DNA 链损伤的对应部位出现缺口,这可通过分子重组从完整的母链上,将一段相应的多核苷酸片

15

段移至子链的缺口处,然后再合成一段多核昔酸键来填补母链的缺口,这个过程称为重组修复。

11.内含子:真核生物的mRNA 前体中,除了贮存遗传序列外,还存在非编码序列,称为内含子。

12.外显子:真核生物的mRNA 前体中,编码序列称为外显子。在DNA分子中或hnRNA分子中既能被转录又能被翻译的核苷酸序列。.

13.基因载体:外源DNA 片段(目的基因)要进入受体细胞,必须有一个适当的运载工具将带入细胞内,并载着外源DNA 一起进行复制与表达,这种运载工具称为载体。

14.质粒:是一种在细菌染色体以外的遗传单元,一般由环形双链DNA 构成,其大小从1?200Kb。

1.核苷酸磷酸化酶:能分解核苷生成含氮碱和戊糖的磷酸酯的酶。

2.核苷水解酶:能分解核苷生成含氮碱和戊糖的酶。 3.从头合成:生物体内用简单的前体物质合成生物分子的途径,例如核苷酸的从头合成。

4.痛风:是尿酸过量生产或尿酸排泻不充分引起的尿酸堆积造成的,尿酸结晶堆积在软骨,软组织,肾脏以及关节处。在关节处的沉积会造成剧烈的疼痛。 5.别嘌呤醇:是结构上烦恼于黄嘌呤的化合物(在嘌呤环上第七位是C,第八位是N),对黄嘌呤氧化酶有很强的抑制作用,常用来治疗痛风。

6.自杀抑制作用:底物烦恼物经酶催化生成的产物变成了该酶的抑制剂,如别嘌呤醇对黄嘌呤氧化酶的抑制。 7.Lesch-Nyhan综合症:也称为自毁容貌症,由次黄嘌呤-鸟嘌呤磷酸核糖转移酶的遗传缺陷引起的。缺乏该酶使得次黄嘌呤和鸟嘌呤不能转换为IMP和GMP,而是降解为尿酸,过量尿酸将导致。

8.DNA聚合酶:以DNA为模板,催化核苷酸残基加到已存在的聚核苷酸3ˊ末端反应的酶。某些DNA聚全酶具有外切核酸酶的活性,可用来校正新合成的核苷酸的序列。

10.复制体:一种多蛋白复合体,包含DNA聚合酶,引发酶,解旋酶,单链结合蛋白和其它辅助因子。复制体位于每个复制叉处进行细菌染色体DNA复制的聚合反应。 11.单链结合蛋白(SSB):一种与单链DNA结合紧密的蛋白,它的结构可以防止复制叉处单链DNA本身重新折叠回双链区。

12.滚环复制:复制环状DNA的一种模式,在该模式中,DNA聚合酶结合在一个缺口链的3ˊ端绕环合成与模板链互补的DNA,每一轮都是新合成的DNA取代前一轮合成的DNA。

13.逆转录酶:一种催化以RNA为模板合成DNA的DNA聚合酶,具有RNA指导的DNA合成,水解RNA和DNA指导的DNA合成的酶活性。

13.互补NDA(cDNA):通过逆转录酶由mRNA模板合成的双链DNA。

14.聚合酶链式反应(PCR):扩增样品中的DNA量和富集众多DNA分子中的一个特定的DNA序列的一种技术。在该反应中,使用与目的DNA序列互补的寡核苷酸作为引物,进行多轮的DNA合成。其中包括DNA变性,引物退火和在Tap DNA聚合酶催化下的DNA合成。

15.直接修复:是通过一种可连续扫描DNA,识别出损伤部位的蛋白质,将损伤部位直接修复的方法。该修复方法不用切断DNA或切除碱基。

16.切除修复:通过切除-修复内切酶使DNA损伤消除的修复方法。一般是切除损伤区,然后在DNA聚合酶的作用下,以露出的单链为模板合成新的互补链,最后用连接酶将缺口连接起来。

