行测总结

时间:2024.4.27

一、容斥原理

容斥原理关键就两个公式: 1. 两个集合的容斥关系公式:A+B=A∪B+A∩B

2. 三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C 请看例题:

【例题1】某大学某班学生总数是32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没及格的有4人,那么两次考试都及格的人数是( )

A.22 B.18 C.28 D.26

【解析】设A=第一次考试中及格的人数(26人),B=第二次考试中及格的人数(24人),显然,A+B=26+24=50; A∪B=32-4=28,则根据A∩B=A+B-A∪B=50-28=22。答案为A。

【例题2】电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。问两个频道都没看过的有多少人? 【解析】设A=看过2频道的人(62),B=看过8频道的人(34),显然,A+B=62+34=96;

A∩B=两个频道都看过的人(11),则根据公式A∪B= A+B-A∩B=96-11=85,所以,两个频道都没看过的人数为100-85=15人。

二、作对或做错题问题 某次考试由30到判断题,每作对一道题得4分,做错一题倒扣2分,小周共得96分,问他做错了多少道题? A.12 B.4 C.2 D.5

【解析】 方法一 假设某人在做题时前面24道题都做对了,这时他应该得到96分,后面还有6道题,如果让这最后6道题的得分为0,即可满足题意.这6道题的得分怎么才能为0分呢?根据规则,只要作对2道题,做错4道题即可,据此我们可知做错的题为4道,作对的题为26道.

方法二 作对一道可得4分,如果每作对反而扣2分,这一正一负差距就变成了6分.30道题全做对可得120分,而现在只得到96分,意味着差距为24分,用24÷6=4即可得到做错的题,所以可知选择B

三、植树问题 ①总路线长②间距(棵距)长③棵数。只要知道三个要素中的任意两个要素,就可以求出第三个。

【例题1】李大爷在马路边散步,路边均匀的栽着一行树,李大爷从第一棵数走到底15棵树共用了7分钟,李大爷又向前走了几棵树后就往回走,当他回到第5棵树是共用了30分钟。李大爷步行到第几棵数时就开始往回走?

A.第32棵 B.第32棵 C.第32棵 D.第32棵

解析:李大爷从第一棵数走到第15棵树共用了7分钟,也即走14个棵距用了7分钟,所以走没个棵距用0.5分钟。当他回到第5棵树时,共用了30分钟,计共走了30÷0.5=60个棵距,所以答案为B。第一棵到第33棵共32个棵距,第33可回到第5棵共28个棵距,32+28=60个棵距。

【例题2】为了把20xx年北京奥运会办成绿色奥运,全国各地都在加强环保,植树造林。某单位计划在通往两个比赛场馆的两条路的(不相交)两旁栽上树,现运回一批树苗,已知一条路的长度是另一条路长度的两倍还多6000米,若每隔4米栽一棵,则少2754棵;若每隔5米栽一棵,则多396棵,则共有树苗:( ) A.8500棵 B.12500棵 C.12596棵 D.13000棵

解析:设两条路共有树苗ⅹ棵,根据栽树原理,路的总长度是不变的,所以可根据路程相等列出方程:(ⅹ+2754-4)×4=(ⅹ-396-4)×5(因为2条路共栽4排,所以要减4)解得ⅹ=13000,即选择D。

四、和差倍问题

核心要点提示:和、差、倍问题是已知大小两个数的和或差与它们的倍数关系,求大小 1

两个数的值。(和+差)÷2=较大数;(和—差)÷2=较小数;较大数—差=较小数。

【例题】甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲班和乙班各有图书多少本?

解析:设乙班的图书本数为1份,则甲班和乙班图书本书的合相当于乙班图书本数的4倍。乙班160÷(3+1)=40(本),甲班40×3=120(本)。

五.浓度问题

【例1】(20xx年北京市应届第14题)—— 甲杯中有浓度为17%的溶液400克,乙杯中有浓度为23%的溶液600克。现在从甲、乙两杯中取出相同总量的溶液,把从甲杯中取出的倒入乙杯中,把从乙杯中取出的倒入甲杯中,使甲、乙两杯溶液的浓度相同。问现在两倍溶液的浓度是多少( ) A.20% B.20.6% C.21.2% D.21.4% 【答案】B。

【解析】这道题要解决两个问题: (1)浓度问题的计算方法

浓度问题在国考、京考当中出现次数很少,但是在浙江省的考试中,每年都会遇到浓度问题。这类问题的计算需要掌握的最基本公式是

(2)本题的陷阱条件 “现在从甲、乙两杯中取出相同总量的溶液,把从甲杯中取出的倒入乙杯中,把从乙杯中取出的倒入甲杯中,使甲、乙两倍溶液的浓度相同。”这句话描述了一个非常复杂的过程,令很多人望而却步。然而,只要抓住了整个过程最为核心的结果——“甲、乙两杯溶液的浓度相同”这个条件,问题就变得很简单了。

因为两杯溶液最终浓度相同,因此整个过程可以等效为——将甲、乙两杯溶液混合均匀之后,再分开成为400克的一杯和600克的一杯。因此这道题就简单的变成了“甲、乙两杯溶液混合之后的浓度是多少”这个问题了。

根据浓度计算公式可得,所求浓度为:

如果本题采用题设条件所述的过程来进行计算,将相当繁琐。

六.行程问题

【例1】(20xx年北京市社招第21题)——

2某单位围墙外面的公路围成了边长为300米的正方形,甲乙两人分别从两个对角沿逆时针同时出发,如果甲每分钟走90米,乙每分钟走70米,那么经过( )甲才能看到乙 A.16分40秒 B.16分 C.15分 D.14分40秒

【答案】A。这道题是一道较难的行程问题,其难点在于“甲看到乙”这个条件。有一种错误的理解就是“甲看到乙”则是甲与乙在同一边上的时候甲就能看到乙,也就是甲、乙之间的距离小于300米时候甲就能看到乙了,其实不然。考虑一种特殊情况,就是甲、乙都来到了这个正方形的某个角旁边,但是不在同一条边上,这个时候虽然甲、乙之间距离很短,但是这时候甲还是不能看到乙。由此看出这道题的难度——甲看到乙的时候两人之间的距离是无法确定的。

有两种方法来“避开”这个难点——

解法一:借助一张图来求解

虽然甲、乙两人沿正方形路线行走,但是行进过程完全可以等效的视为两人沿着直线行走,甲、乙的初始状态如图所示。

图中的每一个“格档”长为300米,如此可以将题目化为这样的问题“经过多长时间,甲、乙能走入同一格档?”

观察题目选项,发现有15分钟、16分钟两个整数时间,比较方便计算。因此代入15分钟值试探一下经过15分钟甲、乙的位置关系。经过15分钟之后,甲、乙分别前进了 2

90×15=1350米=(4×300+150)米 70×15=1050米=(3×300+150)米

也就是说,甲向前行进了4个半格档,乙向前行进了3个半格档,此时两人所在的地点如图所示。

甲、乙两人恰好分别在两个相邻的格档的中点处。这时甲、乙两人相距300米,但是很明显甲还看不到乙,正如解析开始处所说,如果单纯的认为甲、乙距离差为300米时,甲就能看到乙的话就会出错。

考虑由于甲行走的比乙快,因此当甲再行走150米,来到拐弯处的时候,乙行走的路程还不到150米。此时甲只要拐过弯就能看到乙。因此再过150/90=1分40秒之后,甲恰好拐过弯看到乙。所以甲从出发到看到乙,总共需要16分40秒,甲就能看到乙。 这种解法不是常规解法,数学基础较为薄弱的考生可能很难想到。

解法二:考虑实际情况

由于甲追乙,而且甲的速度比乙快,因此实际情况下,甲能够看到乙恰好是当甲经过了正方形的一个顶点之后就能看到乙了。也就是说甲从一个顶点出发,在到某个顶点时,甲就能看到乙了。

题目要求的是甲运动的时间,根据上面的分析可知,经过这段时间之后,甲正好走了整数个正方形的边长,转化成数学运算式就是

90×t=300×n

其中,t是甲运动的时间,n是一个整数。带入题目四个选项,经过检验可知,只有A选项16分40秒过后,甲运动的距离为

90×(16×60+40)/60=1500=300×5

符合“甲正好走了整数个正方形的边长”这个要求,它是正确答案。

七.抽屉问题三个例子: (1)3个苹果放到2个抽屉里,那么一定有1个抽屉里至少有2个苹果。

(2)5块手帕分给4个小朋友,那么一定有1个小朋友至少拿了2块手帕。

(3)6只鸽子飞进5个鸽笼,那么一定有1个鸽笼至少飞进2只鸽子。

我们用列表法来证明例题(1):

放 法

抽 屉 ①种 ②种 ③种 ④种

第1个抽屉 3个 2个 1个 0个

第2个抽屉 0个 1个 2个 3个

从上表可以看出,将3个苹果放在2个抽屉里,共有4种不同的放法。

第①、②两种放法使得在第1个抽屉里,至少有2个苹果;第③、④两种放法使得在第2个抽屉里,至少有2个苹果。

即:可以肯定地说,3个苹果放到2个抽屉里,一定有1个抽屉里至少有2个苹果。 由上可以得出:

题 号 物 体 数 量 抽屉数 结 果

(1) 苹 果 3个 放入2个抽屉 有一个抽屉至少有2个苹果

(2) 手 帕 5块 分给4个人 有一人至少拿了2块手帕

(3) 鸽 子 6只 飞进5个笼子 有一个笼子至少飞进2只鸽

上面三个例子的共同特点是:物体个数比抽屉个数多一个,那么有一个抽屉至少有2个这样的物体。从而得出:

抽屉原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

3

再看下面的两个例子:

(4)把30个苹果放到6个抽屉中,问:是否存在这样一种放法,使每个抽屉中的苹果数都小于等于5?

(5)把30个以上的苹果放到6个抽屉中,问:是否存在这样一种放法,使每个抽屉中的苹果数都小于等于5?

