线性代数总结

时间:2024.5.7

一、课程特点

特点一:知识点比较细碎。

如矩阵部分涉及到了各种类型的性质和关系,记忆量大而且容易混淆的地方较多。

特点二:知识点间的联系性很强。

这种联系不仅仅是指在后面几章中用到前两章行列式和矩阵的相关知识,更重要的是在于不同章节中各种性质、定理、判定法则之间有着相互推导和前后印证的关系。

复习线代时,要做到“融会贯通”。

“融会”——设法找到不同知识点之间的内在相通之处;

“贯通”——掌握前后知识点之间的顺承关系。

二、行列式与矩阵

第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。 行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算又有低阶和 阶两种类型;主要方法是应用行列式的性质及按行\列展开定理化为上下三角行列式求解。

对于抽象行列式的求值,考点不在求行列式,而在于 、 、 等的相关性质,及性质 (其中 为矩阵 的特征值)。

矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、 、 、 的性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。

三、向量与线性方程组

向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。 向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

解线性方程组可以看作是出发点和目标。线性方程组(一般式)

还具有两种形式:

(Ⅰ)矩阵形式 ,其中

, ,

(Ⅱ)向量形式 ,其中

,

向量就这样被引入了。

1)齐次线性方程组与线性相关、无关的联系

齐次线性方程组 可以直接看出一定有解,因为当 时等式一定成立;印证了向量部分的一条性质“零向量可由任何向量线性表示”。

齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式 中的 只能全为0才能使等式成立,而当齐次线性方程组有非零解时,存在不全为0的 使上式成立;但向量部分中判断向量组 是否线性相关\无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系:齐次线性方程组 是否有非零解对应于系数矩阵 的列向量组是否线性相关。可以设想线性相关\无关的概念就是为了更好地讨论线性方程组问题而提出的。

2)齐次线性方程组的解与秩和极大无关组的联系

同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”,向量组 组成的矩阵 有 说明向量组的极大线性无关组中有 个向量,即 线性无关,也即等式 只有零解。所以,经过

“秩 → 线性相关\无关 → 线性方程组解的判定”

的逻辑链条,由 就可以判定齐次方程组 只有零解。当 时, 的列向量组 线性相关,此时齐次线性方程组 有非零解,且齐次线性方程组 的解向量可以通过 个线性无关的解向量(基础解系)线性表示。

3)非齐次线性方程组与线性表示的联系

非齐次线性方程组 是否有解对应于向量 是否可由 的列向量组 线性表示,即使等式 成立的一组数 就是非齐次线性方程组 的解。当非齐次线性方程组 满足 时,它有唯一解。这一点也正好印证了一个重要定理:“若 线性无关,而 线性相关,则向量 可由向量组 线性表示,且表示方法唯一”。

性质1.对于方阵 有:

方阵 可逆ó

ó 的行\列向量组均线性无关ó

ó 可由克莱姆法则判断有唯一解,

而 仅有零解

对于一般矩阵 则有:

ó 的列向量组线性无关

ó 仅有零解, 有唯一解(如果有解)

性质2.齐次线性方程组 是否有非零解对应于系数矩阵 的列向量组是否线性相关,而非齐次线性方程组 是否有解对应于 是否可以由 的列向量组线性表出。 以上两条性质可视为是将线性相关、行列式、秩、线性方程组几部分知识联系在一起的桥梁。

应记住的一些性质与结论

1.向量组线性相关的有关结论:

1)向量组 线性相关ó向量组中至少存在一个向量可由其余 个向量线性表出。

2)向量组线性无关ó向量组中没有一个向量可由其余的向量线性表出。

3)若 线性无关,而 线性相关,则向量 可由向量组 线性表示,且表示法唯一。

2.向量组线性表示与等价的有关结论:

1) 一个线性无关的向量组不可能由一个所含向量个数比它少的向量组线性表示。

2) 如果向量组 可由向量组 线性表示,则有

3) 等价的向量组具有相同的秩,但不一定有相同个数的向量;

4) 任何一个向量组都与它的极大线性无关组等价。

3.常见的线性无关组:

1) 齐次线性方程组的一个基础解系;

2) 、 、 这样的单位向量组;

3) 不同特征值对应的特征向量。

4.关于秩的一些结论:

1) ;

2) ;

3) ;

4) ;

5)若有 、 满足 ,则 ;

6)若 是可逆矩阵则有 ;

7)若 可逆则有 ;

8) 。

4.线性方程组的解:

1) 非齐次线性方程组 有唯一解则对应齐次方程组 仅有零解;

2)若 有无穷多解则 有非零解;

3)若 有两个不同的解则 有非零解;

4)若 是 矩阵而 则 一定有解,而且当 时有唯一解,当 时有无穷多解;

5)若 则 没有解或有唯一解。

四、特征值与特征向量

相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。本章知识要点如下:

1.特征值和特征向量的定义及计算方法

就是记牢一系列公式如 、 、 和 。

常用到下列性质:

若 阶矩阵 有 个特征值 ,则有 ;

若矩阵 有特征值 ,则 、 、 、 、 、 分别有特征值 、 、 、 、 、 ,且对应特征向量等于 所对应的特征向量;

