单片机课程大作业设计报告 循迹小车

时间:2024.3.31

单片机原理及应用

课程大作业设计报告

课题名称:D2-2循迹小车 

 

日    期:  2015.12.23  

目录

一、工作原理... 2

二、主要功能... 2

三、电路原理图... 4

四、焊接制作过程... 5

五、测试... 6

六、功能修改及测试... 6

七、protues电路仿真... 7

八、总结... 8

九、附件清单... 9

一、工作原理

       主要功能部件:两对红外线发/收器、一对减速电机、LM393和AT89C2051的芯片各一个。

      工作原理:LM393通过检测两边红外线的即时接收情况,从而为AT89C2051反馈电位信号,单片机对电位信号进行检测,从而控制左右减速电机的开关。当红外线遇到黑色轨迹时,接收器无法接收信号,相应反馈一个高电平,对应那边的电机就会停止运转,起到左转的功能,否则,将会反馈一个低电平,对应那边的电机继续运转。当两边都遇到黑色轨迹时,则默认采用左转的机制。

     

二、主要功能

比较器电路图

实现检测红外线接收情况,向P15脚反馈电位信号。

 

三、电路原理图

四、焊接制作过程

1.  焊接无电极的原件,例如:电阻、晶振、陶瓷电容等。

2.  焊接带电极指示的元件,例如:电解电容、三极管。

3.  焊接芯片插座,注意对准u型口。

4.  焊接发光二极管类元件,注意用欧姆表判断电极。

5.  最后是焊接马达,必须在其他焊接完成后再接入,并确保电机前滚。

注意:焊接过程必须确保焊点饱满,避免虚焊。另外,一定要避免电极的问题,往往无虚焊现象时,电极是必须考虑到的问题。

成品图片

五、测试

1.   测试单独电机是否前滚,确保电极正确。

2.   测试左右传感器是否正常工作,主要观察左右马达指示灯亮否。

3.   最后就是测试各部件的协调工作情况。

测试截图

疑难解答:

1.   小车只能一边转弯?

传感器位置没有调好,必须调到确保发射器和接收器可以通讯。

2.   小车马达反向?

马达电极没有接好,需要重新焊接。

3.   小车摆动太厉害?

传感器距离太远,灵敏度变弱,或者电位器调太小。

 

六、功能修改及测试

修改后的功能、软件、电路及测试结果

修改后的功能:小车开始寻白色轨迹。

注意:电路图没有发生变化,只是修改了源代码,测试软件还是依旧。

1.  用黑白纸条测试传感器的工作状态。

2.  最后测试各部件的协调工作状态。

疑难解答:

1.   小车只能一边转弯?

传感器位置没有调好,必须调到确保发射器和接收器可以通讯。

2.   小车马达反向?

马达电极没有接好,需要重新焊接。

3.   小车摆动太厉害?

传感器距离太远,灵敏度变弱,或者电位器调太小。

注意:这次采用新的跑道。

测试截图

七、protues电路仿真

电路图及仿真效果说明

注意:用开关代替红外线接收器,从而影响对应的电机指示灯和马达。

八、总结

本次单片机课程大作业是学单片机以来的一次挑战,涉及了设计、模拟、仿真、焊接以及测试等环节。其中,焊接的过程让我影响深刻、受益匪浅。后来,经过不断地测试成品的效果,遇到了很多问题。特别是,在起步焊接的过程,出现了虚焊的问题。更重要的是,二极管的电极问题,有时候让人毫无头绪。所以,最终通过仔细地反复测试,终于解决了焊接上的问题。不过,最后又遇上了跑跑道问题,发现是传感器位置没有调节好,仔细调整后,解决了无法右转的问题。

九、附件清单

protel电路图

protues 仿真电路图

验证型实验源代码:

#include<c51.H>

SBIT P1^5=P1_5;

SBIT P1^6=P1_6;

SBIT P1^7=P1_7;

SBIT P1^3=P1_3;

SBIT P1^4=P1_4;

SBIT P1^2=P1_2;

void main(){                          //主程序      

while(1){                         //超级循环

  if(P1_5==1) P1_6=1;               

