流化床干燥实验报告

时间:2024.4.13

北 京 化 工 大 学

        

                                                                                          

课程名称:    流化床干燥实验                     实验日期: 2010.05.12

班    级:                              姓    名:

同 组 人:

流化床干燥实验

一、摘要

本实验利用流化床干燥器对物料干燥速率曲线进行测定。本实验装置为间歇操作的沸腾床干燥器,可测定达到一定干燥要求所需的时间。以此来测定干燥速率。利用物料的干湿重量变化计算物料的各种含水量。

关键词: 干燥速率  含水量  干重  湿重

二、实验目的

1、了解流化床干燥器的基本流程和操作方法。

2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。

3、测定物料含水量及床层温度随时间变化的关系曲线。

4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数kH及降速阶段的比例系数Kx。

三、实验原理

1,流化曲线

在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(见下图)。

当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙流过,压降与流速成正比,斜率约为1(在双对数坐标中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的将不再成比例。

当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入气体输送阶段。D点处得流速即被称为带出速度(u0)。

在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而沿CA’变化。C点处得流速被称为起始流化速度(umf)。

在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。

2,干燥特性曲线

将湿物料置于一定的干燥条件,测定被干燥物料的质量和温度随时间变化的关系,可得湿物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(见图4-16)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,即为干燥速率曲线(见图4-17)。干燥过程可分为三个阶段。

(1)物料预热阶段(AB段)

在开始干燥时,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时间变化不大。

(2)恒速干燥阶段(BC段)

由于物料表面存在自由水分,物料表面温度等于空气的湿球温度,传入的热量只用来蒸发物料表面的水分,物料含水量随时间成比例减少,干燥速率恒定且最大。

(3)降速干燥阶段(CDE段)

物料含水量减少到某一临界含水量(XO),由于物料内部水分的扩散慢于物料表面的蒸发,不足以维持物料表面保持湿润,而形成干区,干燥速率开始降低,物料温度逐渐上升。物料含水量越小,干燥速率越慢,直至达到平衡含水量(X*)而终止。

干燥速率为单位时间在单位面积上汽化的水分量,用微分式表示为

                            (4-33)

式中  u—干燥速率,kg水/(m2.s);        A—干燥表面积,m2;   

dτ—相应的干燥时间,s;          dW—汽化的水分量,kg。

图4-17中的横坐标X为对应于某干燥速率下的物料平均含水量。

                         (4-34)

式中 —某一干燥速率下湿物料的平均含水量;

    —Δτ时间间隔内开始和终了时的含水量,kg水/kg绝干物料。

                         (4-35)

式中  —第i时刻取出的湿物料的质量,kg;

      —第i时刻取出的物料的绝干质量,kg。

干燥速率曲线只能通过实验测定,因为干燥速率不仅取决于空气的性质和操作条件,而且还受物料性质结构及含水量的影响。本实验装置为间歇操作的沸腾床干燥器,可测定达到一定干燥要求所需的时间,为工业上连续操作的流化床干燥器提供相应的设计参数。

四、实验装置和流程

沸腾干燥实验装置流程如下图所示:

图4-18  沸腾干燥实验装置和流程

1—风机;2—湿球温度水筒;3—湿球温度计;4—空气加热器;5—空气加热器;6—空气流量调节阀;7—放净口;8—取样口;9—不锈钢筒体;10—玻璃筒体;11—气固分离段;

12—加料口;13—旋风分离器;14—孔板流量计

本装置的所有设备,除床身筒体一部分采用高温硬质玻璃外,其余均采用不锈钢制造。床身筒体部分由不锈钢段(内径φ100mm,高100mm)和高温硬质玻璃段(内径φ100mm,高400mm)组成,顶部有气固分离段(内径φ150mm,高250mm)。不锈钢筒体上没有物料取样器、放净口和温度计接口等,分别用于取样、放净和测温。床身顶部气固分离段设有加料口和测压口,分别用于物料加料和测压。

