超声波角、平测及声速计算方法

时间:2024.5.2

超声波角、平测及声速计算方法

  张治泰

(陕西省建筑科学研究设计院,西安710082)

一、概述

    采用超声波检测混凝土质量,一般是根据构件或结构的几何形状、所处环境、尺寸大小以及所能提供的测试表面等条件,选用不同的测试方法。一般常用的检测方法有以下几种:

1. 对测法。当混凝土被测部位能提供一对相互平行的测试表面时,可采用对测法检测。即将一对厚度振动式换能器(发射简称F换能器,接收简称S换能器),分别耦合于被测构件同一测区两个相互平行的表面逐点进行测试,F、S换能器的轴线始终位于同一直线上。例如检测一般混凝土柱、梁等构件。

2. 角测法。当混凝土被测部位只能提供两个相邻表面时,虽然无法进行对测,但可以采用丁角方法检测。即将一对F、S换能器分别耦合于被测构件的两个相邻表面进行逐点测试,两个换能器的轴线形成90°夹角。例如检测旁边存在墙体、管道等障碍物的混凝土柱子。

3. 平测法。当混凝土被测部位只能提供一个测试表面时,可采用平测法检测。将一对F、S换能器置于被测结构同一个表面,以一定测试距离进行逐点检测。 比如检测路面、飞机跑道、隧道壁等结构。

    其中角测或斜测法以及平测法在超声波检测混凝土缺陷中经常用到,我们在《陕西省综合法检测混凝土强度技术规程》DBJ―24―7―88中提出了超声波斜测(含角测)和平测方法,在《超声回弹综合法检测混凝土强度技术规程》CECS 02:88中尚未规定这两种测试方法。根据工程检测的需要,在CECS 02规程修订稿中增加了角测和平测内容。

二、超声波角测及其声速计算

1.测试方法。 超声波角测法的测点布置如图2―1所示。为使超声波能充分反映构件内部混凝土质量,同时还要避开钢筋的影响,布置超声测点时应使换能器尽量离开构件边缘远一些,同时为了简化测试操作工序,减少测距l和声速v的计算工作量,宜将同一测区三个测点布置成统一的尺寸l1l2(如图2―1(b))。通过计算分析表明,换能器中心点与构件边缘的距离只要不小于200mm,混凝土声速小到3.50~3.80km/s均不会受到钢筋的影响。在工程检测中经常遇到的构件,可供测试的两个表面不一样宽,所以布置测点时不要求l1l2相等,但二者相差不宜大于2倍 。l1l2的测量精度应控制在±1%之内。

2. 超声测距和混凝土声速计算。丁角测试的测距l可采用F、S换能器中心点与构

件边缘的距离l1l2 的平方和再开方求得,即l应按(2―1)式计算:

   (mm)                     (2―1)

 

                

i点混凝土的声速vi应按(2―2)式计算,精确至0.01km/s。

        (2―2)

式中 li――第i点角测的计算测距(mm

ti―――i点角测的声时测读值(ms)

t0――声时初读数(ms)。根据使用的超声波仪器和所配置的换能器及其连接电缆实测确定。

如果同一测区三个测点的l1l2不相同,则应首先按(2―2)式分别计算三个测点的声速值,再按(2―3)式计算测区混凝土的声速,精确至0.01km/s。

               (2―3)

式中 vc――测区混凝土声速(km/s)

     v1v2v3――分别为该测区第1、2、3点的混凝土声速(km/s)

当同一测区三个测点的l1l2相同时,则只计算一个测距值,测区混凝土的声速可按(2―4)式计算,精确至0.01km/s。

            (2―4)

式中 vc――测区混凝土声速(km/s);

l――超声角测的计算测距(mm);

tm――该测区三个测点的声时平均值(ms);

l1l2――分别为F、S换能器中心至构件边缘的距离(mm)。

大量对比试验表明,丁角测试按(2―4)式计算的声速值与对测声速值没有明显差异,不需作任何修正。

三. 超声波平测及其声速计算

在实际工程检测中有时遇到被测结构或构件只能提供一个测试表面(如道路、机场跑道、现浇楼板、隧道壁、挡土墙等),显然无法用对测和角测的方法进行测试。为了使《超声回弹综合法检测混凝土强度技术规程》适应各种类型构件的测试需要,这次修订增加了平测方法。