解答:(4)存在这样的放法。即:每个抽屉中都放5个苹果;(5)不存在这样的放法。即:无论怎么放,都会找到一个抽屉,它里面至少有6个苹果。

从上述两例中我们还可以得到如下规律:

抽屉原理2:把多于m×n个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。

可以看出,“原理1”和“原理2”的区别是:“原理1”物体多,抽屉少,数量比较接近;“原理2”虽然也是物体多,抽屉少,但是数量相差较大,物体个数比抽屉个数的几倍还多几。 以上两个原理,就是我们解决抽屉问题的重要依据。抽屉问题可以简单归结为一句话:有多少个苹果,多少个抽屉,苹果和抽屉之间的关系。解此类问题的重点就是要找准“抽屉”,只有“抽屉”找准了,“苹果”才好放。

我们先从简单的问题入手:

(1)3只鸽子飞进了2个鸟巢,则总有1个鸟巢中至少有几只鸽子?(答案:2只)

(2)把3本书放进2个书架,则总有1个书架上至少放着几本书?(答案:2本)

(3)把3封信投进2个邮筒,则总有1个邮筒投进了不止几封信?(答案:1封)

(4)1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少含有几只鸽子?(答案:1000÷50=20,所以答案为20只)

(5)从8个抽屉中拿出17个苹果,无论怎么拿。我们一定能找到一个拿苹果最多的抽屉,从它里面至少拿出了几个苹果?(答案:17÷8=2??1,2+1=3,所以答案为3)

(6)从几个抽屉中(填最大数)拿出25个苹果,才能保证一定能找到一个抽屉,从它当中至少拿了7个苹果?(答案:25÷□=6??□,可见除数为4,余数为1,抽屉数为4,所以答案为4个)

抽屉问题又称为鸟巢问题、书架问题或邮筒问题。如上面(1)、(2)、(3)题,讲的就是这些原理。上面(4)、(5)、(6)题的规律是:物体数比抽屉数的几倍还多几的情况,可用“苹果数”除以“抽屉数”,若余数不为零,则“答案”为商加1;若余数为零,则“答案”为商。其中第(6)题是已知“苹果数”和“答案”来求“抽屉数”。

抽屉问题的用处很广,如果能灵活运用,可以解决一些看上去相当复杂、觉得无从下手,实际上却是相当有趣的数学问题。

例1:某班共有13个同学,那么至少有几人是同月出生?( )A. 13 B. 12 C. 6 D. 2

解1:找准题中两个量,一个是人数,一个是月份,把人数当作“苹果”,把月份当作“抽屉”,那么问题就变成:13个苹果放12个抽屉里,那么至少有一个抽屉里放两个苹果。【已知苹果和抽屉,用“抽屉原理1”】

例2:某班参加一次数学竞赛,试卷满分是30分。为保证有2人的得分一样,该班至少得有几人参赛?( )

A. 30 B. 31 C. 32 D. 33

解2:毫无疑问,参赛总人数可作“苹果”,这里需要找“抽屉”,使找到的“抽屉”满足:总人数放进去之后,保证有1个“抽屉”里,有2人。仔细分析题目,“抽屉”当然是得分,满分是30分,则一个人可能的得分有31种情况(从0分到30分),所以“苹果”数应该是31+1=32。【已知苹果和抽屉,用“抽屉原理2”】

例3. 在某校数学乐园中,五年级学生共有400人,年龄最大的与年龄最小的相差不到1岁, 4

我们不用去查看学生的出生日期,就可断定在这400个学生中至少有两个是同年同月同日出生的,你知道为什么吗?

解3:因为年龄最大的与年龄最小的相差不到1岁,所以这400名学生出生的日期总数不会超过366天,把400名学生看作400个苹果,366天看作是366个抽屉,(若两名学生是同一天出生的,则让他们进入同一个抽屉,否则进入不同的抽屉)由“抽屉原则2”知“无论怎么放这400个苹果,一定能找到一个抽屉,它里面至少有2(400÷366=1??1,1+1=

2)个苹果”。即:一定能找到2个学生,他们是同年同月同日出生的。

例4:有红色、白色、黑色的筷子各10根混放在一起。如果让你闭上眼睛去摸,(1)你至少要摸出几根才敢保证至少有两根筷子是同色的?为什么?(2)至少拿几根,才能保证有两双同色的筷子,为什么?

解4:把3种颜色的筷子当作3个抽屉。则:

(1)根据“抽屉原理1”,至少拿4根筷子,才能保证有2根同色筷子;(2)从最特殊的情况想起,假定3种颜色的筷子各拿了3根,也就是在3个“抽屉”里各拿了3根筷子,不管在哪个“抽屉”里再拿1根筷子,就有4根筷子是同色的,所以一次至少应拿出3×3+1=10(根)筷子,就能保证有4根筷子同色。

例5. 证明在任意的37人中,至少有4人的属相相同。

解5:将37人看作37个苹果,12个属相看作是12个抽屉,由“抽屉原理2”知,“无论怎么放一定能找到一个抽屉,它里面至少有4个苹果”。即在任意的37人中,至少有4(37÷12=3??1,3+1=4)人属相相同。

例6:某班有个小书架,40个同学可以任意借阅,试问小书架上至少要有多少本书,才能保证至少有1个同学能借到2本或2本以上的书?

分析:从问题“有1个同学能借到2本或2本以上的书”我们想到,此话对应于“有一个抽屉里面有2个或2个以上的苹果”。所以我们应将40个同学看作40个抽屉,将书本看作苹果,如某个同学借到了书,就相当于将这个苹果放到了他的抽屉中。

解6:将40个同学看作40个抽屉,书看作是苹果,由“抽屉原理1”知:要保证有一个抽屉中至少有2个苹果,苹果数应至少为40+1=41(个)。即:小书架上至少要有41本书。 例7:(国家公务员考试20xx年B类第48题的珠子问题):

有红、黄、蓝、白珠子各10粒,装在一个袋子里,为了保证摸出的珠子有两颗颜色 相同,应至少摸出几粒?( ) A.3 B.4 C.5 D.6

解7:把珠子当成“苹果”,一共有10个,则珠子的颜色可以当作“抽屉”,为保证

摸出的珠子有2颗颜色一样,我们假设每次摸出的分别都放在不同的“抽屉”里,摸了4 个颜色不同的珠子之后,所有“抽屉”里都各有一个,这时候再任意摸1个,则一定有 一个“抽屉”有2颗,也就是有2颗珠子颜色一样。答案选C。

例8:(国家公务员考试20xx年第49题的#9@k牌问题):

从一副完整的#9@k牌中,至少抽出( )张牌,才能保证至少6张牌的花色相同? A.21 B.22

C.23 D.24

解8:完整的#9@k牌有54张,看成54个“苹果”,抽屉就是6个(黑桃、红桃、梅花、方块、大王、小王),为保证有6张花色一样,我们假设现在前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时候再任意抽取1张牌,那么前4个“抽屉”里必然有1个“抽屉”里有6张花色一样。答案选C。

归纳小结:解抽屉问题,最关键的是要找到谁为“苹果”,谁为“抽屉”,再结合两个原理进行相应分析。可以看出来,并不是每一个类似问题的“抽屉”都很明显,有时候“抽屉”需要我们构造,这个“抽屉”可以是日期、#9@k牌、考试分数、年龄、书架等等变化的量,但是整体的出题模式不会超出这个范围。

5

八.“牛吃草”问题

牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

这类问题的基本数量关系是:

1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。 2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。

下面来看几道典型试题:

例1. 由于天气逐渐变冷,牧场上的草每天一均匀的速度减少。经计算,牧场上的草可供20头牛吃5天,或供16头牛吃6天。那么可供11头牛吃几天?( ) A.12 B.10

C.8 D.6

【答案】C。

解析:设每头牛每天吃1份草,则牧场上的草每天减少(20×5-16×6)÷(6-5)=4份草,原来牧场上有20×5+5×4=120份草,故可供11头牛吃120÷(11+4)=8天。 例2. 有一片牧场,24头牛6天可以将草吃完;21头牛8天可以吃完,要使牧草永远吃不完,至多可以放牧几头牛?( ) A.8 B.10 C.12 D.14

【答案】C。

解析:设每头牛每天吃1份草,则牧场上的草每天生长出(21×8-24×6)÷(8-6)=12份,如果放牧12头牛正好可吃完每天长出的草,故至多可以放牧12头牛。

例3. 有一个水池,池底有一个打开的出水口。用5台抽水机20小时可将水抽完,用8台抽水机15小时可将水抽完。如果仅靠出水口出水,那么多长时间将水漏完?( )

A.25 B.30 C.40 D.45

【答案】D。

解析:出水口每小时漏水为(8×15-5×20)÷(20-15)=4份水,原来有水8×15+4×15=180份,故需要180÷4=45小时漏完。

练习: 1.一片牧草,可供16头牛吃20天,也可以供80只羊吃12天,如果每头牛每天吃草量等于每天4只羊的吃草量,那么10头牛与60只羊一起吃这一片草,几天可以吃完?( ) A.10 B.8 C.6 D.4

2.两个孩子逆着自动扶梯的方向行走。20秒内男孩走27级,女孩走了24级,按此速度男孩2分钟到达另一端,而女孩需要3分钟才能到达。则该扶梯静止时共有多少级可以看见?( ) A.54 B.48 C.42 D.36

3.22头牛吃33公亩牧场的草,54天可以吃尽,17头牛吃同样牧场28公亩的草,84天可以吃尽。请问几头牛吃同样牧场40公亩的草,24天吃尽?( )A.50 B.46 C.38 D.35

九.利润问题

利润就是挣的钱。利润占成本的百分数就是利润率。商店有时减价出售商品,我们把它称为“打折”,几折就是百分之几十。如果某种商品打“八折”出售,就是按原价的80%出售;如果某商品打“八五”折出售,就是按原价的85%出售。利润问题中,还有一种利息和利率的问题,属于百分数应用题。本金是存入银行的钱。利率是银行公布的,是把本金看做单位“1”,按百分之几或千分之几付给储户的。利息是存款到期后,除本金外,按利率付给储户的钱。本息和是本金与利息的和。

6

这一问题常用的公式有:

定价=成本+利润

利润=成本×利润率

定价=成本×(1+利润率)

利润率=利润÷成本

利润的百分数=(售价-成本)÷成本×100%

售价=定价×折扣的百分数

利息=本金×利率×期数

本息和=本金×(1+利率×期数)

例1 某商品按20%的利润定价,又按八折出售,结果亏损4元钱。这件商品的成本是多少元?