空气加热装置由加热器和控制器组成,加热器为不锈钢盘管式加热器,加热管外壁设有1mm铠装热电偶,其与人工智能仪表、固态继电器等,实现空气介质的温度控制。空气加热装置底部设有测量空气干球温度和湿球温度的接口,以测定空气的干、湿球温度。

本装置空气流量采用孔板流量计计算,气流量Vs可通过式(4-24)求取。

本装置的旋风分离器,可除去干燥物料的粉尘。

五、实验操作

1、启动风机、加热器,最大风量预热5分钟后全部关停;

2、拔出取样器并旋转清空里面多余物料;

3、进料口加入湿小麦601.14g,干基含水量 kg/kg干麦

4、再次启动风机、加热器,固定风量(如有变化请注意手动调整),记录孔板压降3.5kPa,干球温度50.9℃,湿球温度24.7℃,时间点为0;

5、空气温度达到70℃,小麦处于流化状态,开始取样。记录时间点,称重,装盒,放入烘箱,1h后记录

6、间隔2~5分钟去一次样品,45分钟取15个点左右,记录数据,注意清空取样器残余小麦;

7、实验完成后可得到X~τ曲线,在曲线上取至少10个(ΔX/1.5Δτ)值,作u~τ曲线;

8、小麦在含水量40%以上可能存在非结合水,才有可能出现恒速段,取点注意时间分配;

9、关加热器、风机,加入300g干小麦,做流化试验;

10、只开风机,找到临界流化点风量,记录;

11、床层固定状态做5个点,流化态做4个点,记录;

12、实际生产中,设备通常是不透明的,床层压降反映了流体的运动状况,是重要的操作参数。

六、实验数据处理

1、干燥速率曲线测定

空气温度:70℃    孔板压降:3.5 kPa    干球温度:50.9℃    湿球温度:27.4℃

以第四组数据为例计算:

含水量:

平均含水率:

干燥速率:

2、流化曲线测定

以第三组数据为例计算:

空气流速:

七、实验结果作图及分析:

流化床床层压降与气速的关系曲线:

流化曲线和理论符合的很好, 当气速较小时,操作过程处于固定床阶段,床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比。当气速逐渐增加,床层开始膨胀,孔隙率增大,压降与气速的关系将不再成正比。当气速继续增大,进入流化阶段,固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本上保持不变,如曲线的后半段,成一条水平直线。

物料含水量,物料温度与时间的关系:

干燥速率曲线:

由于本组作图偏差过大,所以借由他人作图进行分析,如下:

此图应从右往左进行分析。

从图中右边3个点可知,在干燥前期,干燥速率基本维持定值(即恒速很俗阶段),因为此时物料表面被非结合水覆盖。由于结合水占大部分,所以小麦的恒速阶段很短。干燥一段时间后,干燥速率总体上在不断下降(即进入降速阶段),这是由于小麦表面的非结合水被不断除去,实际汽化表面减少,内部水分扩散较慢造成的。

降速阶段干燥速率出现较大波动,分析原因,可能有:

 1、流化床本身的性能不稳定。

2、烘干时,未能准确把握时间,以致有些样品并未完全烘干,引起实验结果的较大偏差。

3、用差分代替微分求取的干燥速率与实际状况有一定的偏离。

八、           思考题

1,本实验所得的流化床压降与气速曲线有何特征?

答:当气速较小时,操作过程处于固定床阶段,床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比。当气速继续增大,进入流化阶段,固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本上保持不变,如曲线的后半段,成一条水平直线

2,本装置在加热器入口处安装有干、湿球温度计,假设干燥过程为绝热增湿过程,如何求得干燥器内空气的平均湿度H?

答:有入口干、湿球温度可以求得进口空气湿度H1由于干燥器内物料存在非结合水,且气液接触充分,故出口空气可以看成饱和空气,绝热增湿过程为恒焓过程,再由恒焓条件与出口空气φ=100%即可求得出口空气湿度H2,从而求得干燥器内空气平均湿度H=0.5*(H1+H2)

3,为什么同一湿度的空气,温度较高有利于干燥操作的进行?