17.错配修复:在含有错配碱基的DNA分子中,使正常核苷酸序列恢复的修复方式。这种修复方式的过程是:识别出下正确地链,切除掉不正确链的部分,然后通过DNA聚合酶和DNA连接酶的作用,合成正确配对的双链DNA。 转录:以DNA的一条链为模板,按照碱基互补配对原则合成一条RNA链的过程。

翻译:以mRNA为模板,按照三个碱基决定一个氨基酸的原则合成具有一定氨基酸排列顺序的蛋白质的过程。 引发体:DNA的生物合成起始时由DNA模板链、多种蛋白因子和酶(包括引发酶,解旋酶等)所形成的复合体,功能是合成引物和起始DNA的生物合成。

冈崎片段:DNA复制合成时,由于DNA聚合酶的特性,后随链不能连续复制,只能一段一段地复制,然后连接成完整的DNA链。这种不连续复制而合成的DNA片段称为冈崎片段。

Klenow片段:E.coli DNA聚合酶I经部分水解生成的C末端605个氨基酸残基片段。该片段保留了DNA聚合酶I的5ˊ-3ˊ聚合酶和3ˊ-5ˊ外切酶活性,但缺少完整酶的5ˊ-3ˊ外切酶活性。

多核蛋白体:细胞内多个核蛋白体连接在同一条mRNA分子上,各自以不同的进度合成一种相同的多肽链,这种聚合体称...

分子病:由于DNA分子的遗传性缺陷引起mRNA分子异常和蛋白质的合成障碍,导致体内某些蛋白质结构和功能异常,由此造成的疾病称..

探针:人工制成的放射性同位素标记的已知核苷酸顺序的DNA小片段,用于检测未知DNA分子中是否有同源性区段。 核酸酶种类:

据对底物的专一性分为:RNase;DNase;非特异性核酸酶

据作用方式可分为:核酸外切酶;核酸内切酶 参与DNA复制的酶

聚合酶、解链酶、引物酶、链接酶

半保留复制的生物学意义:有助于遗传的稳定性 前导链与滞后都是由同一套DNA聚合酶完成的。 多核糖体:提高生物合成效率

操纵子学说:DNA分子上控制蛋白质合成的功能单位,包括启动基因,操纵基因和结构基因 遗传密码及其基本特性

遗传密码:mRNA的核苷酸排列顺序与蛋白质多肽链中的

16

氨基酸排列顺序之间有严格的对应关系。mRNA分子上从5'→3'方向,由起始密码子AUG开始,每3个核苷酸组成的三联体,决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号,称为三联体密码,也叫密码子。 基本特性:

(1)读码不重叠无间隔

(2)密码的简并性,几组不同的密码子可编码同一种氨基酸

(3)密码的通用性,几乎所有的生物都可以公用一套遗传密码

DNA复制过程的特点 (1) 半保留复制

(2) 有特定的起点(原核生物为单起点,真核生物为多起点)

(3) 需要RNA作为引物,以后引物被切除,补上DNA (4) DNA合成方向是5`→3`

(5) 复制可以是单向也可以是双向,速度不一定相等 (6) 半不连续复制,有前导链(连续)和后滞链(不连续)之分

蛋白质因子及其功能:

(1)拓朴异构酶使DNA超螺旋变为松驰态;它兼有内切酶和连接酶的活力,能迅速使DNA链断开后再接上。 (2)解螺旋酶解开双链

(3)引物酶结合在解开的DNA单链上,以DNA为模板、NTP为原料合成一段RNA引物

(4)DNA连接酶催化一个DNA链的5`-Pi与另一个DNA链的3`-OH形成磷酸二酯键

(5)DNA 聚合酶III 结合到模板链上

第十一章 代谢调节

1. 诱导酶:由于诱导物的存在,使原来关闭的基因开放,从而引起某些酶的合成数量明显增加,这样的酶称为诱导酶

2. 标兵酶:在多酶促系列反应中,受控制的部位通常是系列反应开头的酶,这个酶一般是变构酶,也称标兵酶。 3. 操纵子:在转录水平上控制基因表达的协调单位,包括启动子(P)、操纵基因(O)和在功能上相关的几个结构基因。