//判断左侧传感器状态,如果探测到黑线左侧电机停止运行

  else P1_6=0;                       //否则电机继续运行

  if(P1_6==0) P1_7=0;                //判断左侧电机运行状态,如果探测到左侧电机运行左侧指示灯亮

  else P1_7=1;                       //否则左侧指示灯灭

  if(P1_4==1) P1_3=1;                //判断右侧传感器状态,如果探测到黑线右侧电机停止运行

  else P1_3=0;                       //否则电机继续运行

  if(P1_3==0) P1_2=0;                //判断右侧电机运行状态,如果探测到右侧电机运行右侧指示灯亮

  else P1_2=1;                       //否则右侧指示灯灭

  while(P1_5==1 && P1_4==1){         //判断二侧传感器状态,如果探测到同时为黑线时将循环执行下面的程序

    P1_3=0;                          //右侧电机运行

    P1_2=0;                           //右侧指示灯亮

    P1_6=1;                           //左侧电机停止运行

    P1_7=1;                           //左侧指示灯灭

    }

  }

}  

自定义型实验源代码:

#include<c51.H>

SBIT P1^5=P1_5;

SBIT P1^6=P1_6;

SBIT P1^7=P1_7;

SBIT P1^3=P1_3;

SBIT P1^4=P1_4;

SBIT P1^2=P1_2;

void main(){                          //主程序                    

while(1){                         //超级循环

  if(P1_5==0) P1_6=1;                //判断左侧传感器状态,如果探测到黑线左侧电机停止运行

  else P1_6=0;                       //否则电机继续运行

  if(P1_6==0) P1_7=0;                //判断左侧电机运行状态,如果探测到左侧电机运行左侧指示灯亮

  else P1_7=1;                       //否则左侧指示灯灭

  if(P1_4==0) P1_3=1;                //判断右侧传感器状态,如果探测到黑线右侧电机停止运行

  else P1_3=0;                       //否则电机继续运行

  if(P1_3==0) P1_2=0;                //判断右侧电机运行状态,如果探测到右侧电机运行右侧指示灯亮

  else P1_2=1;                        //否则右侧指示灯灭

  while(P1_5==0 && P1_4==0){         //判断二侧传感器状态,如果探测到同时为黑线时将循环执行下面的程序

    P1_3=0;                          //右侧电机运行

    P1_2=0;                           //右侧指示灯亮

    P1_6=1;                           //左侧电机停止运行

    P1_7=1;                           //左侧指示灯灭

    }

  }

}  


第二篇:基于89c51单片机的循迹小车设计报告


基于89c51单片机的循迹小车设计报告


摘  要

本文介绍了基于at89c51单片机的智能小车的设计与实现。小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 AT89c51 单片机为系统控制处理器;采用红外对管获取赛道的信息;通过数字PID控制策略和PWM控制技术来对小车的方向和速度进行控制。本文介绍了小车硬件和软件系统的设计过程。

                                                                                                       


目  录

摘  要... 2

第一章   引言... 2

1.1 设计目的... 2

1.2 设计方案介绍... 2

1.3 技术报告内容安排... 2

第二章  技术方案概要说明... 3

第三章 硬件电路的设计... 4

3.1 单片机最小系统... 4

3.2  传感器电路... 4

3.3  电源电路设计... 5

3.4  舵机及电机驱动电路设计... 5

第四章 软件系统的实现... 6

4.1主程序设计... 6

4.2  程序思路... 6

第五章  结论... 7

附录:源程序主代码... 8


第一章   引言

1.1 设计目的

通过设计进一步掌握51单片机的应用,特别是在嵌入式系统中的应用。进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。

1.2 设计方案介绍

  该智能车采用红外对管方案进行道路检测,单片机根据采集到的红外对管的不同状态判断小车当前状态,通过pid控制发出控制命令,控制舵机和电机的工作状态以实现对小车姿态的控制。

1.3 技术报告内容安排

本技术报告主要分为三个部分。第一部分是对整个系统实现方法的一个概要说明,主要内容是对整个技术方案的概述;第二部分是对硬件电路设计的说明,主要介绍系统传感器的设计及其他硬件电路的设计原理等;第三部分是对系统软件设计部分的说明,主要内容是智能模型车设计中主要用到的控制理论、算法说明及代码设计介绍等。