答:因为温度较高时,水的饱和蒸汽压大,而空气的绝度湿度没有变化,即水的分压没有发生变化,由,所以空气的相对湿度增加,从而有利于干燥的进行。

4,流化床操作中,存在腾涌和沟流两种不正常现象,如何利用床层压降对其进行判断?怎样避免他们的发生?

答:腾涌时,床层压降不平稳,压力表不断摆动;沟流是床层压降稳定,只是数值比正常情况下低。沟流是由于流体分布板设计或安装上存在问题,应从设计上避免出现沟流,腾涌是由于流化床内径较小而床高于床比径比较大时,气体在上升过程中易聚集继而增大,当气体占据整个床体截面时发生腾涌,故在设计流化床时高径比不宜过大。

5,干燥开始10分钟时,计算进、出干燥器的湿空气的性能参数(假设湿空气进出干燥器为绝热增湿过程),要求使用公式计算和I-H图两种方法。

方法1说明:

使用公式计算:

进口:由表1表头数据可知:10min时,进预热器前:干球温度t:50.9℃,湿球温度tw:27.4℃。查表得,此时rw=2429.0kJ/kg。ps=3.6863kPa,H=0.622×P水汽/(P-P水汽),所以Hw=0.622×3.6863/(101.325-3.6863)=0.02348kg水/kg干气。由得H=0.01293 kg水/kg干气。预热器是等湿加热,故在预热器之后H不变。H=0.622×p水汽/(p-p水汽),总压p=101.325kPa,计算得p水汽=2.063kPa。t=70℃,ps=31.164kPa,φ=p水汽/ ps=0.0662。由试差得tw=…….℃。焓I=(1.01+1.88H)t+2500H=104.7kJ/kg。

出口:绝热增湿过程,即等焓过程,故I=104.7kJ/kg。进干燥器之前物料X1=0.4448,10min时X2=0.1972(内插得),所以w1=X1/(1+X1)=0.3078,w2=0.1647。G1=601.14g,物料失去的水量W=G1(w1-w2)/(1-w2)=103.0g=0.103kg。△p=3.5kPa,10min时流过的空气总量V=26.8△p^0.5/3600*10*60=8.356kg。干空气总量V*H1=V -V,V=8.249kg。得H2=W/ V+H1=0.02542。类似进口处方法可计算其他参数。

方法2说明:

使用I-H图计算: 由湿度及温度可确定进口处空气状态点,可由图中读取焓值、相对湿度、水汽分压。从该点沿等焓线至相对湿度等于1的点,该点温度即为湿球温度。在该等焓线上找到湿度为H2的点,即为出口处气体状态点。从图中可读取其他参数。

参考资料:

1、杨祖荣主编.化工原理实验.北京:化学工业出版社,2003

2、杨祖荣,刘丽英,刘伟.化工原理.北京:化学工业出版社,2002

3、陈敏恒,丛德滋,方图南,齐鸣斋编.化工原理.北京:化学工业出版社,1999


第二篇:流化床干燥实验——流化床和洞道干燥----实验报告


流化床和洞道干燥综合实验

一、实验目的

1. 了解流化床、洞道干燥装置的基本结构、工艺流程和操作方法。

2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。

3. 掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平

衡含水量的实验分析方法。

4. 实验研究干燥条件对于干燥过程特性的影响。

二、基本原理

在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数,通常地,其干燥特性数据需要通过实验测定而取得。

按干燥过程中空气状态参数是否变化,可将干燥过程分为恒定干燥条件操作和非恒定干燥条件操作两大类。若用大量空气干燥少量物料,则可以认为湿空气在干燥过程中温度、湿度均不变,再加上气流速度以及气流与物料的接触方式不变,则称这种操作为恒定干燥条件下的干燥操作。

2.1. 干燥速率的定义

干燥速率定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量,即:

  kg/(m2/s)

式中,U-干燥速率,又称干燥通量,kg/(m2s);