13. 前馈激活:在反应序列中,前身物质对后面的酶起激活作用,使反应向前进行。

14. 钙调蛋白:一种依赖于钙的蛋白激酶,酶蛋白与钙结合引起酶分子构象变化,调解酶的活性。如磷酸化酶激酶是一种依赖于钙的蛋白激酶。

第十二章 蛋白质的生物合成

1.密码子(codon):存在于信使RNA 中的三个相邻的核苷酸顺序,是蛋白质合成中某一特定氨基酸的密码单17

11. 反馈抑制:在代谢反应中,反应产物对反应过程中起作用的酶产生的抑制作用。

12. 交叉调节:代谢产物不仅对本身的反应过程有反馈抑制作用,而且可以控制另一代谢物在不同途径中的合成。

分子构象变化,从而调节代谢的方向和速度。 10. 级联系统:在连锁代谢反应中一个酶被激活后,连续地发生其它酶被激活,导致原始调节信号的逐级放大,这样的连锁代谢反应系统称为级联系统。

4. 衰减子:位于结构基因上游前导区调节基因表达的功能单位,前导区转录的前导RNA通过构象变化终止或减弱转录。

5. 阻遏物:由调节基因产生的一种变构蛋白,当它与操纵基因结合时,能够抑制转录的进行。

6. 辅阻遏物:能够与失活的阻碣蛋白结合,并恢复阻遏蛋白与操纵基因结合能力的物质。辅阻遏物一般是酶反应的产物。

7. 降解物基因活化蛋白:由调节基因产生的一种cAMP 受体蛋白,当它与cAMP 结合时被激活,并结合到启动子上促进转录进行。是一种正调节作用。 8. 腺苷酸环化酶:催化ATP 焦磷酸裂解产生环腺苷酸(cAMP)的酶。

9. 共价修饰:某种小分子基团可以共价结合到被修饰酶的特定氨基酸残基上,引起酶

位。共有64 个密码子,其中61 个是氨基酸的密码,3个是作为终止密码子。

2.同义密码子(synonym codon)或简并密码(degenerate codon):为同一种氨基酸编码的几个密码子之一。 3.反密码子(anticodon):在tRNA 反密码子环中的三个核苷酸的序列,在蛋白质合成中通过互补的碱基配对,这部分结合到信使RNA 的特殊密码上。

7.反义RNA(antisense RNA):具有互补序列的RNA。反义RNA 可以通过互补序列与特定的mRNA 相结合,结合位置包括mRNA 结合核糖体的序列(SD 序列)和起始密码子AUG,从而抑制mRNA 的翻译。又称干扰mRNA 的互补RNA。

4.变偶假说(Wobble hypothesis):克里克为解释tRNA 分子如何去识别不止一个密码子而提出的一种假说。据此假说,反密码子的前两个碱基(3ˊ端)按照碱基配对的一般规律与密码子的前两个(5ˊ端)碱基配对,然而tRNA 反密码子中的第三个碱基,在与密码子上3ˊ端的碱基形成氢键时,则可有某种程度的变动,使其有可能与几种不同的碱基配对。

5.移码突变(frame-shift mutation):一种突变,其结果为导致核酸的核苷酸顺序之间的正常关系发生改变。移码突变是由删去或插入一个核苷酸的点突变构成的,在这种情况下,突变点以前的密码子并不改变,并将决定正确的氨基酸顺序;但突变点以后的所有密码子都将改变。且将决定错误的氨基酸顺序。