A.80 B.100 C.120 D.150

【答案】B。解析:现在的价格为(1+20%)×80%=96%,故成本为4÷(1-96%)=100元。

例2 某商品按定价出售,每个可以获得45元的利润,现在按定价的八五折出售8个,按定价每个减价35元出售12个,所能获得的利润一样。这种商品每个定价多少元?( )

A.100 B.120 C.180 D.200

【答案】D。解析:每个减价35元出售可获得利润(45-35)×12=120元,则如按八五折出售的话,每件商品可获得利润120÷8=15元,少获得45-15=30元,故每个定价为30÷(1-85%)=200元。

例3 一种商品,甲店进货价比乙店便宜12%,两店同样按20%的利润定价,这样1件商品乙店比甲店多收入24元,甲店的定价是多少元?( )

A.1000 B.1024 C.1056 D.1200

【答案】C。解析:设乙店进货价为x元,可列方程20%x-20%×(1-12%)x=24,解得x=1000,故甲店定价为1000×(1-12%)×(1+20%)=1056元。

练习: 1.书店卖书,凡购同一种书100本以上,就按书价的90%收款,某学校到书店购买甲、乙两种书,其中乙书的册数是甲书册数的 ,只有甲种书得到了优惠,这时,买甲种书所付总钱数是买乙种书所付钱数的2倍,已知乙种书每本定价是1.5元,优惠前甲种书每本定价多少元?

A.4 B.3 C.2 D.1

2.某书店对顾客实行一项优惠措施:每次买书200元至499.99元者优惠5%,每次买书500元以上者(含500元)优惠10%。某顾客到书店买了三次书,如果第一次与第二次合并一起买,比分开买便宜13.5元;如果三次合并一起买比三次分开买便宜39.4元。已知第一次付款是第三次付款的 ,这位顾客第二次买了多少钱的书? A.115 B.120 C.125 D.130

3.商店新进一批洗衣机,按30%的利润定价,售出60%以后,打八折出售,这批洗衣机实际利润的百分数是多少? A.18.4 B.19.2 C.19.6 D.20

十.平均数问题

7

这里的平均数是指算术平均数,就是n个数的和被个数n除所得的商,这里的n大于或等于

2。通常把与两个或两个以上数的算术平均数有关的应用题,叫做平均数问题。 平均数应用题的基本数量关系是:

总数量和÷总份数=平均数

平均数×总份数=总数量和

总数量和÷平均数=总份数

解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。

例1: 在前面3场击球游戏中,某人的得分分别为130、143、144。为使4场游戏得分的平均数为145,第四场他应得多少分?( )

【答案】C。解析:4场游戏得分平均数为145,则总分为145×4=580,故第四场应的580-130-143-144=163分。

例2: 李明家在山上,爷爷家在山下,李明从家出发一每分钟90米的速度走了10分钟到了爷爷家。回来时走了15分钟到家,则李 是多少?( )

A.72米/分 B.80米/分 C.84米/分 D90米/分

【答案】A。解析:李明往返的总路程是90×10×2=1800(米),总时间为10+15=25 均速度为1800÷25=72米/分。

例3: 某校有有100个学生参加数学竞赛,平均得63分,其中男生平均60分,女生平均70分,则男生比女生多多少人?( )

A.30 B.32 C.40 D.45

【答案】C。解析:总得分为63×100=6300,假设女生也是平均60分,那么100个学生共的6000分,这样就比实得的总分少300分。这是女生平均每人比男生高10分,所以这少的300分是由于每个女生少算了10分造成的,可见女生有300÷10=30人,男生有100-30=70人,故男生比女生多70-30=40人。

练习:

1. 5个数的平均数是102。如果把这5个数从小到大排列,那么前3个数的平均数是70,后3个数的和是390。中间的那个数是多少?( ) A.80 B.88 C.90 D.96

2. 甲、乙、丙3人平均体重47千克,甲与乙的平均体重比丙的体重少6千克,甲比丙少3

千克,则乙的体重为( )千克。 A.46 B.47 C.43 D.42

3. 一个旅游团租车出游,平均每人应付车费40元。后来又增加了8人,这样每人应付的车

费是35元,则租车费是多少元?( ) A.320 B.2240 C.2500 D.320 十一.方阵问题

学生排队,士兵列队,横着排叫做行,竖着排叫做列。如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。

核心公式:

1.方阵总人数=最外层每边人数的平方(方阵问题的核心)

2.方阵最外层每边人数=(方阵最外层总人数÷4)+1

3.方阵外一层总人数比内一层总人数多2

4.去掉一行、一列的总人数=去掉的每边人数×2-1

例1 学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?

A.256人 B.250人 C.225人 D.196人 (20xx年A类真题) 解析:正确答案为A。方阵问题的核心是求最外层每边人数。

根据四周人数和每边人数的关系可以知:每边人数=四周人数÷4+1,可以求出方阵最外层 8

每边人数,那么整个方阵队列的总人数就可以求了。

方阵最外层每边人数:60÷4+1=16(人) 整个方阵共有学生人数:16×16=256(人)。

例2 参加中学生运动会团体操比赛的运动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少33人。问参加团体操表演的运动员有多少人?

分析 如下图表示的是一个五行五列的正方形队列。从图中可以看出正方形的每行、每列人数相等;最外层每边人数是5,去一行、一列则一共要去9人,因而我们可以得到如下公式: 去掉一行、一列的总人数=去掉的每边人数×2-1

解析:方阵问题的核心是求最外层每边人数。

原题中去掉一行、一列的人数是33,则去掉的一行(或一列)人数=(33+1)÷2=17 方阵的总人数为最外层每边人数的平方,所以总人数为17×17=289(人)

练习:

1. 小红把平时节省下来的全部五分硬币先围成个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是( ):

A.1元 B.2元 C.3元 D.4元 (20xx年中央真题)

2. 某仪仗队排成方阵,第一次排列若干人,结果多余100人;第二次比第一次每行、每列都增加3人,又少29人。仪仗队总人数为多少? 答案:

1.C 2. 500人

十二.年龄问题

主要特点是:时间发生变化,年龄在增长,但是年龄差始终不变。年龄问题往往是“和差”、“差倍”等问题的综合应用。解题时,我们一定要抓住年龄差不变这个解题关键。 解答年龄问题的一般方法: 几年后的年龄=大小年龄差÷倍数差-小年龄

几年前的年龄=小年龄-大小年龄差÷倍数差

例1: 甲对乙说:当我的岁数是你现在岁数时,你才4岁。乙对甲说:当我的岁数到你现在的岁数时,你将有67岁,甲乙现在各有: A.45岁,26岁 B.46岁,25岁 C.47岁,24岁 D.48岁,23岁

【答案】B。

解析:甲、乙二人的年龄差为(67-4)÷3=21岁,故今年甲为67-21=46岁,乙的年龄为45-21=25岁。

例2: 爸爸、哥哥、妹妹现在的年龄和是64岁。当爸爸的年龄是哥哥的3倍时,妹妹是9岁;当哥哥的年龄是妹妹的2倍时,爸爸34岁。现在爸爸的年龄是多少岁? A.34 B.39

C.40 D.42

【答案】C。

解析:解法一:用代入法逐项代入验证。解法二,利用“年龄差”是不变的,列方程求解。设爸爸、哥哥和妹妹的现在年龄分别为:x、y和z。那么可得下列三元一次方程:x+y+z=64;x-(z-9)=3[y-(z-9)];y-(x-34)=2[z-(x-34)]。可求得x=40。

例3: 19xx年,甲的年龄是乙的年龄的4倍。20xx年,甲的年龄是乙的年龄的3倍。问甲、乙二人20xx年的年龄分别是多少岁? A.34岁,12岁 B.32岁,8岁 C.36岁,12岁 D.34岁,10岁

【答案】C。

解析:抓住年龄问题的关键即年龄差,19xx年甲的年龄是乙的年龄的4倍,则甲乙的年龄 9

差为3倍乙的年龄,20xx年,甲的年龄是乙的年龄的3倍,此时甲乙的年龄差为2倍乙的年龄,根据年龄差不变可得

3×19xx年乙的年龄=2×20xx年乙的年龄

3×19xx年乙的年龄=2×(19xx年乙的年龄+4)

19xx年乙的年龄=4岁

则20xx年乙的年龄为10岁。

练习: 1. 爸爸在过50岁生日时,弟弟说:“等我长到哥哥现在的年龄时,我和哥哥的年龄之和等于那时爸爸的年龄”,那么哥哥今年多少岁? A.18 B.20 C.25 D.28

2. 甲、乙两人的年龄和正好是80岁,甲对乙说:“我像你现在这么大时,你的年龄正好是我的年龄的一半。”甲今年多少岁?( ) A.32 B.40 C.48 D.45

3. 父亲与儿子的年龄和是66岁,父亲的年龄比儿子年龄的3倍少10岁,那么多少年前父亲的年龄是儿子的5倍?( ) A.10 B.11 C.12 D.13

十三. 比例问题

解决好比例问题,关键要从两点入手:第一,“和谁比”;第二,“增加或下降多少”。 例1 b比a增加了20%,则b是a的多少? a又是b的多少呢?

解析:可根据方程的思想列式得 a×(1+20%)=b,所以b是a的1.2倍。

A/b=1/1.2=5/6,所以a 是b的5/6。

例2 养鱼塘里养了一批鱼,第一次捕上来200尾,做好标记后放回鱼塘,数日后再捕上100尾,发现有标记的鱼为5尾,问鱼塘里大约有多少尾鱼?

A.200 B.4000 C.5000 D.6000 (20xx年中央B类真题) 解析:方程法:可设鱼塘有X尾鱼,则可列方程,100/5=X/200,解得X=4000,选择B。

例3 20xx年,某公司所销售的计算机台数比上一年度上升了20%,而每台的价格比上一年度下降了20%。如果20xx年该公司的计算机销售额为3000万元,那么20xx年的计算机销售额大约是多少?