A-干燥表面积,m2

W-汽化的湿分量,kg;

τ -干燥时间,s;

Gc-绝干物料的质量,kg;

X-物料湿含量,kg湿分/kg干物料,负号表示X随干燥时间的增加而减少。

2.2. 干燥速率的测定方法

(1)将电子天平开启,待用。

(2)将快速水分测定仪开启,待用。

(3)将0.5~1kg的红豆(如取0.5~1kg的绿豆/花生放入60~70℃的热水中泡30min,取出,并用干毛巾吸干表面水分,待用。

(4)开启风机,调节风量至40~60m3/h,打开加热器加热。待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min取出四颗红豆的物料,同时读取床层温度。将取出的湿物料在快速水分测定仪中测定,得初始质量Gi和终了质量Gic,则物料中瞬间含水率为:

计算出每一时刻的瞬间含水量Xi,然后将Xi对干燥时间作图,如图1,即为干燥曲线。

图1 恒定干燥条件下的干燥曲线

上述干燥曲线还可以变换得到干燥速率曲线。由已测得的干燥曲线求出不同下的斜率,再由式11-1计算得到干燥速率U,将UX作图,就是干燥速率曲线,如图2所示。

图2 恒定干燥条件下的干燥速率曲线

2.3. 干燥过程分析

预热段  见图1、2中的AB段或A′B 段。物料在预热段中,含水率略有下降,温度则升至湿球温度tW ,干燥速率可能呈上升趋势变化,也可能呈下降趋势变化。预热段经历的时间很短,通常在干燥计算中忽略不计,有些干燥过程甚至没有预热段。

恒速干燥阶段见图1、2中的BC段。该段物料水分不断汽化,含水率不断下降。但由于这一阶段去除的是物料表面附着的非结合水分,水分去除的机理与纯水的相同,故在恒定干燥条件下,物料表面始终保持为湿球温度tW,传质推动力保持不变,因而干燥速率也不变。于是,在图2中,BC段为水平线。

只要物料表面保持足够湿润,物料的干燥过程中总处于恒速阶段。而该段的干燥速率大小取决于物料表面水分的汽化速率,亦即决定于物料外部的空气干燥条件,故该阶段又称为表面汽化控制阶段。

降速干燥阶段 随着干燥过程的进行,物料内部水分移动到表面的速度赶不上表面水分的气化速率,物料表面局部出现“干区”,尽管这时物料其余表面的平衡蒸汽压仍与纯水的饱和蒸汽压相同,但以物料全部外表面计算的干燥速率因“干区”的出现而降低,此时物料中的的含水率称为临界含水率,用Xc表示,对应图2中的C点,称为临界点。过C点以后,干燥速率逐渐降低至D点,C至D阶段称为降速第一阶段。

干燥到点D 时,物料全部表面都成为干区,汽化面逐渐向物料内部移动,汽化所需的热量必须通过已被干燥的固体层才能传递到汽化面;从物料中汽化的水分也必须通过这一干燥层才能传递到空气主流中。干燥速率因热、质传递的途径加长而下降。此外,在点D 以后,物料中的非结合水分已被除尽。接下去所汽化的是各种形式的结合水,因而,平衡蒸汽压将逐渐下降,传质推动力减小,干燥速率也随之较快降低,直至到达点E时,速率降为零。这一阶段称为降速第二阶段。

降速阶段干燥速率曲线的形状随物料内部的结构而异,不一定都呈现前面所述的曲线CDE形状。

与恒速阶段相比,降速阶段从物料中除去的水分量相对少许多,但所需的干燥时间却长得多。总之,降速阶段的干燥速率取决与物料本身结构、形状和尺寸,而与干燥介质状况关系不大,故降速阶段又称物料内部迁移控制阶段。

三、实验装置

3.1    流化床干燥装置图

图3 流化床干燥实验装置流程图

1-加料斗;2-床层(可视部分);3-床层测温点;4-取样口;5-出加热器热风测温点;6-风加热器;7-转子流量计;8-风机;9-排灰口;10-旋风分离器;11-风机出口测点(双金属温度计);12-床层出口气体温度测点(双金属温度计)。