1. 测试方法。超声平测法的测点布置如图3―1所示。


(a) 平面图                     (b)立面图

图3―1  超声波平测示意图

F-发射换能器;   S-接收换能器;   G-钢筋轴线

因为板型结构或构件的表面内分布有钢筋网片,为了避开钢筋的影响,布置平测超声测点时,应使发射(F)和接收(S)换能器的连线与测点附近钢筋轴线保持一定夹角,一般控制在40°~50°,同时为了减少声速计算工作量,布置超声测点时可使同一测区三个测点的测距保持相等(可采用一根300~400mm长的木条作支撑,以控制每一测点F、S换能器间距的一致性)。大量实践证明,平测时测距过小或过大,超声接收信号的首波起始点难以辨认,测读的声时误差较大。一般将F、S换能器中对中距离保持在300~400mm时,首波起始点较好辨认,便于进行声时测量。

但平测法必定只能反映浅层混凝土的质量,对于厚度较大的板式结构(如混凝土承台、筏板等)不宜用平测法,可沿结构表面每间隔一定距离钻一个φ40~φ50mm的超声测试孔,用径向振动式换能器进行声速测量。

2. 混凝土声速计算。平测时某测点的声速应按(3―1)式计算,精确至0.01km/s。

                       (3―1)

式中 vi――第i点平测声速值(km/s);

li ――第i点F、S换能器中心之间的距离(mm);

t0 ――声时初读数(ms)。

测区混凝土声速应按(3―2)式计算,精确至0.01km/s 。

            (3―2)

式中 vc ――测区混凝土声速(km/s)

v1v2v3 ――分别为该测区第1、2、3测点的平测声速(km/s)

k ――平测声速修正系数。

当同一测区三个测点的测距相同时,测区混凝土声速可按(3―3)式计算,精确至0.01km/s。

                    (3―3)

式中  l ――F、S换能器中心之间的距离(mm)

tm ―― 该测区3个测点的声时平均值(ms)

k ――平测声速修正系数。

t0 ――声时初读数(ms)。

根据一些模拟试验和工程检测中所做的平测与对测的对比结果表明,平测声速(vP)与对测声速(vd)之间存在差异,但这些差异并非固定值,因为平测的声速受到测试表面混凝土质量好坏的影响较大。所以当测试部位混凝土质量表里一致,表面光洁、平整且未受任何损伤时,平测与对测声速的差异不大,一般vd/vp =1.00~1.03;如果混凝土测试表面粗糙、疏松或存在微裂缝,则vpvd之间的差异较大,一般vd/ vp=1.04~1.15。在实际工程检测中,如有条件在同一测试部位(如剪力墙门洞附近)做平测和对测比较,可求出实际修正系数,按实测修正系数k对平测声速进行修正。

当无条件做对比测试时,可选取有代表性的部位,依次改变发射和接收换能器之间的距离(如200、300、400、500、600、700、800、900、1000、1100、1200mm)进行平测,逐点读取相应声时值,然后以测距li与对应声时ti求回归方程l=a+bt,其中回归系数b相当于对测时的混凝土声速vd,然后以vd与各测点声速的平均值vm进行比较,求出该状态下的平测声速修正系数k。

下面用几个平测的实例,来说明混凝土测试表面的质量状态,对平测声速修正系数k的影响情况,结果见表3-1。

表3-1 几个试件的平测分析结果

由表3-1看出,试件h-1由于测试表面较粗糙,其声速修正系数较大(k=1.151);试件f-3的测试表面较疏松,且有不规则微裂缝,其声速修正系数最大(k=1.257);试件t-1和k-2的测试表面较好,所以其声速修正系数较小,k值分别为1.09和1.02。