A.2900万元 B.3000万元 C.3100万元 D.3300万元(20xx年中央A类真题) 解析:方程法:可设20xx年时,销售的计算机台数为X,每台的价格为Y,显然由题意可知,20xx年的计算机的销售额=X(1+20%)Y(1-20%),也即3000万=0.96XY,显然XY≈3100。答案为C。

特殊方法:对一商品价格而言,如果上涨X后又下降X,求此时的商品价格原价的多少?或者下降X再上涨X,求此时的商品价格原价的多少?只要上涨和下降的百分比相同,我们就可运用简化公式,1-X 。但如果上涨或下降的百分比不相同时则不可运用简化公式,需要一步一步来。对于此题而言,计算机台数比上一年度上升了20%,每台的价格比上一年度下降了20%,因为销售额=销售台数×每台销售价格,所以根据乘法的交换律我们可以看作是销售额上涨了20%又下降了20%,因而20xx年是20xx年的1-(20%) =0.96,20xx年的销售额为3000万,则20xx年销售额为3000÷0.96≈3100。

例4 生产出来的一批衬衫中大号和小号各占一半。其中25%是白色的,75%是蓝色的。如果这批衬衫总共有100件,其中大号白色衬衫有10件,问小号蓝色衬衫有多少件?A.15

B.25 C.35 D.40

解析:这是一道涉及容斥关系(本书后面会有专题讲解)的比例问题。

根据已知 大号白=10件,因为大号共50件,所以,大号蓝=40件;

大号蓝=40件,因为蓝色共75件,所以,小号蓝=35件;

此题可以用另一思路进行解析(多进行这样的思维训练,有助于提升解题能力) 大号白=10件,因为白色共25件,所以,小号白=15件;

10

小号白=15件,因为小号共50件,所以,小号蓝=35件;

例5 某企业发奖金是根据利润提成的,利润低于或等于10万元时可提成10%;低于

或等于20万元时,高于10万元的部分按7.5%提成;高于20万元时,高于20万元的部分

按5%提成。当利润为40万元时,应发放奖金多少万元?

A.2 B.2.75 C.3 D.4.5 (20xx年中央A类真题)

解析:这是一个种需要读懂内容的题型。根据要求进行列式即可。

奖金应为 10×10%+(20-10)×7.5%+(40-20)×5%=2.75

例6 某企业去年的销售收入为1000万元,成本分生产成本500万元和广告费200万元两

个部分。若年利润必须按P%纳税,年广告费超出年销售收入2%的部分也必须按P%纳税,

其它不纳税,且已知该企业去年共纳税120万元,则税率P%为 A.40% B.25%

C.12% D.10%

解析:选用方程法。根据题意列式如下: (1000-500-200)×P%+(200-1000×2%)

×P%=120

即 480×P%=120 P%=25%

例 7 甲乙两名工人8小时共加736个零件,甲加工的速度比乙加工的速度快30%,问乙每

小时加工多少个零件? A.30个 B.35个 C.40个 D.45个 (20xx年A类真题)

解析:选用方程法。设乙每小时加工X个零件,则甲每小时加工1.3X个零件,并可列

方程如下:

(1+1.3X)×8=736 X=40

例 8 已知甲的12%为13,乙的13%为14,丙的14%为15,丁的15%为16,则甲、乙、

丙、丁4个数中最大的数是: A.甲 B.乙 C.丙 D.丁 (20xx年中央真题)

解析:显然甲=13/12%;乙=14/13%;丙=15/14%;丁=16/15%,显然最大与最小就在甲、

乙之间,所以比较甲和乙的大小即可,甲/乙=13/12%/16/15%>1, 所以,甲>乙>丙>

丁,选择A。

例 10 某储户于19xx年1月1 日存人银行60000元,年利率为2.00%,存款到期日即

20xx年1月1 日将存款全部取出,国家规定凡19xx年11月1日后孳生的利息收入应缴纳

利息税,税率为20%,则该储户实际提取本金合计为 A.61 200元 B.61 160元

C.61 000元 D.60 040元

解析,如不考虑利息税,则19xx年1月1 日存款到期日即20xx年1月1可得利息为

60000×2%=1200,也即100元/月,但实际上从19xx年11月1日后要收20%利息税,也即

只有2个月的利息收入要交税,税额=200×20%=40元,所以,提取总额为

60000+1200-40=61160,正确答案为B。

十四. 尾数计算问题

1. 尾数计算法

知识要点提示:尾数这是数学运算题解答的一个重要方法,即当四个答案全不相同时,

我们可以采用尾数计算法,最后选择出正确答案。

首先应该掌握如下知识要点:

2452+613=3065 和的尾数5是由一个加数的尾数2加上另一个加数的尾数3得到的。

2452-613=1839 差的尾数9是由被减数的尾数2减去减数的尾数3得到。

2452×613=1503076 积的尾数6是由一个乘数的尾2乘以另一个乘数的尾数3得到。

2452÷613=4 商的尾数4乘以除数的尾数3得到被除数的尾数2,除法的尾数有点特

殊,请学员在考试运用中要注意。

11

例1 99+1919+9999的个位数字是( )。

A.1 B.2 C.3 D.7 (20xx年中央A、B类真题) 解析:答案的尾数各不相同,所以可以采用尾数法。9+9+9=27,所以答案为D。 例2 请计算(1.1)2 +(1.2)2 +(1.3)2 +(1.4)2 值是:

A.5.04 B.5.49 C.6.06 D.6.30型 (20xx年中央A类真题) 解析:(1.1)2 的尾数为1,(1.2)2 的尾数为4,(1.3)2 的尾数为9,(1.4)2 的尾数为6,所以最后和的尾数为1+3+9+6的和的尾数即0,所以选择D答案。

例3 3×999+8×99+4×9+8+7的值是: A.3840 B.3855 C.3866 D.3877 解析:运用尾数法。尾数和为7+2+6+8+7=30,所以正确答案为A。

2. 自然数N次方的尾数变化情况

知识要点提示: 我们首先观察2n 的变化情况

21的尾数是2

22的尾数是4

23的尾数是8

24的尾数是6

25的尾数又是2

我们发现2的尾数变化是以4为周期变化的即21 、25、29??24n+1的尾数都是相同的。

3n是以“4”为周期进行变化的,分别为3,9,7,1, 3,9,7,1 ??

7n是以“4”为周期进行变化的,分别为9,3,1,7, 9,3,1,7 ??

8n是以“4”为周期进行变化的,分别为8,4,2,6, 8,4,2,6 ??

4n是以“2”为周期进行变化的,分别为4,6, 4,6,??

9n是以“2”为周期进行变化的,分别为9,1, 9,1,??

5n、6n尾数不变。

例1 的末位数字是: A.1 B.3 C.7 D.9 解析:9n是以“2”为周期进行变化的,分别为9,1, 9,1,??即当奇数方时尾数为“9”,当偶数方时尾数为“1”,1998为偶数,所以原式的尾数为“1”,所以答案为A。

例2 19881989+1989 的个位数是 A.9 B.7 C.5 D.3

解析:由以上知识点我们可知19881989 的尾数是由 81989 的尾数确定的,1989÷4=497余1,所以81989 的尾数和81 的尾数是相同的,即19881989 的尾数为8。

我们再来看19891988 的尾数是由91988 的尾数确定的,1988÷4=497余0,这里注意当余数为0时,尾数应和94、98 、912 ?? 94n 尾数一致,所以91988 的尾数与94 的尾数是相同的,即为1。 综上我们可以得到19881989 + 19891988 尾数是8+1=9,所以应选择C。

十五. 最小公倍数和最小公约数问题

1.关键提示: 最小公倍数与最大公约数的题一般不难,但一定要细致审题,千万不要粗心。另外这类题往往和日期(星期几)问题联系在一起,要学会求余。

2.核心定义: (1)最大公约数:如果一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数。几个自然数公有的约数,叫做这几个自然数的公约数。公约数中最大的一个公约数,称为这几个自然数的最大公约数。

(2)最小公倍数:如果一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数。几个自然数公有的倍数,叫做这几个自然数的公倍数.公倍数中最小的一个大于零 12

的公倍数,叫这几个数的最小公倍数。

例题1:甲每5天进城一次,乙每9天进城一次,丙每12天进城一次,某天三人在城

里相遇,那么下次相遇至少要: A.60天 B.180天 C.540天 D.1620天 (20xx年浙江真题)

解析:下次相遇要多少天,也即求5,9,12的最小公倍数,可用代入法,也可直接求。显然5,9,12的最小公倍数为5×3×3×4=180。

例题2:三位采购员定期去某商店,小王每隔9天去一次,大刘每隔11天去一次,老杨每隔7天去一次,三人星期二第一次在商店相会,下次相会是星期几? A.星期一

B.星期二 C.星期三 D.星期四

解析:此题乍看上去是求9,11,7的最小公倍数的问题,但这里有一个关键词,即“每隔”,“每隔9天”也即“每10天”,所以此题实际上是求10,12,8的最小公倍数。10,12,8的最小公倍数为5×2×2×3×2=120。120÷7=17余1, 所以,下一次相会则是在星期三,选择C。

例题3:赛马场的跑马道600米长,现有甲、乙、丙三匹马,甲1分钟跑2圈,乙1分钟跑3圈,丙1分钟跑4圈。如果这三匹马并排在起跑线上,同时往一个方向跑,请问经过几分钟,这三匹马自出发后第一次并排在起跑线上?( ) A.1/2 B.1 C.6

D.12

解析:此题是一道有迷惑性的题,“1分钟跑2圈”和“2分钟跑1圈”是不同概念,不要等同于去求最小公倍数的题。显然1分钟之后,无论甲、乙、丙跑几圈都回到了起跑线上。 所以,答案为B。

一.页码问题

对多少页出现多少1或2的公式

如果是X千里找几,公式是 1000+X00*3 如果是X百里找几,就是100+X0*2,X有多少个0 就*多少。依次类推!请注意,要找的数一定要小于X ,如果大于X就不要加1000或者100一类的了,

比如,7000页中有多少3 就是 1000+700*3=3100(个)

20000页中有多少6就是 2000*4=8000 (个)

友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了

二,握手问题

N个人彼此握手,则总握手数 S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2 =N×(N-1)/2

例题: 某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次, 请问这个班的同学有( )人 A、16 B、17 C、18 D、19

【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。按照排列组合假设总数为X人 则Cx取3=152 但是在计算X时却是相当的麻烦。 我们仔细来分析该题目。以某个人为研究对象。则这个人需要握x-3次手。每个人都是这样。则总共握了x×(x-3)次手。但是没2个人之间的握手都重复计算了1次。则实际的握手次数是x×(x-3)÷2=152 计算的x=19人

三,钟表重合公式

钟表几分重合,公式为: x/5=(x+a)/60 a时钟前面的格数

四,时钟成角度的问题

设X时时,夹角为30X , Y分时,分针追时针5.5,设夹角为A.(请大家掌握)

钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时 13

针走0.5度,能追5.5度。

1.【30X-5.5Y】或是360-【30X-5.5Y】 【】表示绝对值的意义(求角度公式) 变式与应用

2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角) 五,往返平均速度公式及其应用(引用)

某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。

证明:设A、B两地相距S,则

往返总路程2S,往返总共花费时间 s/a+s/b

故 v=2s/(s/a+s/b)=2ab/(a+b)

六,空心方阵的总数

空心方阵的总数= (最外层边人(物)数-空心方阵的层数)×空心方阵的层数×4 = 最外层的每一边的人数^2-(最外层每边人数-2*层数)^2

=每层的边数相加×4-4×层数

空心方阵最外层每边人数=总人数/4/层数+层数

方阵的基本特点: ① 方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层边上的人数就少2;

② 每边人(或物)数和四周人(或物)数的关系:

③ 中实方阵总人(或物)数=(每边人(或物)数)2=(最外层总人数÷4+1)2

例:① 某部队排成一方阵,最外层人数是80人,问方阵共有多少官兵?(441人)

② 某校学生刚好排成一个方队,最外层每边的人数是24人,问该方阵有多少名学生?(576名)解题方法:方阵人数=(外层人数÷4+1)2=(每边人数)2

③ 参加中学生运动会团体操比赛的运动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少33人。问参加团体操表演的运动员有多少人?(289人) 解题方法:去掉的总人数=原每行人数×2-1=减少后每行人数×2+1

典型例题:某个军队举行列队表演,已知这个长方形的队阵最外围有32人,若以长和宽作为边长排出2个正方形的方阵需要180人。则原来长方形的队阵总人数是( )

A、64, B、72 C、96 D、100

【解析】这个题目经过改编融合了代数知识中的平方和知识点。长方形的(长+宽)×2=32+4 得到长+宽=18。 可能这里面大家对于长+宽=18 有些难以计算。 你可以假设去掉4个点的人先不算。长+宽(不含两端的人)×2+4(4个端点的人)=32 , 则计算出不含端点的长+宽=14 考虑到各自的2端点所以实际的长宽之和是14+2+2=18 。 求长方形的人数,实际上是求长×宽。根据条件 长×长+宽×宽=180 综合(长+宽)的平方=长×长+宽×宽+2×长×宽=18×18 带入计算即得到B。其实在我们得到长宽之和为18时,我们就可以通过估算的方法得到选项B

七,青蛙跳井问题

例如:①青蛙从井底向上爬,井深10米,青蛙每跳上5米,又滑下4米,这样青蛙需跳几次方可出井?(6)

②单杠上挂着一条4米长的爬绳,小赵每次向上爬1米又滑下半米来,问小赵几次才能爬上单杠?(7)

总解题方法:完成任务的次数=井深或绳长 - 每次滑下米数(遇到半米要将前面的单位转化成半米)

例如第二题中,每次下滑半米,要将前面的4米转换成8个半米再计算。

14

完成任务的次数=(总长-单长)/实际单长+1

八,容斥原理

总公式:满足条件一的个数+满足条件2的个数-两个都满足的个数=总个数-两个都不满足的个数

【国2006一类-42】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有多少人?

A.27人 B.25人 C.19人 D.10人

上题就是数学运算试题当中经常会出现的“两集合问题”,这类问题一般比较简单,使用容斥原理或者简单画图便可解决。但使用容斥原理对思维要求比较高,而画图浪费时间比较多。鉴于此类问题一般都按照类似的模式来出,下面华图名师李委明给出一个通解公式,希望对大家解题能有帮助:

例如上题,代入公式就应该是:40+31-x=50-4,得到x=25。我们再看看其它题目:【国2004A-46】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是多少?A.22

B.18 C.28 D.26

代入公式:26+24-x=32-4,得到x=22

九,传球问题

这道传球问题是一道非常复杂麻烦的排列组合问题。

【李委明解三】不免投机取巧,但最有效果(根据对称性很容易判断结果应该是3的倍数,如果答案只有一个3的倍数,便能快速得到答案),也给了一个启发----

传球问题核心公式

N个人传M次球,记X=[(N-1)^M]/N,则与X最接近的整数为传给“非自己的某人”的方法数,与X第二接近的整数便是传给自己的方法数。大家牢记一条公式,可以解决此类至少三人传球的所有问题。

四人进行篮球传接球练习,要求每人接球后再传给别人。开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式:

A.60种 B.65种 C.70种 D.75种

x=(4-1)^5/4 x=60

十,圆分平面公式:

N^2-N+2,N是圆的个数

十一,剪刀剪绳

对折N次,剪M刀,可成M*2^n+1段

将一根绳子连续对折3次,然后每隔一定长度剪一刀,共剪6刀。问这样操作后,原来的绳子被剪成了几段?

A.18段 B.49段 C.42段 D.52段

十二,四个连续自然数,

性质一,为两个积数和两个偶数,它们的和可以被2整除,但是不能被4整除 性质二,他们的积+1是一个奇数的完全平方数

十三,骨牌公式

公式是:小于等于总数的2的N次方的最大值就是最后剩下的序号

十四,指针重合公式

关于钟表指针重合的问题,有一个固定的公式:61T=S(S为题目中最小的单位在题目所要求的时间内所走的格书,确定S后算出T的最大值知道相遇多少次。)

15

十五,图色公式

公式:(大正方形的边长的3次方)—(大正方形的边长—2)的3次方。

十六,装错信封问题

小明给住在五个国家的五位朋友分别写信,这些信都装错的情况共有多少种 44种 f(n)=n!(1-1/1!+1/2!!-1/3!......+(-1)n(1/n!))

或者可以用下面的公式解答

装错1信 0种

装错2信:1种

3 2

4 9

5 44

递推公式是S(n)=n.S(n-1)+(-1)^n~~~~~

如果是6封信装错的话就是265~~

~~

十七,伯努利概率模型

某人一次涉及击中靶的概率是3/5,设计三次,至少两次中靶的概率是

集中概率3/5,则没集中概率2/5,即为两次集中的概率+三次集中的概率

公式为 C(2,3)*[(3/5)^2]*[(2/5)^1]+C(3,3)[(3/5)^3]*[(2/5)^0]

81/125

十八,圆相交的交点问题

N个圆相交最多可以有多少个交点的问题分析 N*(N-1)

十九,约数个数问题

M=A^X*B^Y 则M的约数个数是

(X+1)(Y+1)

360这个数的约数有多少个?这些约数的和是多少?

解〕360=2×2×2×3×3×5,所以360的任何一个约数都等于至多三个2(可以是零个,下同),至多两个3和至多一个5的积。如果我们把下面的式子

(1+2+4+8)×(1+3+9)×(1+5)

展开成一个和式,和式中的每一个加数都是在每个括号里各取一个数相乘的积。由前面的分析不难看出,360的每一个约数都恰好是这个展开式中的一个加数。由于第一个括号里有4个数,第二个括号里有3个数,第三个括号里有2个数,所以这个展开式中的加数个数为4×3×2=24,而这也就是360的约数的个数。另一方面,360的所有约数的和就等于这个展开式的和,因而也就等于

(1+2+4+8)×(1+3+9)×(1+5)

=15×13×6=1,170

答:360的约数有24个,这些约数的和是1,170。

甲数有9个约数,乙数有10个约数,甲、乙两数最小公倍数是2800,那么甲数和乙数分别是多少?

解:一个整数被它的约数除后,所得的商也是它的约数,这样的两个约数可以配成一对.只有配成对的两个约数相同时,也就是这个数是完全平方数时,它的约数的个数才会是奇数.因此,甲数是一个完全平方数.

2800=24×52×7.

在它含有的约数中是完全平方数,只有

16

1,22,24,52,22×52,24×52.

在这6个数中只有22×52=100,它的约数是(2+1)×(2+1)=9(个).

2800是甲、乙两数的最小公倍数,上面已算出甲数是100=22×52,因此乙数至少要含有24和7,而24×7=112恰好有(4+1)×(1+1)=10(个)约数,从而乙数就是112.综合起来,甲数是100,乙数是112.

二十,吃糖的方法 当有n块糖时,有2^(n-1)种吃法。

二十一,隔两个划数

1987=3^6+1258

1258÷2×3+1=1888

即剩下的是1888

减去1能被3整除

二十二,边长求三角形的个数

三边均为整数,且最长边为11的三角形有多少个?

[asdfqwer]的最后解答:

11,11,11;11,11,10;11,11,9;...11,11,1;

11,10,10;11,10,9;...11,10,2;

11,9,9;...11,9,3;

11,8,8;...11,8,4;

11,7,7,...11,7,5;

11,6,6;

1+3+5+7+9+11=6^2=36

如果将11改为n的话,

n=2k-1时,为k^2个三角形;

n=2k时,为(k+1)k个三角形。

二十三,2乘以多少个奇数的问题

如果N是1,2,3,?,1998,1999,2000的最小公倍数,那么N等于多少个2与1个奇数的积?

解:因2^10=1024,2^11=2048>2000,每个不大于2000的自然数表示为质因数相乘,其中2的个数不多于10个,而1024=2^10,所以,N等于10个2与某个奇数的积。 二十四,直线分圆的图形数

设直线的条数为N 则 总数=1+{N(1+N)}/2

将一个圆形纸片用直线划分成大小不限的若干小纸片,如果要分成不少于50个小纸片,至少要画多少条直线?请说明.

〔解〕我们来一条一条地画直线。画第一条直线将圆形纸片划分成2块.画第二条直线,如果与第一条直线在圆内相交,则将圆形纸片划分成4块(增加了2块),否则只能划分成3块.类似地,画第三条直线,如果与前两条直线都在圆内相交,且交点互不相同(即没有3条直线交于一点),则将圆形纸片划分成7块(增加了3块),否则划分的块数少于7块.下图是画3条直线的各种情形

由此可见,若希望将纸片划分成尽可能多的块数,应该使新画出的直线与原有的直线都在圆内相交,且交点互不相同.这时增加的块数等于直线的条数。(为什么?)这样划分出的块数,我们列个表来观察:

17

直线条数纸片最多划分成的块数

1 1+1

2 1+1+2

3 1+1+2+3

4 1+1+2+3+4

5 1+1+2+3+4+5

不难看出,表中每行右边的数等于1加上从1到行数的所有整数的和。(为什么?)我们把问题化为:自第几行起右边的数不小于50?我们知道

1+1+2+3+?+10=56,1+1+2+3+?+9=46,可见

9行右边还不到50,而第10行右边已经超过50了。答:至少要画10条直线。

二十五,公交车超骑车人和行人的问题

一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?