3.2    洞道干燥装置图

本装置流程如图4所示。空气由鼓风机送入电加热器,经加热后流入干燥室,加热干燥室料盘中的湿物料后,经排出管道通入大气中。随着干燥过程的进行,物料失去的水分量由称重传感器转化为电信号,并由智能数显仪表记录下来(或通过固定间隔时间,读取该时刻的湿物料重量)。

图4 干燥装置流程图

1-风机;2-管道;3-进风口;4-加热器;5-厢式干燥器;6-气流均布器;7-称重传感器; 8-湿毛毡; 9-玻璃视镜门; 10,11,12-蝶阀;13-风机入口温度计。

四、实验步骤与注意事项

4.1.流化床干燥实验步骤

(1)开启风机。

(2)打开仪表控制柜电源开关,加热器通电加热,床层进口温度要求恒定在70~80℃左右。

(3)将准备好的红豆加入流化床进行实验。

(4)每隔3-5min取5~10克样品进行质量分析,同时记录床层温度。

(5)烘箱分析法: 将每次取出的样品在电子天平上称量9-10g,放入烘箱内烘干,烘箱温度设定为120度,1h后取出,在电子天平上称取其质量,此质量即可视为样品的绝干物料质量。

(6)关闭加热电源。

(7)       关闭风机,切断总电源,清理实验设备。

4.2.洞道干燥实验步骤

(1)放置托盘,开启总电源,开启风机电源。

(2)打开仪表电源开关,加热器通电加热,旋转加热按钮至适当加热电压。在U型湿漏斗中加入一定水量,并关注干球温度,干燥室温度(干球温度)要求达到恒定温度(例如75℃)。

(3)将待干燥物料加入一定量的水并使其润湿均匀,注意水量不能过多或过少。

(4)当干燥室温度恒定在70℃时, 将湿毛毡十分小心地放置于称重传感器上。

(5)记录时间和脱水量,每分钟记录一次重量数据;

(6)等待干燥物料恒重时,即为实验终了时,关闭仪表电源,注意保护称重传感器,非常小心地取下干燥物料。

(7)关闭风机,切断总电源,清理实验设备。

4.3. 注意事项

必须先开风机,后开加热器,否则加热管可能会被烧坏,破坏实验装置。

五、原始数据的记录

5.1    流化床原始数据

5.2    洞道干燥原始数据

PS: 空框时质量为:    3.2   (负值)          放入豆后:   30.6

六、数据处理与分析

6.1     流化床干燥实验

6.1.1            绘制干燥曲线(失水量-时间关系曲线)

如图5 恒定干燥条件下红豆的干燥曲线

6.1.2            根据干燥曲线作干燥速率曲线。

由于实验中难以得到准确的干燥面积,故重新定义干燥速率:在单位时间内汽化的水分质量,并令A= —Gc,则干燥速率表达式可表示为:

  kg / s

从而可以简化干燥速率的计算,直接由干燥曲线求出各点斜率,即可标绘出图2所示的干燥速率曲线。

如图6 恒定条件下的干燥速率曲线

6.1.3             由图6可知,物料的临界干基湿含量为:

6.1.4             分析讨论

(1)           恒速干燥阶段 

在该阶段,物料内部的水分能及时扩散到物料表面,使物料表面完全润湿。此外,在整个恒速干燥阶段中,湿物料内部的水分向表面扩散的速率必须能够与水分自物料表面汽化的速率相适应,以使物料表面始终维持润湿状态。