6.氨基酸同功受体(isoacceptor):每一个氨基酸可以有多过一个tRNA 作为运载工具,这些tRNA 称为该氨基酸同功受体。

8.信号肽(signal peptide): 信号肽假说认为,编码分泌蛋白的mRNA在翻译时首先合成的是N 末端带有疏水氨基酸残基的信号肽,它被内质网膜上的受体识别并与之相结合。信号肽经由膜中蛋白质形成的孔道到达内质网内腔,随即被位于腔表面的信号肽酶水解,由于它的引导,新生的多肽就能够通过内质网膜进入腔内,最终被分泌到胞外。翻译结束后,核糖体亚基解聚、孔道消失,内质网膜又恢复原先的脂双层结构。

18

10.核糖体(ribosome): 核糖体是很多亚细胞核蛋白颗粒中的一个,由大约等量的RNA和蛋白质所组成,是细胞内蛋白质合成的场所。由两个不相同的亚基组成,这两个亚基通过镁离子和其它非共价键地结合在一起。已证实有四类核糖核蛋白体(细菌、植物、动物和线粒体)它们以其单体的、亚单位的和核糖核蛋白体RNA 的沉降系数相区别。

11.多核糖体(polysome):在信使核糖核酸链上附着两个或更多的核糖体。

12.氨酰基部位(aminoacyl site):在蛋白质合成过程中进入的氨酰-tRNA结合在核蛋白体上的部位。 13.肽酰基部位(peptidy site):指在蛋白质合成过程中,当下一个氨酰基转移RNA接到核糖核蛋白体的氨基部位时,肽酰tRNA所在核蛋白体上的结合点。 14.肽基转移酶(peptidyl transferase):蛋白质合成中的一种酶。它能催化正在增长的多肽链与下一个氨基酸之间形成肽键。在细菌中此酶是50S 核糖核蛋白体亚单位中的蛋白质之一。

15.氨酰-tRNA 合成酶(amino acy-tRNA synthetase):催化氨基酸激活的偶联反应的酶,先是一种氨基酸连接到AMP 生成一种氨酰腺苷酸,然后连接到转移RNA 分子生成氨酰-tRNA 分子。

16.蛋白质折叠(protein folding):蛋白质的三维构象,称为蛋白质的折叠。是由蛋白质多肽链的氨基酸顺序所决定的。自然条件下自发进行的,在生物体内条件下,是热力学上最稳定的形式。多肽链在核糖体上一面延长,一面自发地折叠成其本身独有的构象。当肽链终止延长并从核糖体上脱落时,它也就折叠成天然的三维结构。

17.核蛋白体循环(polyribosome):是指已活化的氨基酸由tRNA转运到核蛋白体合成多肽链的过程。 18.锌指(zine finger):是调控转录的蛋白质因子中与DNA 结合的一种基元,它由大约30 个氨基酸残基的肽段与锌螯合形成的指形结构,锌以4 个配位键与肽链的Cys或His 残基结合,指形突起的肽段含12-13 个氨

基酸残基,指形突起嵌入DNA 的大沟中,由指形突起或其附近的某些氨基酸侧链与DNA 的碱基结合而实现蛋白质与DNA 的结合。

19.亮氨酸拉链(leucine zipper):这是真核生物转录调控蛋白与蛋白质及与DNA 结合的基元之一。两个蛋白质分子近处C 端肽段各自形成两性α-螺旋,α-螺旋的肽段每隔7 个氨基酸残基出现一个亮氨酸残基,两个α-螺旋的疏水面互相靠拢,两排亮氨酸残基疏水侧链排列成拉链状形成疏水键使蛋白质结合成二聚体,α-螺旋的上游富含碱性氨基酸(Arg 、Lys)肽段借Arg 、Lys 侧链基团与DNA 的碱基互相结合而实现蛋白质与DNA 的特异结合。