此类题通解公式:

a=超行人时间,b=超自行车时间,m=人速,n=自行车速

则每隔t分钟发车;t=(abn-abm)/(bn-am),令M=1 N=3,解得T=8。

二十六,公交车前后超行人问题

小明放学后,沿某公交路线以不变速度步行回家,该路公共汽车也以不变速度不停的运行,每隔9分钟就有一辆公共汽车从后面超过他,每隔7分钟就遇到迎面开来的一辆公共汽车,问该路公共汽车每隔多少分钟发一辆车?

此类题有个通解公式:如果a分钟追上,b分钟相遇,

则是2ab/(a+b)分钟发一次车

二十七,象棋比赛人数问题

象棋比赛中,每个选手都与其他选手恰好比赛一局,每局胜者记2分,负者记0分,和棋各记1分,四位观众统计了比赛中全部选手得分总数分别是:1979,1980,1984,1985,经核实只有一位观众统计正确,则这次比赛的选手共有多少名?

A.44 B.45 C.46 D.47

解析:44*43=1892, 45*44=1980 ,46*45=2070 所以选B

二十八,频率和单次频度都不同问题

猎犬发现在离它9米远的前方有一只奔跑着的兔子,立刻追赶,猎犬的步子大,它跑5步的路程,兔要跑9步,但兔子动作快,猎犬跑2步的时间,兔子跑3步。猎犬至少跑多少米才能追上兔子?()

A. 67B. 54C. 49D. 34 答案b

分析:猎犬的步子大,它跑5步的路程,兔要跑9步,但兔子动作快,猎犬跑2步的时间,兔子跑3步.可知猎犬和兔子的速度比是6:5,s/(s-9)=6/5,s=54

二十九,上楼梯问题

一般来说上电梯有a1=1 a2=2 a3=4 a4=a1+a2+a3

所以一般公式是 an=a(n-1)+a(n-2)+a(n-3)

三十,牛吃草公式

核心公式:草场草量=(牛数-每天长草量)*天数

例如:10牛可吃20天,15牛可吃10天,则25牛可吃多少天?

解:可用公式,设每天恰可供X头牛吃一天,25牛可吃N天

18

则(10-X)*20=(15-X)*10=(25-X)*N ,可得X=5,Y=5

三十一,十字相乘法

十字相乘法使用时要注意几点:

第一点:用来解决两者之间的比例关系问题。

第二点:得出的比例关系是基数的比例关系。

第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。

(20xx年国考) 某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:

A .84 分 B . 85 分 C . 86 分 D . 87 分 答案:A

分析: 假设女生的平均成绩为X,男生的平均Y。男生与女生的比例是9:5。 男生:Y 9

75

女生:X 5

根据十字相乘法原理可以知道

X=84

6. (20xx年国考).某高校2006 年度毕业学生7650 名,比上年度增长2 % . 其中本科毕业生比上年度减少2 % . 而研究生毕业数量比上年度增加10 % , 那么,这所高校今年毕业的本科生有:

A .3920 人 B .4410 人 C .4900人 D .5490 人

答案:C

分析:去年毕业生一共7500人。7650/(1+2%)=7500人。

本科生:-2% 8%

2%

研究生:10% 4%

本科生:研究生=8%:4%=2:1。

7500*(2/3)=5000

5000*0.98=4900

此方法考试的时候一定要灵活运用

三十二,兔子问题

An=A(n-1)An(n-2)

已知一对幼兔能在一月内长成一对成年兔子,一对成年兔子能在一月内生出一对幼兔。如果现在给你一对幼兔,问一年后共有多少对兔子?

析:1月:1对幼兔

2月:1对成兔

3月;1对成兔.1对幼兔

4;2对成兔.1对幼兔

5;;3对成兔.2对幼兔

6;5对成兔.3对幼兔.......

可看出规律:1,1,2,3,5,8(第三数是前两数之和),可求出第12项

为:13,21,34,55,89,144,答:有144只兔

三十三,称重量砝码最少的问题

例题:要用天平称出1克、2克、3克??40克这些不同的整数克重量,至少要用多少 19

个砝码?这些砝码的重量分别是多少?

分析与解:一般天平两边都可放砝码,我们从最简单的情形开始研究。

(1)称重1克,只能用一个1克的砝码,故1克的一个砝码是必须的。

(2)称重2克,有3种方案:

①增加一个1克的砝码;

②用一个2克的砝码;

③用一个3克的砝码,称重时,把一个1克的砝码放在称重盘内,把3克的砝码放在砝码盘内。从数学角度看,就是利用3-1=2。

(3)称重3克,用上面的②③两个方案,不用再增加砝码,因此方案①淘汰。

(4)称重4克,用上面的方案③,不用再增加砝码,因此方案②也被淘汰。总之,用1克、3克两个砝码就可以称出(3+1)克以内的任意整数克重。

(5)接着思索可以进行一次飞跃,称重5克时可以利用

9-(3+1)=5,即用一个9克重的砝码放在砝码盘内,1克、3克两个砝码放在称重盘内。这样,可以依次称到1+3+9=13(克)以内的任意整数克重。

而要称14克时,按上述规律增加一个砝码,其重为

14+13=27(克),

可以称到1+3+9+27=40(克)以内的任意整数克重。

总之,砝码重量为1,3,32,33克时,所用砝码最少,称重最大,这也是本题的答案。

三十三,文示图

红圈: 球赛。 蓝圈: 电影 绿圈:戏剧。

X表示只喜欢球赛的人; Y表示只喜欢电影的人; Z表示只喜欢戏剧的人

a表示喜欢球赛和电影的人。仅此2项。不喜欢戏剧

b表示喜欢电影和戏剧的人。仅此2项。不喜欢球赛

c表示喜欢球赛和戏剧的人。仅此2项 不喜欢电影。

中间的阴影部分则表示三者都喜欢的。我们用 T表示。

回顾上面的7个部分。X,y,z,a,b,c,T 都是相互独立。互不重复的部分 现在开始对这些部分规类。

X+y+z=是只喜欢一项的人 我们叫做 A

a+b+c=是只喜欢2项的人 我们叫做B

T 就是我们所说的三项都喜欢的人

x+a+c+T=是喜欢球赛的人数 构成一个红圈

y+a+b+T=是喜欢电影的人数 构成一个蓝圈

z+b+c+T=是喜欢戏剧的人数 构成一个绿圈

三个公式。

(1) A+B+T=总人数

(2) A+2B+3T=至少喜欢1个的人数和

(3) B+3T=至少喜欢2个的人数和

例题:学校教导处对100名同学进行调查,结果有58人喜欢看球赛,有38人喜欢看戏剧,有52人喜欢看电影。另外还知道,既喜欢看球赛又喜欢看戏剧(但不喜欢看电影)的有6人,既喜欢看电影又喜欢看戏剧(但不喜欢看球赛)的有4人,三种都喜欢的有12人。

通过这个题目我们看 因为每个人都至少喜欢三项中的一项。则我们用三个圈红,绿,蓝代表球赛。戏剧、和电影。

20

A+B+T=100 A+2B+3T=148 T=12

则可以直接计算只喜欢一项的和只喜欢两项的

A=64 B=24

典型例题:甲,乙,丙三个人共解出20道数学题,每人都解出了其中的12道题,每道题都有人解出.只有一人解出的题叫做难题, 只有两人解出的题叫做中等题,三人解出的题叫做容易题,难题比容易题多( )题?

A、6 B、5 C、4 D、3

【解析】第三题需要结合文氏图来理解了,画图会很清楚的

我们设a表示简单题目, b表示中档题目 c表示难题

a+b+c=20

c+2b+3a=12×3 这个式子式文氏图中必须要记住和理解的

将a+b+c=20变成 2a+2b+2c=40 减去 上面的第2个式子

得到: c-a=4 答案出来了

可能很多人都说这个方法太耗时了,的确。在开始使用这样方法的时候费时不少。当当完全了解熟练运用a+2b+3c这个公式时,你会发现再难的题目也不会超过1分钟。

三十四,九宫图问题

此公式只限于奇数行列

步骤1:按照斜线的顺序把数字按照从小到大的顺序,依次斜线填写!

步骤2: 然后将3×3格以外格子的数字折翻过来,

最左边的放到最右边,最右边的放到最左边

最上边的放到最下边,最下边的放到最上边

这样你再看中间3×3格子的数字是否已经满足题目的要求了 呵呵!

三十五,用比例法解行程问题

行程问题一直是国家考试中比较重要的一环,其应用之广恐无及其右者。行程问题的计算量按照基础做法不得不说非常大。所以掌握简单的方法尤为重要。当然简单的方法需要对题目的基础知识的全面了掌握和理解。

在细说之前我们先来了解如下几个关系:

路程为S。速度为V 时间为T

S=VT V=S/T T=S/V

S相同的情况下: V跟T成反比

V相同的情况下: S跟T成正比

T相同的情况下: S跟V成正比

注:比例点数差也是实际差值对应的比例! 理解基本概念后,具体题目来分析

例一、甲乙2人分别从相距200千米的AB两地开车同时往对方的方向行驶。到达对方始发点后返回行驶,按照这样的情况,2人第4次相遇时甲比乙多行了280千米 已知甲的速度为60千米每小时。则乙的速度为多少?