第二章  技术方案概要说明

本模型车的电路系统包括电源管理模块、单片机模块、传感器模块、电机驱动模块、舵机控制模块。

在整个系统中,由电源管理模块实现对其他各模块的电源管理。其中,对单片机、光电管、舵机提供5V电压,对电机提供6V电压。

路径识别电路由8对光电发送与接收管组成。由于路面存在黑色引导线,落在黑线区域内的光电接收管接收到反射的光线的强度与白色的路面不同,进而在光电接收管两端产生不同的电压值,由此判断路线的走向。传感器模块将当前采集到的一组电压值传递给单片机,进而根据一定得算法对舵机进行控制,使小车自动寻线行走。

   单片机模块是智能车的核心部分,主要完成对外围各个模块的管理,实现对外围模块的信号发送,以及对传感器模块的信号采集,并根据软件算法对所采集的信号进行处理,发送信号给执行模块进行任务执行,还对各种突发事件进行监控和处理,保证整个系统的正常运作。

    舵机控制模块则根据检测情况经单片机处理后发出相应的PWM波对舵机进行转向的控制。

  电机驱动模块采用H桥驱动,通过PWM 波对电机进行控制,以实现对小车速度的调节。


第三章 硬件电路的设计

3.1 单片机最小系统

小车采用atmel公司的at89c51单片机作为控制芯片,如图是其最小系统电路。主要包括:时钟电路、电源电路、复位电路。其中各个部分的功能如下:

1、时钟电路:给单片机提供一个外接的16MHz的石英晶振。

2、电源电路:给单片机提供5V电源。

3、复位电路:在电压达到正常值时给单片机一个复位信号。

单片机控制系统原理图

3.2  传感器电路

光电寻线方案一般由多对红外收发管组成,通过检测接收到的反射光强,判断黑白线。原理图由红外对管和电压比较器两部分组成,红外对管输出的模拟电压通过电压比较器转换成数字电平输出到单片机。

3-2赛道检测原理图:

3.3  电源电路设计

模型车通过自身系统,采集赛道信息,获取自身速度信息,加以处理,由芯片给出指令控制其前进转向等动作,各部分都需要由电路支持,电源管理尤为重要。在本设计中,51单片机使用5V电源,电机及舵机使用6V电源。考虑到电源为充电电池组,额定电压为7.2V,实际充满电后电压则为6.5-6.8V,所以单片机及传感器模块采用7805稳压后的5V电源供电,舵机及电机直接由电池供电。

3.4  舵机及电机驱动电路设计

  舵机的驱动电路比较简单,电源直接由电池组提供,其输入信号为单片机输出的pwm波。

本系统使用的电机驱动板为一个由分立元件制作的直流电动机可逆双极型桥式驱动器,其功率元件由四支N沟道功率MOSFET管组成,由此电路,通过设置51输出的PWM波的占空比可以达到控制电机转速的效果。

3-3 H桥驱动电路


第四章 软件系统的实现

4.1主程序设计

单片机系统需要接收路径识别电路的信号,采用某种路径搜索算法进行寻线判断,进而控制舵机和直流驱动电机的工作。小车系统的软件使用C语言实现。

主体控制框架:

模型车采用的控制方法是根据传感器采集到的路况信息,通过计算得到具体的方向偏移量和速度,控制小车的行走状态。

 

4.2  程序思路

  智能车利用了一字形排布的5个传感器来探测道路,并将每个传感器采集到的信息转换成了数字电平。因此5个传感器的数据正好构成一个字节,由单片机P2口读入。

  由于读入的数据并不方便直接参与控制计算,因此先将该数据集分成16类,分别对应于小车不同的位置信息,由0-15表示,其中0表示引导线位于小车最左侧,7表示引导线位于小车中部,14表示引导线位于小车最右侧,15表示未检测到引导线或其他错误情况。

  将上面的转换后的数据作为控制计算的反馈输入,与7相减即得到小车偏差信息,然后通过增量型pid算法计算出舵机的控制信息。

  将小车偏差信息的微分作为速度pid的输入,依然通过增量型pid算法得到电机的控制信息。至此小车完成一次控制周期。

  由于at89s51单片机没有PWM模块,因此需要通过通用I/O口进行模拟来输出舵机和电机所需的PWM波。

  可以分别使用一个定时器来作为一路PWM波的计时器。先将I/O口置位,设定高电平时间及定时器的初值,当定时器产生中断时,再将I/O口清零,并设定低电平时间,由此循环即可产生PWM波。其中,高电平时间有控制计算得出,低电平时间有PWM周期减去高电平时间得到。