    恒速干燥阶段的干燥速率大小取决于物料表面水分的汽化速率,亦即取决于物料外部的干燥条件,所以恒速干燥阶段又称为表面汽化控制阶段。

提高空气的温度、降低空气的湿度或提高空气的流速,均能提高恒速干燥阶段的干燥速率。

(2)           降速干燥阶段

    当物料含水量降至临界含水量以下时,即进入降速干燥阶段。

    在降速干燥阶段中,干燥速率的大小主要取决于物料本身的结构、形状和尺寸,而与外部干燥条件关系不大,所以降速干燥阶段又称为物料内部扩散控制阶段。

(3)           临界含水量

物料的临界含水量是恒速干燥阶段和降速干燥阶段的分界点,它是干燥器设计中的重要参数。临界含水量Xc越大,则转入降速阶段越早,完成相同的干燥任务所需的干燥时间越长。

临界含水量因物料的性质、厚度和恒速阶段干燥速率的不同而异,通常吸水性物料的临界含水量比非吸水性物料的大;同一物料,恒速阶段干燥速率越大,则临界含水量越高;物料越厚,则临界含水量越大。临界含水量通常由实验测定。

(4)           流化床干燥器

流化床干燥器的主要优点是颗粒与热干燥介质在沸腾状态下进行充分混合与分散,气膜阻力小,且气固接触面积大,故干燥速率很大;由于流化床内温度均一并能自由调节,故可得到均匀的干燥产品;物料在床层中的停留时间可任意调节,故对难干燥或要求干燥产品湿含量的物料特别适用;结构简单,造价低廉,没有高速转动部件,维修费用低。其缺点是物料的形状和粒度有限制。

(5)       压降的变换

当气速较小时,操作过程处于固定床阶段,床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比。当气速逐渐增加,床层开始膨胀,孔隙率增大,压降与气速的关系将不再成正比。当气速继续增大,进入流化阶段,固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本上保持不变,成一条水平直线。

(6)       同一湿度的空气,温度较高有利于干燥操作

因为温度较高时,水的饱和蒸汽压大,而空气的绝度湿度没有变化,即水的分压没有发生变化,由,所以空气的相对湿度增加,从而有利于干燥的进行。

6.2    洞道干燥实验

6.2.1.          数据的处理

6.2.2.          绘制干燥曲线(失水量-时间关系曲线)

如图7 恒定干燥条件下红豆的干燥曲线

6.2.3.          根据干燥曲线作干燥速率曲线。

如图8 恒定干燥条件下红豆的干燥曲线

6.1.5            由图8可知,物料的临界干基湿含量为:

6.2.4.          分析讨论

           (1)              对比两种不同方法(流化床、洞道)求得物料的临界干基含水量和平衡含水量发现,两者算得的结果不太一样,原因可能是洞道实验中物料没有完全恒重,以致我们选择时带来一定的误差,所以后面的计算造成两种方法求取结果的不同;

           (2)              洞道式干燥器可以看作连续化的厢式干燥器,其适用于体积大、干燥时间长的物料;

           (3)              干燥过程中采用节能措施( 1、减少干燥过程的热量;2、加强热量的回收利用;3、减少热损失),是强化干燥过程的一个重要方面。

七、思考题

    7.1              什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程在恒定干燥条件下进行?

    答:恒定干燥条件:保持湿空气在干燥过程中温度、湿度均不变,气流速度以及气流与物料的接触方式不变;本实验装置用大量空气干燥少量物料来保持干燥过程在恒定干燥条件下进行。

    7.2              控制恒速干燥阶段速率的因素是什么?控制降速干燥阶段干燥速率的因素又是什么?

      答:1、恒速干燥阶段的干燥速率大小取决于物料表面水分的汽化速率,亦即取决于物料外部的干燥条件,所以恒速干燥阶段又称为表面汽化控制阶段;

             2、在降速干燥阶段中,干燥速率的大小主要取决于物料本身的结构、形状和尺寸,而与外部干燥条件关系不大,所以降速干燥阶段又称为物料内部扩散控制阶段。

    7.3              为什么要先启动风机,再启动加热器?实验过程中干、湿球温度计是否变化?为什么?如何判断实验已经结束?