分析:这个题目算是一个相遇问题的入门级的题目。我们先从基础的方法入手,要多给自己提问 求乙的速度 即要知道乙的行驶路程S乙,乙所花的时间T乙。这2个变量都没有告诉我们,需要我们去根据条件来求出:

乙的行驶路程非常简单可以求出来。因为甲乙共经过4次相遇。希望大家不要嫌我罗嗦。我希望能够更透彻的把这类型的题目通过图形更清晰的展现给大家。

第一次相遇情况

A(甲).。。。。。。。。。。。。。。。。。。。。(甲)C(乙)。。。。。。。。。。。。。。。。。。。。。。B(乙)

21

AC即为第一次相遇 甲行驶的路程。 BC即为乙行驶的路程

则看出 AC+BC=AB 两者行驶路程之和=S

第2次相遇的情况

A.。。。。。。。。。。。。。。。。。。。(乙)D(甲)。。。。。。C。。。。。。。。。。。。。。。。。。。。。。。。。。B

在这个图形中,我们从第一次相遇到第2次相遇来看甲从C点开始行驶的路线是C-B-D,其路程是 BC+BD

乙行驶的路线则是C-A-D 其行驶的路程是AC+AD

可以看出第2次相遇两者的行驶路程之和是BC+BD+AC+AD=(BC+AC)+(BD+AD)=2S ,同理第3,4次相遇都是这样。

则我们发现 整个过程中,除第一次相遇是一个S外。其余3次相遇都是2S。总路程是2×3S+S=7S

根据题目,我们得到了行驶路程之和为7×200=1400

因为甲比乙多行驶了280千米 则可以得到 乙是(1400-280)÷2=560 则甲是560+280=840

好,现在就剩下乙的行驶时间的问题了。因为两个人的行驶时间相同则通过计算甲的时间得到乙的时间 即 840÷60=14小时。

所以T乙=14小时。 那么我就可以求出乙的速度V乙=S乙÷T乙=560÷14=40 说道这里我需要强调的是,在行程问题中,可以通过比例来迅速解答题目。 比例求解法:

我们假设乙的速度是V 则根据时间相同,路程比等于速度比,

S甲:S乙=V甲:V乙 衍生出如下比例:(S甲+S乙):(S甲-S乙)=(V甲+V乙):(V甲-V乙)

得出 1400:280=(60+V):(60-V)解得 V=40

例二、甲车以每小时160千米的速度,乙车以每小时20千米的速度,在长为210千米的环形公路上同时、同地、同向出发。每当甲车追上乙车一次,甲车减速1/3 ,而乙车则增速1/3 。问:在两车的速度刚好相等的时刻,它们共行驶了多少千米?

A. 1250 B. 940 C. 760 D. 1310

【解析】 我们先来看 需要多少次相遇才能速度相等

160×(2/3)的N次方=20×(4/3)的N次方 N代表了次数 解得N=3 说明第三次相遇即达到速度相等

第一次相遇前: 开始时速度是160:20=8:1 用时都一样,则路程之比=速度之比 我们设乙行驶了a千米 则 (a+210 ) : a = 8:1 解得 a=30

第二次相遇前: 速度比是 甲:乙=4:1 用时都一样, 则路程之比=速度之比

我们设乙从第1次相遇到第2次相遇行驶了b千米 则 (b+210 ) : b = 4:1 解得 a=70 第三次相遇前:速度比是 甲:乙=2:1 用时都一样, 则路程之比=速度之比

我们设乙从第2次相遇到第3次相遇行驶了c千米 则 (c+210 ) : c = 2:1 解得 c=210 则三次乙行驶了 210+70+30=310千米

而甲比乙多出3圈 则甲是 210×3+310=940

例三、一辆汽车以每小时40千米的速度从甲城开往乙城,返回时它用原速度走了全程的4分之3多5米,再改用每小时30千米的速度走完余下的路程,因此,返回甲城的时间比前往乙城的时间多用了10分钟,甲、乙两城相距多远?

【解析】我们知道多出来的10分钟即1/6小时是在最后1/4差5千米的路程里产生的 ,则根据路程相同

22

速度比等于时间比的反比

即 T30:T40=40:30=4:3

所以30千米行驶的最后部分是用了 1/6×(4-3)×4=2/3小时

即路程是30×2/3=20千米

总路程是(20+5)÷1/4=100

例四、甲乙两人各坐一游艇在湖中划行,甲摇浆10次时乙摇浆8次,而乙摇浆70次,所走的路程等于甲摇浆90次所走的路程,现甲先摇浆4次,则乙摇浆多少次才能追上?

A. 14 B.16 C.112 D.124

【解析】 甲摇浆10次时乙摇浆8次 知道甲乙速度之比=5:4

而乙摇浆70次,所走的路程等于甲摇浆90次所走的路程 则可以得到每浆得距离之比是甲:乙=7:9

所以,我们来看 相同时间内甲乙得距离之比,5×7:4×9=35:36

说明,乙比甲多出1个比例单位

现在甲先划桨4次, 每浆距离是7个单位,乙每浆就是9个单位, 所以甲领先乙是4×7=28个单位 ,事实上乙每4浆才能追上36-35=1个单位,

说明28个单位需要28×4=112浆次追上! 选C

例五、甲乙两个工程队共100人,如果抽调甲队人的1/4至乙队,则乙队比甲队多了2/9,问甲队原来多少人?

这个题目其实也很简单,下面我说一个简单方法

【解析】 根据条件乙队比甲队多了2/9 我们假设甲队是单位1,则乙队就是1+2/9=11/9 ,100人的总数不变

可见 甲乙总数是1+11/9=20/9 (分母不看)

则100人被分成20分 即甲是100÷20×9=45 乙是 55

因为从甲队掉走1/4 则剩下的是3/4 算出原来甲队是 45÷3/4=60

三十六,计算错对题的独特技巧

例题:某次考试有30道判断题,每做对一道题得4分,不做的不得分,做错一道题倒扣2分 小明得分是96分,并且小明有题目没做,则小明答对了几道试题()

A 28 B 27 C 26 D25 正确答案是 D 25题

我们把一个答错的和一个不答的题目看成一组,则一组题目被扣分是6+4=10 解释一下6跟4的来源

6是做错了不但得不到4分还被扣除2分 这样里外就差4+2=6分

4是不答题 只被扣4分,不倒扣分。

这两种扣分的情况看着一组

目前被扣了30×4-96=24分

则说明 24÷10=2组 余数是4

余数是4 表明2组还多出1个没有答的题目

则表明 不答的题目是2+1=3题,答错的是2题

三十七,票价与票值的区别

票价是P( 2,M) 是排列 票值是C(2,M)

三十八,两数之间个位和十位相同的个数

23

1217到2792之间有多少个位数和十位数相同的数?

从第一个满足条件的数开始每个满足条件的数之间都是相差11

方法一: 看整数部分1217~2792

先看1220~2790 相差1570 则有这样规律的数是1570÷10=157个

方法二: 我们先求两数差值 2792-1217=1575

1575中有多少11呢 1575÷11=143 余数是2

大家不要以为到这里就结束了 其实还没有结束

我们还得对结果再次除以11 直到所得的商小于11为止

商+余数再除以11

(143+2)÷11=13 余数是2

(13+2)÷11=1 因为商已经小于11,所以余数不管

则我们就可以得到个数应该是143+13+1=157

不过这样的方法不是绝对精确的,考虑到起始数字和末尾数字的关系。 误差应该会在1之间!

三十九,搁两人握手问题

某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次, 请问这个班的同学有( )人 A、16 B、17 C、18 D、19

【解析】此题看上去是一个排列组合题,但是却是使用的对角线的原理在解决此题。按照排列组合假设总数为X人 则Cx取3=152 但是在计算X时却是相当的麻烦。 我们仔细来分析该题目。以某个人为研究对象。则这个人需要握x-3次手。每个人都是这样。则总共握了x×(x-3)次手。但是没2个人之间的握手都重复计算了1次。则实际握手次数是x×(x-3)÷2=152 计算的x=19人

四十,溶液交换浓度相等问题

设两个溶液的浓度分别为A%,B%并且 A>B 设需要交换溶液为X

则有:(B-X):X=X:(A-X)

A:B=(A-X):X

典型例题:两瓶浓度不同得盐水混合液。60%的溶液是40克,40%的溶液是60克。要使得两个瓶子的溶液浓度相同,则需要相互交换( )克的溶液? A、36 B、32 C、28 D、24

【解析】答案选D 我们从两个角度分析一下,假设需要交换的溶液为a克。则我们来一个一个研究,先看60%的溶液 相对于交换过来的a克40%的溶液 可以采用十字交叉法来得出一个等式 即(再设混和后的标准浓度是p)

40-a :a=(P-40% ) :(60%-P)

同理我们对40%的溶液进行研究 采用上述方法 也能得到一个等式:

60-a :a=(60%-P) :(P-40%)

一目了然,两者实际上是反比,即40-a :a=a :60-a 解得 a=24 即选D

如果你对十字交叉法的原理理解的话 那么这个题目中间的过程完全可以省去。所以说任何捷径都是建立在你对基础知识的把握上。

解法二: 干脆把2个溶液倒在一起混和,然后再分开装到2个瓶子里 这样浓度也是相等的。我们根据十字交叉法 ,60跟40的溶液混合比例 其实跟交换的x克60%溶液与剩下60-x克40%的溶液比例成反比,则60:40=60-x:x解 X=24克

四十一,木桶原理

一项工作由编号为1~6的工作组来单独完成,各自完成所需的时间是:5天,7天,8 24

天,9天,10.5天,18天。现在将这项工作平均分配给这些工作组来共同完成。则需要( )天? A、2.5 B、3 C、4.5 D、6

【解析】这个题目就是我们常说的“木桶效应”类型的题目。 “木桶效应”概念来自于经济学中的称呼。意思是一个木桶是由若干个木板拼凑起来的。其存水量取决于最短的那块木板。 这个题目我们看 该项工作平均分配给了每个小组,则每个小组完成1/6的工作量。他们的效率不同 整体的时间是取决于最慢的那个人。当最慢的那个人做完了,其它小组早就完成了。18天的那个小组是最慢的。所以完成1/6需要3小时,选B

例题:一项工作,甲单独做需要14天,乙单独做需要18天,丙丁合做需要8天。则4人合作需要( )天?