第五章  结论

  本设计主要用到了单片机的通用IO口的读写,定时器,中断等基本功能,通过实际操作进一步掌握了51单片机的使用。同时,通过单片机外围电路的设计,更深入学习了51单片机在嵌入式系统中的应用。通过实际焊接电路,编写程序,也进一步提高了我的动手能力以及分析解决错误的能力,是我能够更好的将所学知识应用到实际中来。

  本系统能够基本满足设计要求,能够较快较平稳的是小车沿引导线行驶,但由于经验能力有限,该系统还存在着许多不尽人意的地方有待于进一步的完善与改进。


附录:源程序主代码

#include <reg52.h>

#include <intrins.h>

#include <math.h>

#define uchar unsigned char                        

#define uint unsigned int

#define MIDDLE 1390      //舵机中心位置

#define LEFT 1600              

#define RIGHT 1000

#define T 20000

#define HIGH 7300                        //电机基准速度

sbit rudder=P1^0;                                         //定义舵机PWM波输出端口为P1.0口

sbit pulse=P1^1;                                       //定义后轮PWM波输出端口为P1.1口

char flag1=0,flag2=0;                                 //定义全局变量(flag1用于控制舵机//PWM标志位,flag2用于控制电机PWM)

uint b=0,a=0;                                             //b用来装载电机所需的高电平时间,a用于保存电机所需高电平时间

void main()

{

uchar receive,ek[4]={7,7,7,7};

uint pidr=0;

uint pidlr=0;

uint ppid=0;

IE=0x8a;

TMOD=0x11; 

TH0=0x00;

TL0=0x00;

TR0=1;

TH1=0x00;

TL1=0x00;

TR1=1;

while(1)

{   receive=P2;                                             //采集光电传感器的值

/*--------------switch----------------*/

       switch(receive)                                         //根据采集到的值进行判断

       {

       case 0x7f:ek[3]=0;break;                          //0111 1111  最左边(或右边)1个光电传感器检测到黑线

       case 0x3f:ek[3]=1;break;                          //0011 1111  最左边(或右边)2个光电传感器检测到黑线

       case 0xbf:ek[3]=2;break;                          //1011 1111  依次类推

       case 0x9f:ek[3]=3;break;                          //1001 1111

       case 0xdf:ek[3]=4;break;                         //1101 1111

       case 0xcf:ek[3]=5;break;                          //1100 1111

       case 0xef:ek[3]=6;break;                          //1110 1111

       case 0xe7:ek[3]=7;break;                         //1110 0111

       case 0xf7:ek[3]=8;break;                          //1111 0111

       case 0xf3:ek[3]=9;break;                          //1111 0011

       case 0xfb:ek[3]=10;break;                 //1111 1011

       case 0xf9:ek[3]=11;break;                        //1111 1001

       case 0xfd:ek[3]=12;break;                //1111 1101

       case 0xfc:ek[3]=13;break;                        //1111 1100

       case 0xfe:ek[3]=14;break;                        //1111 1110

default:  ek[3]=15;break;                          //1111 1111  没有检测到黑线(是需要保持上一次测量值的)

       }

/*--------------switch----------------*/

       if(ek[3]= =15)

           {pidr = pidlr;

              }

       else

       {pidr=0.2*pidlr+0.8*(23*(ek[3]-7)+2*(ek[3]+ek[2]+ek[1]+ek[0]-28)+7*(ek[3]-ek[2]));

if(ek[2]!=ek[3])

ppid=-160*(cabs(ek[3]-7))+220*(cabs(ek[1]-7)-cabs(ek[3]-7));

       }

    a=HIGH+ppid;     //a是电机高电平时间

b=pidr+MIDDLE;   //b就是舵机PWM波高电平时间

    if(b>LEFT)

        b=LEFT;

    if(b<RIGHT)

        b=RIGHT;

   

 {char i;

      for(i=0;i<3;i++)

         ek[i]=ek[i+1];

     }        

     pidlr=pidr;

}

}

void zhongduan_t0(void) interrupt 1              //产生舵机PWM波中断子程序(T0中断)

{

if(flag1==0)

{    

TH0=(uchar)((65536-b)/256);                      