答:因为如果先启动加热器,后启动风机的话,加热管可能会被烧坏,因此要先启动风机,再启动加热器;实验过程中的干球温度基本上不变化,湿球温度一开始(未平衡时)会呈下降趋势,平衡后基本不变;若物料恒重,则实验结束。

    7.4              若加大热空气流量,干燥速率曲线有何变化?恒速干燥速率、临界湿含量又如何变化?为什么?

    答:若加大热空气流量,则相当于提高空气的流速,那么恒速干燥阶段的干燥速率加快,临界含水量越高,整个过程的干燥速率增大,干燥速率曲线的斜率(绝对值)会变大,曲线会变陡。(同一物料,恒速阶段干燥速率越大,则临界含水量越高。)

更多相关推荐:
流化床实验报告

流化床干燥实验装置一实验目的1了解流化床干燥装置的基本结构工艺流程和操作方法2学习测定物料在恒定干燥条件下干燥特性的实验方法3掌握根据实验干燥曲线求干燥速率曲线恒速阶段干燥速率临界含水量平衡含水量的实验分析方法...

流化床干燥实验报告

北方民族大学学生实验报告院部化学与化学工程姓名郭俊雄学号20xx2995专业化学工程与工艺班级081同组人员林艺明胡鹏秦开勉课程名称化工原理实验实验名称流化床干燥实验实验日期20xx1215批阅日期成绩教师签名...

化工原理实验流化床干燥实验报告

北京化工大学化工原理实验报告流化床干燥实验实验日期20xx年5月18日流化床干燥实验摘要本实验通过测定不同空气流量下的床侧压降及干湿物料的质量从而确定流化床床层压降与气速的关系曲线及流化床的干燥特性曲线通过实验...

化工原理实验报告~流化床干燥实验

化工原理实验报告实验名称流化床干燥实验实验目的1了解流化床干燥器的基本流程及操作方法2掌握流化床流化曲线的测定方法测定流化床床层压降与气速的关系曲线3测定物料含水量及床层温度随时间变化的关系曲线4掌握物料干燥速...

流化床干燥 实验报告

流化床干燥 实验报告,内容附图。

实验报告流化床干燥实验

北京化工大学实验报告课程名称化工原理实验实验日期班级姓名同组人装置型号沸腾干燥实验装置流化床干燥实验一摘要本实验通过对湿的小麦的干燥过程要求掌握干燥的基本流程及流化床流化曲线的定流化床床层压降与气速的关系曲线物...

临界流化床速度实验报告

实验报告组别第3组日期20xx年1月26日12流化床临界速度的测量实验报告一实验目的1观察流态化的实验现象学习通过颗粒床层流动特性的测量方法2了解测量临界流化速度的方法和仪器的使用3测定临界流化速度并作出流化曲...

流化床干燥实验

北京化工大学化工原理实验报告实验名称流化床干燥实验班级环工0903学号20xx12102姓名滕飞流化床干燥实验一实验目的及人物1了解流化床干燥器的基本流程及操作方式2掌握流化床流化曲线的测定方法测定流化床床层压...

流化床干燥实验实验报告

流化床干燥实验实验报告,内容附图。

流化床干燥实验指导书

流化床干燥实验LG100D实验指导书流化床干燥实验指导书浙江中控科教仪器设备有限公司流化床干燥实验LG100D实验指导书流化床干燥实验一实验目的1了解流化床干燥装置的基本结构工艺流程和操作方法2学习测定物料在恒...

流化干燥实验报告

北京化工大学化工原理实验报告实验名称:流化干燥实验班级:化工11姓名:学号:序号:同组人:设备型号:第套实验日期:20##-5-14一、实验摘要本实验通过测定不同空气流量下的床侧压降及干湿物料的质量,从而确定流…

流化床干燥塔实验

实验五流化床干燥塔实验一实验目的固体干燥是利用热能使固体物料与湿分分离的操作在工业中固体干燥有多种方法其中以对流干燥方法应用最为广泛对流干燥是利用热空气或其它高温气体介质掠过物料表面介质向物料传递热能同时物料向...

流化床实验报告(19篇)