在进行超声波平测时,测区混凝土声速的确定要根据所测构件测试面的实际情况求出修正系数k,先对平测声速进行适当修正后,再进行混凝土强度计算,千万不能盲目套用某种修正方法或某一修正系数,否则会引起较大误差。


第二篇:超声声速的测量


超声声速的测量

(一)提纲

(1)测量波的传播速度的方法。从测量物体的运动速度的实验引入,相关实验,验证牛顿第二定律,研究弹簧振子的振动规律,物体运动速度的测量方法,测量位移和时间,平均速度,瞬时速度,这是测量速度的基本方法之一,从粒子的观点来测量速度。

(2)根据波动力学知识,波的传播速度与波长及频率有着非常简洁的关系,,这种简洁的关系为波的传播速度的测量提供了非常有力的途径,这是测量速度的另一种基本方法,从波动的观点来测量速度。通过测量波长和频率来测量波的传播速度,一般频率很容易确定和测量,关键是测量波长。

(3)测量波长的方法有很多,相关实验,光栅衍射测量波长,迈克尔逊干涉仪,电子衍射等,这些是通过干涉或衍射的方法测量波长。

我们今天的实验再给大家介绍两种测量波长的方法,驻波法和相位比较法。这两种方法与干涉和衍射方法不同之处是比较适合于测量波长较长的波,实现起来简单容易,测量方便。

(4)驻波法测量波长,就要实现驻波,驻波实际上也是相干叠加的结果。驻波实现条件,入射波和反射波相干叠加并且发射面和发射面之间的距离正好等于半波长的整数倍,实现驻波。一旦实现驻波,不再是一个波动的表达式而是一个振动的表达式,各个质元的振动状态就完全确定。极大值的地方始终是极大值,极小值的地方始终是极小值。极大值的地方称为波腹,极小值的地方称为波节。波腹和波腹或者波节和波节之间的距离就是半个波长。实现了驻波,测量出波腹和波腹或者波节和波节之间的距离,也就测量出了波长。

(5)相位比较法测量波长就更简单了,我们知道,波的传播是振动状态的传播,是能量的传播,是相位的传播。也就是说相位随着传播距离不断变化。当传播距离是波长的整数倍时,相位的变化正好是2π的整数倍。换句话说,相位每变化2π一个周期,传播距离正好变化一个波长λ。如果我们通过某种方法观察相位2π一个周期时,测量出传播距离的变化,就是一个波长。

(6)我们今天的实验是测量声波的传播速度,所以称为声速的测量。要想测量声速,就要实现声波,就要有声源。常用的声源就是大家熟知的扬声器,喇叭,日常生活中使用非常多。

但是,我们今天使用的不是声波而是超声波,声源是压电陶瓷换能器。压电陶瓷元件可以实现机械压力和电信号相互转换,当两端加上电信号时产生压力;当两端加上压力时产生电信号。压电陶瓷换能器,这个名词大家听起来可能陌生,但压电陶瓷这种元件的在日常生活中的应用大家一点也不陌生,比如家庭燃气灶的电子打火装置,气体打火机的点火装置,采用的都是压电陶瓷元件,这些应用是实现压力到电的转换。

我们今天压电陶瓷的两个方向转换都用到了。压电陶瓷换能器作为超声波发射时,两端加上变化的电信号,压力变化,产生振动,带动周围空气振动,产生超声波向外发射;作为超声波接受时,声波作用在压电陶瓷元件上,有声压,压力作用,产生变化的电信号,通过测量变化的电信号就可以知道声波的变化情况。

这也是非电量电测技术,是实现智能化测量的基础,也是现代测量技术的基础。

(7)今天我们的实验怎么样通过驻波法和相位比较法测量波长,下面结合实验仪器具体说明。

(8)我们今天的实验仪器也非常整装,只有三个仪器。

(9)函数信号发生器,实际上就是一个交流电源,只不过输出波形和频率范围比一般的交流电源多和广。输出波形有正弦波、锯齿波、矩形波(方波),我们测量使用正弦波,测量使用的频率在30~40kHz,所以频率量程选用100kHz,有5个旋钮,今天只使用左边的3个,右边的两个逆时针旋到最小。左边第一个是电源开关和输出电压大小调节,顺时针旋转,输出电压增大。实验时输出电压不能太小,也不要调节到最大。左边第二个频率细调,第三个频率粗调。