20.顺式作用元件(cis-acting element):真核生物DNA 的转录启动子和增强子等序列,合称顺式作用元件。 21.反式作用因子(trans-acting factor):调控转录的各种蛋白质因子总称反式作用因子。

22.螺旋环螺旋(helix-loop-helix):这种蛋白质基元由两个两性α?螺旋通过一个肽段连结形成螺旋?环?螺旋结构,两个蛋白质通过两性螺旋的疏水面互相结合,与DNA 的结合则依靠此基元附近的碱性氨基酸侧链基团与DNA 的碱基结合而实现。

1.遗传学中心法则:描述从一个基因到相应蛋白质的信息流的途径。遗传信息贮存在DNA中,DNA被复制传给子代细胞,信息被拷贝或由DNA转录成RNA,然后RNA翻译成多肽。不过,由于逆转录酶的反应,也可以以RNA为模板合成DNA。

2.模板链:可作为模板转录为RNA的那条链该链与转录的RNA碱基互补(A-U,G-C)。在转录过程中,RNA聚合酶与模板链结合,并沿着模板链的3′→5′方向移动,按照5′→3′方向催化RNA的合成。

3.编码链:双链DNA中,不能进行转录的那一条DNA链,该链的核苷酸序列与转录生成的RNA的序列一致(在RNA中是以U取代了DNA中的T)。

4.核心酶:大肠杆菌的RNA聚合酶全酶由5个亚基组成(α2β,βδ),没有δ基的酶叫核心酶。核心酶只能

19

使已开始合成的RNA链延长,但不具有起始合成RNA的能力,必须加入δ基才表现出全部聚合酶的活性。 5.RNA聚合酶:以一条DNA链或RNA为模板催化由核苷-5′-三磷酸合成RNA的酶。

6.启动子:在DNA分子中,RNA聚合酶能够结合并导致转录起始的序列。

7.终止因子:协助RNA聚合酶识别终止信号的的辅助因子(蛋白质)。

8.核酶:具有像酶那样催化功能的RNA分子。 9.剪接体:大的蛋白质—RNA复合体,它催化内含子从mRNA前体中除去的反应。

10.RNA加工过程:将一个RNA原初转录产物转换成成熟RNA分子的反应过程。加工包括从原初产物中删除一些核苷酸,添加一些基因没有编码的核苷酸和对那些碱基进行共介修饰。

11.RNA剪接:从DNA模板链转录出的最初转录产物中除去内含子,并将外显子连接起来形成一个连续的RNA分子的过程。

12.起始密码子:指定蛋白质合成起始位点的密码子。最常见的起始密码子是蛋氨酸密码:AUG

13.终止密码子:任何tRNA分子都不能正常识别的,但可被特殊的蛋白结合并引起新合成的肽链从翻译机器上释放的密码子。存在三个终止密码子:UAG ,UAA和UGA。 14.氨基酸臂:也称为接纳茎。tRNA分子中靠近3ˊ端的核苷酸序列和5ˊ端的序列碱基配对,形成的可接收氨基酸的臂(茎)。