TL0=(uchar)((65536-b)%256);

flag1=1;

rudder=1;                                            

}

else

{

TH0=(uchar)((38869+b)/256);           

TL0=(uchar)((38869+b)%256);

flag1=0;

rudder=0;                

}

}

void zhongduan_t1(void) interrupt 3

{

 if(flag2==0)

    {

     TH1=(uchar)((65536-HIGH)/256);

        TL1=(uchar)((65536-HIGH)%256);

        flag2=1;

        pulse=0;

       }

 else

    {

        TH1=(65536-T+HIGH)/256;

        TL1=(65536-T+HIGH)%256;

        flag2=0;

        pulse=1;

       }

}

更多相关推荐:
智能循迹小车课程设计报告

青岛理工大学琴岛学院课程设计报告课题名称智能循迹机器人小车学院机电工程系专业班级电气工程及其自动化学号20xx020xx29学生许辉指导老师张岐磊青岛理工大学琴岛学院教务处20xx年12月14日

循迹小车设计报告-精华51单片机智能小车

设计报告课程机器人工程设计名称智能循迹小车小组成员学号专业机械电子工程日期20xx25指导老师成绩智能小车设计1任务及要求11任务设计一个基于直流电机的自动寻迹小车使小车能够自动检测地面黑色轨迹并沿着黑色车轨迹...

循迹小车课程设计模板

HarbinInstituteofTechnology课程设计说明书论文课程名称设计题目院系班级设计者学号指导教师设计时间哈尔滨工业大学哈尔滨工业大学课程设计任务书哈尔滨工业大学课程设计说明书论文开题报告1绪论...

循迹小车课程设计

HarbinInstituteofTechnology课程设计说明书论文课程名称设计题目院系班级设计者学号指导教师设计时间哈尔滨工业大学哈尔滨工业大学课程设计任务书哈尔滨工业大学课程设计说明书论文开题报告一立项...

课程设计(论文)-智能寻迹小车设计与实现

目录目录I智能寻迹小车设计与实现ISmartCarDesignandImplementationofTractingII第1章绪论1第2章系统的硬件及设计原理321STC89C52单片机3211STC89C52...

自动寻迹小车课程设计

自动寻迹小车目录一实验目的二设计方案1三报告内容安排四系统设计1设计要求2小车循迹的原理3模块反感比较与论证31车体设计32控制器模块33电源模块34稳压模块35寻迹传感器模块36电机模块37电机驱动模块4最终...

华中科技大学电信系智能循迹小车硬件课设报告

华中科技大学电子与信息工程系硬件课设实验报告项目名称智能小车控制系统班级通信班学号U20xx1姓名指导老师20xx73课题名称智能小车自动控制系统摘要未来随着FPGA从可编程逻辑芯片升级为可编程系统级芯片其在电...

课程设计之智能小车循迹、壁障系统

目录1课程设计目的2课程设计目的题目和要求3设计内容31总体设计32硬件电路设计321主控制模块322电机驱动模块323寻迹模块324金属检测模块325寻光避障模块326测距和显示模块327电源模块33软件设计...

基于MSP430 循迹小车报告 源程序分享

智能循迹小车报告摘要本设计由寻迹信息采集电路电机驱动电路以及MCU控制模块四大部分构成MCU控制模块是本设计的核心部分该部分以一片TI公司的MSP430F149为控制中心实现对各个模块的控制寻迹信息采集部分以反...

智能循迹小车设计论文

智能循迹小车的设计摘要循迹小车采用传感器来识别白色路面中央的黑色引导线通过C8051F310单片机实现对转向舵机和驱动电机的PWM控制利用检测器检测道路上的标志使小车实现快速稳定地循线行驶分模块阐述了循迹小车的...

基于89s51单片机的循迹小车设计报告

基于89s51单片机的循迹小车设计报告1基于89s51单片机的循迹小车设计报告摘要本文介绍了基于at89s52单片机的智能小车的设计与实现小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻...

智能循迹小车设计

智能循迹避障小车研究工作报告一智能循迹小车程序结构框图二Proteus仿真图三软件程序设计一智能循迹小车程序结构框图经过几天在网上的查找对智能循迹避障小车有了大致的了解一般有三个模块1最基本的小车驱动模块使用两...

循迹小车课程设计报告(10篇)