(10)示波器,示波器的使用,我们一层次有这个实验,做过的同学可能比较熟悉了,没有做过的同学正好就今天的机会补习一下。我们使用的是最简单的二踪示波器,屏幕右边的旋钮是将示波器调整到工作状态的,左边是与测量输入有关的。有Y1和Y2两路输入,Y1输入的位移旋钮拉出是X输入。

(11)声速测量仪,主要有两部分组成,第一部分,发射和接受换能器,发射和接受超声波;第二部分游标卡尺,测量发射面与接受面之间的距离。

(12)测量时Y1输入接受换能器信号,Y2输入发射信号。测量时首先调整谐振频率,使信号源的输出频率等于换能器的固有频率,产生共振,发射超声波最强,接受到电信号也最强,在示波器上波形幅值最高。驻波法测量,移动接受面找波节位置,示波器上波形幅值极大值时的位置,测量两个极大值之间的读数差。采用累加放大测量法测量,10个半波长一测,测量5次。

(13)驻波法是两个相互平行的振动的叠加;相位比较法是通过李萨如图来观察相位的变化,李萨如图的形成是两个相互垂直的振动的叠加。因此,发射和接受一个是X输入,另一个是Y输入。由于发射和接受信号的频率相同,李萨如图是简单椭圆,频率不同时则是复杂的图形。通过测量椭圆的长轴和短轴之比可以知道发射信号和接受信号之间的相位差。但这样测量起来比较麻烦,可以选择李萨如图形的直线位置来测量。两条相邻直线的相位差是2π,发射面和接受面之间的距离变化半个波长。也采用累加放大法测量,可以减小仪器误差。这种测量方法在其他实验中也用过,如测量光栅常数10或20条一测;油品粘滞系数实验中测量小钢球质量,10或20个一测,而不是一个一个地测量。

(14)下面大家自己调整测量,有问题可以随时问。

(二)实验报告

〔教学目的〕

1.  掌握用共振干涉法(驻波法)和相位比较法测量声速的基本原理和方法。

2.  深入学习信号发生器、示波器等基本电学仪器的使用方法。

3.  了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。

〔实验设计思想及实现方法〕

声波是一种在弹性媒质中传播的机械波,它是纵波,其振动方向与传播方向相一致。频率低于20kHz的声波称为次声波;频率在20Hz~20kHz的声波可以被人听到,称为可闻声波。频率在20kHz以上的声波称为超声波。

声速是描述声波在媒质中传播特性的一个基本物理量,声波在媒质中的传播速度与媒质的特性及环境状态等因素有关。因而通过媒质中声速的测定,可以了解媒质的特性或状态变化,在现代检测中应用非常广泛。例如,测量氯气、蔗糖等气体或溶液的浓度、氯丁橡胶乳液的比重以及输油管中不同油品的分界面等等,这些问题都可以通过测定这些物质中的声速来解决,可见,声速测定在工业生产上具有一定的实用意义。

本实验以在空气中由高于20kHz的声振动所激起的纵波为研究对象,介绍声速测量的基本方法。实验中采用压电陶瓷超声换能器来测定超声波在空气中的传播速度,这是非电量电测方法应用的一个例子。

一.基本原理

1.声波在空气中的传播速度

假设空气为理想气体,则声波在空气中的传播可以近似为绝热过程,传播速度可以表示为:

式中R为摩尔气体常数(8.314J/mol.K);γ是比热容比;T为空气的绝对温谩;μ为空气分子量,如果以摄氏度计算,将0℃时声波在空气中的传播速度记为( ),空气的温度为θ时,声速可以表示为:

2.超声波的发射与接收——压电换能器。

本实验采用压电陶瓷超声换能器来实现声压和电压之间的转换,压电换能器做波源具有平面性、单色性好以及方向性强的特点。同时,由于频率在超声范围内,一般的音频对它没有干扰。频率提高,波长λ就短,在不长的距离中可测到许多个λ,取其平均值,λ测定就比较准确,这些都可使实验的精度大大提高。

压电陶瓷超声换能器由压电陶瓷片和轻、重两种金属组成。压电陶瓷片(如钛酸钡、锆钛酸铅等)是由一种多晶结构的压电材料做成的,在一定的温度下经极化处理后,具有压电效应。在简单情况下,压电材料受到与极化方向一致的应力T时,在极化方向上产生一定的电场强度E,它们之间有一简单的线性关系E=gT;反之,当与极化方向一致的外加电压U加在压电材料上时,材料的伸缩形变S与电压U也有线性关系SdU。比例常数gd称为压电常数,与材料性质有关。由于ESTU之间具有简单的线性关系,因此我们就可以将正弦交流电信号转变成压电材料纵向长度的伸缩,成为声波的波源;同样也可以使声压变化转变为电压的变化,用来接收声信号。

在压电陶瓷片的头尾两端胶粘两块金属,组成夹心型振子,头部用轻金属做成喇叭型,尾部用重金属做成锥型或柱型,中部为压电陶瓷圆环,紧固螺钉穿过环中心。这种结构增大了辐射面积,增强了振子与介质的耦合作用。由于振于是以纵向长度的伸缩直接影响头部轻金属作同样的纵向长度伸缩(对尾部重金属作用小),这样所发射的波方向性强,平面性好。

3.声速测量的基本原理

在波动过程中波速υ,波长λ和频率f之间存在着下列关系:

                                 (1)

实验中可通过测定声波的波长λ和频率f来求得声速υ,常用的具体实现方法有共振干涉法与相位比较法。

二.驻波法(共振干涉法)测量声速

从声源发出的一定频率的平面声波,经过空气沿一定方向传播到达接收器。如果发射面与接收面相互平行,则在接收面处入射波垂直反射。在接收面与发射面之间的空气中入射波和反射波相干叠加,当接收面与发射面之间的距离l=nλ/2n=1,2,3,4,…)时,形成稳定的驻波。在一系列特定的位置上,接收面上的声压达到极大值或极小值,可以证明,相邻两极大值或极小值之间的距离为半波长λ/2。

如图1所示实验装置,为了测出驻波相邻波腹或波节之间的半波长距离,可用示波器观察接收器接收的信号,信号的强弱反映着作用在接收器上声压变化的大小。当形成稳定的驻波时,尽管波节处空气元的振动速度为零,但波节两侧空气元的位移反向,从而产生最大的声压变化。所以,如果示波器显示的信号最强,则表明接收面处于声压变化最大处,亦即波节所在的位置。移动接受器的位置,改变接收面与发射面之间的距离时,可以看到示波器上显示的信号幅度发生周期性的大小变化,即由一个极大变到极小,再变到极大;而幅度每一次周期性的变化,就相当于接收面与发射面之间的距离改变了半个波长λ/2。这样,测出相邻两次接收信号达到极大时接收面的位置变化量Δl,就可到波长

λ=2Δl                                 (2)

根据式(1)可以计算声波在空气中的传播速度

υ=2Δlf                                 (3)

图1 驻波法测量声速实验装置示意图

S1和S2分别为发射和接收超声换能器

三.相位比较法测量声速

声波从声源经过传输媒质到达接收器,在发射波和接收波之间产生相位差,此相位差φ和角频率ωω=2πf)、传播时间t、声速υ、距离1、波长λ之间有下列关系:

由上式可知,若使相位差φ改变π,那么发射面和接受面之间的间距1就要相应地改变半个波长λ/2;相位差φ改变2π,那么发射面和接受面之间的间距1就要相应地改变一个波长λ。于是,根据相位差π或2π变化,便可以测量出波长来。声波频率由信号发生器读出,根据式(1)便可算出声速。