15.TψC臂:tRNA中含有胸腺嘧啶核苷酸-假尿嘧啶核苷酸-胞嘧啶核苷酸残基序列的茎-环结构。

10,氨酰-tRNA:在氨基酸臂的3ˊ端的腺苷酸残基共价连接了氨基酸的tRNA分子。

16.同工tRNA:结合相同氨基酸的不同的tRNA分子。 17.摆动:处于密码子3ˊ端的碱基与之互补的反密码子5ˊ端的碱基(也称为摆动位置),例如I可以与密码子

上3ˊ端的U,C和A配对。由于存在摆动现象,所以使得一个tRNA反密码子可以和一个以上的mRAN密码子结合。

18.氨酰-tRNA合成酶:催化特定氨基酸激活并共介结合在相应的tRNA分子3ˊ端的酶。

19.翻译起始复合物:由核糖体亚基,一个mRNA模板,一个起始的tRNA分子和起始因子组成并组装在蛋白质合成起始点的复合物。

20.读码框:代表一个氨基酸序列的mRNA分子的非重叠密码序列。一个mRNA读码框是由转录起始位置(通常是AUG密码)确定的。

21.开放读码框:DNA或RNA序列中一段不含终止密码的连续的非重叠核苷酸密码。

22.SD序列:mRNA中用于结合原核生物核糖体的序列。 23.肽酰转移酶:蛋白质合成期间负责转移肽酰基和催化肽键形成的酶。

24.嘌吟毒素:通过整合到生长着的肽链,引起肽链合成提前终止来抵制多肽名链合成的一种抗生素。 25.转录因子:在转录起始复合物的组装过程中,与起动子区结合并与RNA聚合酶相互作用的一种蛋白质。某些转录因子在RNA延伸时一直维持着结合状态。 26.操纵因子:与特定阻遏蛋白相互作用调控一个基因或一组基因表达的DNA区。

27.结构基因:编码一个蛋白质或一个RNA的基因。 28.转录激剂:通过曾加RNA聚合酶的活性来加快转录速度的一种调节DNA结合蛋白。

29.衰减作用:一种翻译调控机制。在该机制中,核糖体沿着mRNA分子的移动的速度决定转录是进行还是终止。

第十三章 色素与激素

1.叶绿体:藻类和植物体中含有叶绿素进行光合作用的器官。

2.叶绿素:光合作用膜中的绿色色素,它是光合作用中捕获光的主要成分。

3.辅助色素:在植物和光合细菌,像类胡萝卜素叶黄素和藻胆色素中,吸收可见光的色素,这类色素是对叶绿素捕获光能的补充。

4.光合作用:绿色植物或光合细菌利用光能将CO2转化为的机化合物的过程。

5.光合磷酸化:在叶绿体ATP合成酶的催化下依赖于光的由ADP 和Pi合成的ATP过程。

6.光反应:光合色素将光能转变成化学能并形成ATP 和NADPH的过程。

7.暗反应:利用光反应生成的ATP和NADPH的化学能使CO2还原糖或其它有机物的一系列酶促过程。

8.卡尔文循环:也称为还原戊糖磷酸循环和C3途径。它是在光合作用期间将CO2还原转化为糖的反应循环,是植物用于固定CO2生成磷酸催糖的途径。

9.C4途径:一些植物中固定C的途径,其特点是通过使CO2浓缩减少光呼吸。在该途径中在叶肉细胞CO2被整合到C4酸中,然后C4酸在维管束鞘细胞被脱羧,释放出的CO2被卡尔文循环利用。

10.光呼吸:植物依赖光摄起光进行磷酸乙醇酸代谢的过程。光呼吸之所以发生是由于O2可以与CO2竞争核酮糖-1,5-二磷酸羧化酶的活性部位。

11.碳氧化降解生成乙酰CoA,同时生成NADH 和FADH2,因此可产生大量的ATP。该途径因脱氢和裂解均发生在β位碳原子而得名。每一轮脂肪酸β氧化都由四步反应组成:氧化,水化,再氧化和硫解。

12.肉毒碱穿梭系统:脂酰CoA通过形成脂酰肉毒碱从细胞质转运到线粒体的一个穿梭循环途径。

13.柠檬酸转运系统:将乙酰CoA从线粒体转运到细胞质的穿梭循环途径。在转运乙酰CoA的同时,细胞质中NADH氧化成NAD﹢,NADP+还原为NADPH。每循环一次消耗两分子ATP. 20

更多相关推荐:
生物化学简答题

生物化学简答题1产生ATP的途径有哪些试举例说明答产生ATP的途径主要有氧化磷酸化和底物水平磷酸化两条途径氧化磷酸化是需氧生物ATP生成的主要途径是指与氢和电子沿呼吸链传递相偶联的ADP磷酸化过程例如三羧酸循环...