A、4 B、 5 C、6 D、7

【解析】 题目还是“木桶效应”的隐藏运用。我们知道甲乙的各自效率。但是丙丁不知道,根据合做的情况 并且最后问的也是合作的情况。我们不妨将其平均化处理。也就是说 两个人的平均效率是16天。那么这里效率最差的是18天。大家都是18天 则4人合作需要18÷4=4.5天。可见最差也不会超过4.5天,看选项只有A满足

四十二,坏钟表行走时间判定问题

一个钟表出现了故障,分针比标准时间每分钟快6秒,时针却是正常的。上午某一时刻将钟表调整至标准时间。经过一段时间 发现钟表的时刻为晚上9:00 请问钟表在何时被调整为标准时间? A、10:30 B、11:00 C、12:00 D、1:30

【解析】此题也是比较简单的题目。我们看因为每分钟快6秒则1个小时快60×6=360秒即6分钟。当9:00的时候 说明分针指在12点上。看选项。其时针正常,那么相差的小时数是正常的,A选项差10.5个小时即 分针快了10.5×6=63分钟。则分针应该在33分上。错误! 同理看B选项 相差10个小时 即10×6=60分钟,刚好一圈,即原在12上,现在还在12上选B,其它雷同分析。

四十三,双线头法则问题

设做题的数量为S 做对一道得X分 做错一道扣Y分 不答不得分

竞赛的成绩可能值为N 令T=(X+Y)/Y

则N={[1+(1+S)]*(1+S)}/2-{[1+(S-T+1)]*(S-T+1)}/2

某次数学竞赛共有10道选择题,评分办法是每一题答对得4分,答错一道扣2分,不答不得分,设这次竞赛最多有N种可能的成绩,则N应等于多少? A、28 B、30 C、32 D、36

【解析】该题是双线段法则问题【(1+11)×11÷2 】-【(1+8)×8÷2】=30

所谓线段法则就是说,一个线段上连两端的端点算在内共计N个点。问这个线段一共可以行成多少线段。计算方法就是(N-1)×N÷2,我看这个题目。我们按照错误题目罗列大家就会很清楚了

答对题目数 可能得分

10 40

9 36,34

8 32,30,28

7 28,26,24,22

6 24,22,20,18,16

5 20,18,16,14,12,10

4 16,14,12,10, 8, 6,4

3 12,10, 8, 6, 4, 2,0, -2

25

2 8, 6, 4, 2, 0,-2,-4,-6,-8

1 4,2,0,-2,-4,-6,-8,-10,-12,-14,

0 0,-2,-4,-6,-8,-10,-12,-14,-16,-18,-20

这样大家就不难发现可能得分的情况随着答对题目数量的减少,或者说答错题目的增多。呈现等差数列的关系,也就是线段法则的规律。然后从第7开始出现了重复数字的产生。也是随着题目的答错数量的增加而等差增加。这是隐藏的线段法则。所以称之为双线段法则应用。

回归倒我一看的题目 大家可能要问,后面【】里面的8从什么地方来的? 这就是确定重复位置在哪里的问题。 (得分分值+扣分分值)÷扣分分值=3 即当错3题时开始出现重复数字。也就是隐形线段法则的起始端。10-3=7 就是说 从0~8之间有多少个间隔就有多少个重复组合。

四十四,两人同向一人逆相遇问题

典型例题:在一条长12米的电线上,红,蓝甲虫在8:20从左端分别以每分钟13厘米和11厘米的速度向右端爬行去,黄虫以每分钟15厘米的速度从右端向左爬去,红虫在什么时刻恰好在蓝虫和黄虫的中间? A 8:55 B 9:00 C 9:05 D 9:10

公式总结;设同向的速度分别为A B 逆向的为C 时间为T

则T=A+[(A-B)/2+C]*T=S

四十五,往返行程问题的整体求解法

首先两运动物体除第一次相遇行S外,每次相遇都行使了2S。

我们可以假设停留的时间没有停留,把他计入两者的总路程中

化静为动巧求答

例题:1快慢两车同时从甲乙两站相对开出,6小时相遇,这时快车离乙站还有240千米,已知慢车从乙站到甲站需行15小时,两车到站后,快车停留半小时,慢车停留1小时返回,从第一次相遇到返回途中再相遇,经过多少小时?

解法:根据往返相遇问题的特征可知,从第一次相遇到返回途中再相遇,两车共行的路程为甲乙两站距离的2倍,假设快车不在乙站停留0.5小时,慢车不在甲站停留1小时,则两车从第一次相遇到第二次相遇所行总路程为600×2+60×0.5+40×1=1270(千米),故此期间所经时间为1270÷(60+40)=12.7(小时)

2 甲乙两人同时从东镇出发,到相距90千米的西镇办事,甲骑自行车每小时行30千米,乙步行每小时行10千米,甲到西镇用1小时办完事情沿原路返回,途中与乙相遇。问这时乙走了多少千米?

解法:根据题意可知甲从东镇到西镇,返回时与乙相遇(乙未到西镇,无返回现象),故两人所行路程总和为(90×2=)180(千米),但因甲到西镇用了1小时办事。倘若甲在这1小时中没有停步(如到另一地方买东西又回到西镇,共用1小时),这样两人所行总路程应为: 90×2+30=210(千米),又因两人速度和为30+10=40(千米),故可求得相遇时间为:(210÷40=)5.25(小时),则乙行了(10×5.25=)52.5(千米)。

3 甲、乙两人同时从东西两镇相向步行,在距西镇20千米处两人相遇,相遇后两人又继续前进。甲至西镇、乙至东镇后都立即返回,两人又在距东镇15千米处相遇,求东西两镇距离?

解法一 设东西两镇相距为x千米,由于两次相遇时间不变,则两人第一次相遇前所走路程之比等于第二次相遇前所走路程之比,故得方程: 所以东西两镇相距45千米。 解法二 紧扣往返行程问题的特征,两人自出发至第二次相遇所走路程总和为东西两镇距离的3倍,而第一次相遇距西镇20千米,正是乙第一次相遇前所走路程,则从出发至第 26

二次相遇乙共走(20×3=)60(千米),第二次相遇时乙已从东镇返回又走了15千米,所以,两镇的距离为(20×3-15=)45(千米)

四十六,行船问题快解 例题:一只游轮从甲港顺流而下到乙港,马上又逆水返回甲港,共用8小时,顺水每小时比逆水每小时多行12千米,前4小时比后4小时多行30千米。甲、乙两港相距多少千米?A.72 B.60 C.55 D.48

解析:30/12=5/2,8-5/2=11/2 (12/2)*1/[(2/5-2/11)/2]=55

四十七,N条线组成三角形的个数 n条线最多能画成几个不重叠的三角形 F(n)=F(n-1)+ F(n-2) 如 f(11)=19

四十七,边长为ABC的小立方体个数

边长为ABC的长方体由边长为1的小立方体组成,一共有abc个小立方体,露在外面的小立方体共有 abc-(a-2)(b-2)(c-2)

四十八,测井深问题

用一根绳子测井台到井水面的深度,把绳子对折后垂到井水面,绳子超过井台9米;把绳子三折后垂到井水面,绳子超过井台2米。那么,绳子长多少米? 解答:(2*9-3*2)/(3-2)=12 (折数*余数-折数*余数)/折数差=高度 绳长=(高度+余数)*折数=(12+9)*2=42

四十九,分配对象问题 (盈+亏)/分配差 =分配对象数

有一堆螺丝和螺母,若一个螺丝配2个螺母,则多10个螺母;若1个螺丝配3个螺母,则少6个螺母。共有多少个螺丝?( )A.16 B.22 C.42 D.48 解析:A,(10+6)/(3-2)=16

若干同学去划船,他们租了一些船,若每船4人则多5人,若每船5人则船上空4个坐位,共有( )位同学A.17 B.19 C.26 D.41

解析:D,(5+4)/(5-4)=9 ,4*9+5=41

27

更多相关推荐:
行测总结

行测复习总结我的行测学习过程可以分为五个阶段:第一,认识行测;第二,专项训练;第三,套题练习;第四,查缺补漏;第五,强化冲刺。先说第一点:认识行测。行测是一个全新的题型,它和我们以往的考试有许多不同,每个考公务…

行测总结

言语理解与表达自我总结一-主题句精简压缩有主题句同义替换反向推导:如果不A,那么B。意思就是必须A寻找主题句无主题句并列加和归纳概括1、背景铺陈在这样。。。。情况下/背景下,后面往往出现对策句既文段主题句2、援…

行测总结

数字推理部分全奇必是奇:数列给出的项如果全是奇数,答案必是奇数;全偶必是偶:数列给出的项如果全是偶数,答案必是偶数。?奇偶奇偶间隔走:数列给出的项如果是奇数和偶数间隔,答案必须符合此规律。?从怪原则:选项中有0…

行测总结

一、言语理解与表达一、选词填空(注意词义和感情色彩习惯用法和固定搭配)二、片段阅读(一)答题技巧:1、先看问题确定方向2、判断选项本身正误错误选项:表述过于绝对;与原文某句表述相同,比较片面;表述与题干不相干。…

行测总结-----超全面

时钟问题—钟面追及基本方法:①分格方法:时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。分针每小时走60分格,即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走1/12分格。②度数方法:从角度…

行测总结

行政能力测验行政能力测验考察的无非全是中学内容,题目简单,主要讲求速度和精准。比较像快速射击,要在20秒内有思路,30秒内准确做出答案。下面我分别叙述各题型每道题前20秒必须做的事,以后每做一模块就先看一下此模…

魔鬼行测总结版

一,常识判断规律一语气的中庸原则答案定是含糊的、模棱两可的不具体的选项。若选项中出现具体的数字或绝对化的词语或太具体太明确,则定是错误选项。应用正确率说明:纵观20xx年到20xx年十年的常识判断的题目:凡是选…

行测总结

数字推理常见类型1数列相邻两数的差为2的n次方比如13715312二级等差数列本身并不直接变现为等差数列用前一项减去后一项后就构成了等差数列如6077961171403立方数列依次分别是1的立方减12的立方减2...

行测总结

行政职业能力测验模块一数量关系第一章数字推理第一节基础数列特点1若数字增幅缓慢可考虑和差数列2若数字增幅较大可考虑倍数数列3若数字增幅变化很大可考虑积商数列平方数列或立方数列4项数较多时可考虑两两分组或奇偶项分...

公务员行测总结

看了它你离公务员就只剩一步之遥了公务员考试秘笈第一部分数字推理一基本要求熟记熟悉常见数列保持数字的敏感性同时要注意倒序自然数平方数列410149162536496481100121169196225256289...

行测数量关系总结

行测数学运算真题妙解之抽屉问题从12312中至少要选个数才可以保证其中一定包括两个数的差是7A7B10C9D8答案D在这12个数中差是7的数有以下5对1251141039281另有两个数67肯定不能与其他数形成...

行测方法总结

行测方法总结一做题顺序1资料分析2短文阅读语段阅读语句表达选词填空3定义判断分析推理4常识涂卡5机械推理图形推理涂卡6数学应用涂卡看一题涂一题二通用方法1速度千万别多想做完一题后根本不记得它是什么2眼睛跟着手指...

行测总结(38篇)