相位差可以通过示波器来观察,实验装置如图2所示。互相垂直的两个谐振动的叠加,能得到李萨如图形。如果两个谐振动的频率相同,则李萨如图形就很简单,随着两个振动的相位差从0π→2π的变化,图形的变化从斜率为正的直线→椭圆→斜率为负的直线→椭圆→斜率为正的直线。选择判断比较灵敏的亦即李萨如图形为直线的位置作为测量的起点,每移动一个波长的距离就会重复出现同样斜率的直线。

图2 相位比较法测量声速实验装置示意图

〔实验装置及仪器〕

       实验装置如图1和2所示,主要包括示波器(SR-071)、函数信号发生器(JY8112G)及声速测定(SBI-A)等各一台。

声速测定仪的支架上部装有游标尺,游标尺的刀口下部装有两只压电换能器。作为发射超声波用的换能器固定在刀口的左端;另一只接收超声波用的换能器S2装在刀口的右端,可沿着游标尺移动。两只换能器的相对位移可从游标尺上读得。使换能器S1发射超声波的正弦电压信号由函数信号发生器供给。正弦电压信号的频率直接在信号发生器上显示出来。换能器S2把接收到的超声波声压转换成电压信号,用示波器观察。

〔实验内容与要求〕

1.  仔细阅读本实验附录,了解函数信号发生器、示波器的使用方法,调整信号发生器、示波器,使之处于工作状态。

2.  用示波器观察由信号源提供的不同波形的信号。

3.根据测量结果,正确联接线路。调整函数信号发声器,将信号发生器输出的正弦信号频率调节到换能器的谐振频率,以使换能器发射出较强的超声波。具体方法如下:

先调节两换能器金属喇叭口表面的间距为1~2cm左右,在实验室提供的换能器系统谐振频率范围内(30~40kHz),调节信号发生器输出的正弦信号频率,使示波器上显示的正弦信号振幅最大,然后,移动接收换能器,使示波器显示的正弦波振幅最大,再次调节正弦信号频率,直至示波器显示的正弦波振幅达到最大值。发生谐振时,发射换能器旁边的指示灯点亮。

4.利用驻波法测量声速。由近而远地改变换能器之间的间距,记下第1、2、3、…、20个出现正弦波振幅最大的特定位置l1、l2、l3、…、l20。注意利用游标尺上的微动螺旋准确地确定这些值。测试过程中应注意保持换能器发射面与接收面的平行。

用逐差法计算出波长值,数据记录与计算用列表法进行,对实验结果进行不确定度估算。记下室温,在此温度下空气中声速的理论值,实验结果与理论值比较,计算百分误差。最后,实验结果用标准形式表示。

5.用示波器观察李萨如图形,利用相位比较法测量声速,基本要求驻波法测量声速。

〔注意事项〕

1.   调节仪器时应严格按照教师或说明书的要求进行,以免损坏仪器。

2.   测量过程中仔细将频率调整到压电换能器的谐振频率。

3.   实验中采用累加放大法测量。

4.   实验完毕,必须整理好实验台和实验仪器。

〔数据记录与处理〕

1.基础数据记录

谐振频率f=33.5kHz;室温22.8℃。

2.驻波法测量声速

表1  驻波法测量声速数据

    

λ的平均值: 1.0582(cm)

λ的不确定度:

=0.002(cm)

因为,λi= (1i+6-1i) /3,Δ=0.02mm

所以, 0.000544(cm)

0.021(mm)

计算声速:

(m/s)

计算不确定度:

实验结果表示:温度t=22.8时,υ=354±3m/sB=0.8%

3.相位比较法测量声速

表2  相位比较法测量声速数据(相位变换2π)

λ的平均值: 1.1041(cm)

λ的不确定度:

=0.002(cm)

因为,λi= (1i+7-1i) /7,Δ=0.02mm

所以, 0.000233(cm)

0.020(mm)

计算声速:

(m/s)

计算不确定度:

实验结果表示:温度t=22.0时,υ=353±3m/sB=0.8%

〔思考与讨论问题〕

1.换能器的发射频率由什么决定?