生物化学简答题

第一章蛋白质的结构与功能1为何蛋白质的含氮量能表示蛋白质相对量实验中又是如何依此原理计算蛋白质含量的各种蛋白质的含氮量颇为接近平均为16因此测定蛋白质的含氮量就可推算出蛋白质含量常用的公式为蛋白质含量克每克样品...

生物化学简答题

生物化学简答题1产生ATP的途径有哪些试举例说明答产生ATP的途径主要有氧化磷酸化和底物水平磷酸化两条途径氧化磷酸化是需氧生物ATP生成的主要途径是指与氢和电子沿呼吸链传递相偶联的ADP磷酸化过程例如三羧酸循环...

生物化学简答题

2简述三羧酸循环的生理意义是什么它有哪些限速步骤生理意义三羧酸循环是机体获取能量的主要方式为生物合成提供原料影响果实品质糖脂肪和蛋白质代谢的枢纽限速步骤1在柠檬酸合酶的作用下由草酰乙酸和乙酰CoA合成柠檬酸2在...

生物化学简答题答案

生物化学简答题1产生ATP的途径有哪些试举例说明答产生ATP的途径主要有氧化磷酸化和底物水平磷酸化两条途径氧化磷酸化是需氧生物ATP生成的主要途径是指与氢和电子沿呼吸链传递相偶联的ADP磷酸化过程例如三羧酸循环...

生物化学常用简答题

1简述血氨的来源和去路1血氨来源氨基酸脱氨基作用是血氨的主要来源肠道产氨由腐败作用产生的氨或肠道尿素经肠道细菌尿素酶水解产生的氨肾脏产氨主要来自谷氨酰胺的水解胺类嘌呤嘧啶等含氮物质的分解产生氨2血氨去路在肝脏经...

生物化学简答题

1糖酵解途径糖酵解分为两个阶段共10个反应每个分子葡萄糖经第一阶段共5个反应消耗2个分子ATP为耗能过程第二阶段5个反应生成4个分子ATP为释能过程1第一阶段1葡萄糖的磷酸化26磷酸葡萄糖的异构反应36磷酸果糖...

生物化学实验简答题

生物化学实验简答题1简述透析的原理影响透析的因素及透析的应用透析是一种利用小分子能通过大分子不能通过半透膜的原理把它们分开的一种重要手段影响透析的因素主要有膜溶剂水溶液大分子溶液物理条件温度压力董南膜平衡等透析...

初中化学简答题汇总

1初中化学简答题1怎样才能减少白色污染少使用塑料回收利用研制可分解塑料2怎样检验某人是否患糖尿病取尿样少量加入新制CuOH2并加热如果产生红色沉淀证明某人患糖尿病3为什么煮沸的方法可以消毒医疗器械细菌的生命基础...

初中化学简答题集锦

初中化学简答题集锦1怎样才能减少白色污染少使用塑料回收利用研制可降解塑料2在使用体温计测量体温时若不慎将体温计打破散落出来的汞产生的汞蒸气会对人体产生危害此时可以撒一些硫粉在上面使硫与汞发生化合反应生成固体硫化...

初中化学简答题汇总

1初中化学简答题1怎样才能减少白色污染少使用塑料回收利用研制可分解塑料2怎样检验某人是否患糖尿病取尿样少量加入新制CuOH2并加热如果产生红色沉淀证明某人患糖尿病3为什么煮沸的方法可以消毒医疗器械细菌的生命基础...

初中化学课程标准简答题汇编

20xx年初中化学课程标准简答题试题简答题1全日制义务教育化学课程标准实验稿对目标要求的描述所用的词语分别指向哪些目标答案认知性学习目标技能性学习目标和体验性学习目标2科学探究涉及哪些要素答案提出问题猜想与假设...

生物化学简答题总结(24篇)