2.测量时应怎样正确联接示波器?

3.用弦振动法可以测量波在弦上传播的速度,比较好的办法是测量形成驻波时波节间的距离,而不是测量波腹间的距离,为什么?

4.实验中采用逐差法处理数据有什么好处?怎样用作图法和最小二乘法处理数据?

5.实验中为什么要在压电换能器谐振状态下测量空气中的声速?

6.实验中为什么要使换能器发射面和接受面要保持相互平行?

7.实验中怎样才能知道接收换能器接收面的声压为极大值?

8.实验时怎样找到超声换能器的谐振频率?

更多相关推荐:
超声波测声速实验报告

超声波测量声速实验报告学院:生命学院班级:生基硕姓名:廖崇兵学号:——大学物理仿真实验01实验日期:20xx年x月x日—9日交报告日期:20xx年x月x日110123011一、实验目的1.了解超声波的产生、发…

超声波测声速实验报告

西安交通大学大学物理仿真实验实验报告声速的测量姓名林丽学号2120xx5028学院电信学院班级计算机22班1一实验目的1了解超声波的产生发射和接收的方法2用驻波法和相位比较法测声速二实验仪器1超声声速测定仪主要...

超声波测量声速---大学物理仿真实验报告

超声波测光速仿真实验报告实验日期教师审批签字实验人审批日期一实验目的1能够调整仪器使系统处于最佳工作状态2了解超声波的产生发射接收方法3用驻波法共振干涉法相位比较法测波长和声速二实验仪器及仪器使用方法一实验仪器...

超声波测声速实验报告

专业班级:材料91姓名:09021010一、实验目的(1)、了解超声波的发射和接收方法。(2)、加深对振动合成、波动干涉等理论知识的理解。(3)、掌握用干涉法和相位法测声速。二、实验原理由波动理论可知,波速…

超声波测声速实验报告

实验名称超声波测声速实验报告一实验目的1了解超声波的发射和接收方法2加深对振动合成波动干涉等理论知识的理解3掌握用干涉法和相位法测声速二实验原理由波动理论可知波速与波长频率有如下关系vf只要知道频率和波长就可以...

液体中超声波声速的测定实验报告

液体中超声波声速的测定人耳能听到的声波其频率在16Hz到20kHz范围内超过20Hz的机械波称为超声波光通过受超声波扰动的介质时会发生衍射现象这种现象称为声光效应利用声光效应测量超声波在液体中传播速度是声光学领...

大学物理实验报告-声速的测量

实验报告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理;3.了解声速与介质参数的关系。【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点…

大学物理实验:超声声速测定

超声声速测定声波特性的测量如频率波长声速声压衰减相位等是声波检测技术中的重要内容特别是声速的测量不仅可以了解媒质的特性而且还可以了解媒质的状态变化在声波定位探伤测距等应用中具有重要的实用意义例如声波测井声波测量...

报告模版 10超声波声速的测量

深圳大学实验报告课程名称大学物理实验2实验名称超声波声速的测量学院组号指导教师李二涛报告人实验地点实验时间年月日星期实验报告提交时间123456

长安大学物理实验超声光栅测液体中的声速

长安大学物理实验超声光栅测液体中的声速,内容附图。

实验1 超声波声速的测量(301)

超声波声速的测量301一实验目的1了解压电陶瓷换能器的工作原理2培养综合运用仪器的能力3学习用共振干涉法和相位比较法测量超声波的波速4加深对驻波及振动合成等理论知识的理解二实验仪器示波器信号发生器超声波声速测定...

超声光栅测声速实验

用超声光栅测液体中的声速19xx年德拜Debge和席尔斯Sears在美国以及陆卡Hucas和毕瓜Biguand在法国分别独立地首次观察光在液体中的超声波衍射的现象从而提出了直接确定液体中声速的方法实验目的1了解...

超声波测声速实验报告(19篇)