2.相似矩阵及其性质

定义式为 ,此时满足 、 、 ,并且 、 有相同的特征值。

需要区分矩阵的相似、等价与合同:矩阵 与矩阵 等价( )的定义式是 ,其中 、 为可逆矩阵,此时矩阵 可通过初等变换化为矩阵 ,并有 ;当 中的 、 互逆时就变成了矩阵相似( )的定义式,即有 ;矩阵合同的定义是 ,其中 为可逆矩阵。

由以上定义可看出等价、合同、相似三者之间的关系:若 与 合同或相似则 与 必等价,反之不成立;合同与等价之间没有必然联系。

3.矩阵可相似对角化的条件

包括两个充要条件和两个充分条件。充要条件1是 阶矩阵 有 个线性无关的特征向量;充要条件2是 的任意 重特征根对应有 个线性无关的特征向量;充分条件1是 有 个互不相同的特征值;充分条件2是 为实对称矩阵。

4.实对称矩阵及其相似对角化

阶实对称矩阵 必可正交相似于对角阵 ,即有正交矩阵 使得 ,而且正交矩阵 由 对应的 个正交的单位特征向量组成。

可以认为讨论矩阵的相似对角化是为了方便求矩阵的幂:直接相乘来求 比较困难;但如果有矩阵 使得 满足 (对角矩阵)的话就简单多了,因为此时

而对角阵 的幂 就等于 ,代入上式即得 。引入特征值和特征向量的概念是为了方便讨论矩阵的相似对角化。因为,不但判断矩阵的相似对角化时要用到特征值和特征向量,而且 中的 、 也分别是由 的特征向量和特征值决定的。

五、二次型

本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵 存在正交矩阵 使得 可以相似对角化”,其过程就是上一章相似对角化在 为实对称矩阵时的应用。 本章知识要点如下:

1.二次型及其矩阵表示。

2.用正交变换化二次型为标准型。

3.正负定二次型的判断与证明。


第二篇:线性代数总结


第一部分:基本要求(计算方面)

四阶行列式的计算;

N阶特殊行列式的计算(如有行和、列和相等);

矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);

求矩阵的秩、逆(两种方法);解矩阵方程;

含参数的线性方程组解的情况的讨论;

齐次、非齐次线性方程组的求解(包括唯一、无穷多解);

讨论一个向量能否用和向量组线性表示;

讨论或证明向量组的相关性;

求向量组的极大无关组,并将多余向量用极大无关组线性表示;

将无关组正交化、单位化;

求方阵的特征值和特征向量;

讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;

通过正交相似变换(正交矩阵)将对称矩阵对角化;

写出二次型的矩阵,并将二次型标准化,写出变换矩阵;

判定二次型或对称矩阵的正定性。

第二部分:基本知识

一、行列式

1.行列式的定义

用n^2个元素aij组成的记号称为n阶行列式。

(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;

(2)展开式共有n!项,其中符号正负各半;

2.行列式的计算

一阶|α|=α行列式,二、三阶行列式有对角线法则;

N阶(n>=3)行列式的计算:降阶法

定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况

上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;

(2)行列式值为0的几种情况:

Ⅰ 行列式某行(列)元素全为0;

Ⅱ 行列式某行(列)的对应元素相同;

Ⅲ 行列式某行(列)的元素对应成比例;

Ⅳ 奇数阶的反对称行列式。

二.矩阵

1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);

2.矩阵的运算

(1)加减、数乘、乘法运算的条件、结果;

(2)关于乘法的几个结论:

①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);

②矩阵乘法一般不满足消去律、零因式不存在;

③若A、B为同阶方阵,则|AB|=|A|*|B|;

④|kA|=k^n|A|

3.矩阵的秩

(1)定义 非零子式的最大阶数称为矩阵的秩;

(2)秩的求法 一般不用定义求,而用下面结论:

矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

求秩:利用初等变换将矩阵化为阶梯阵得秩。

4.逆矩阵

(1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立);

(2)性质: (AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)

(3)可逆的条件:

① |A|≠0; ②r(A)=n; ③A->I;

(4)逆的求解

伴随矩阵法 A^-1=(1/|A|)A*;(A* A的伴随矩阵~)

②初等变换法(A:I)->(施行初等变换)(I:A^-1)

5.用逆矩阵求解矩阵方程:

AX=B,则X=(A^-1)B;

XB=A,则X=B(A^-1);

AXB=C,则X=(A^-1)C(B^-1)

三、线性方程组

1.线性方程组解的判定

定理:

(1) r(A,b)≠r(A) 无解;

(2) r(A,b)=r(A)=n 有唯一解;

(3)r(A,b)=r(A)<n 有无穷多组解;

特别地:对齐次线性方程组AX=0

(1) r(A)=n 只有零解;

(2) r(A)<n 有非零解;

再特别,若为方阵,

(1)|A|≠0 只有零解

(2)|A|=0 有非零解

2.齐次线性方程组

(1)解的情况:

r(A)=n,(或系数行列式D≠0)只有零解;

r(A)<n,(或系数行列式D=0)有无穷多组非零解。

(2)解的结构:

X=c1α1+c2α2+…+Cn-rαn-r。

(3)求解的方法和步骤:

①将增广矩阵通过行初等变换化为最简阶梯阵;

②写出对应同解方程组;

③移项,利用自由未知数表示所有未知数;

④表示出基础解系;

⑤写出通解。

3.非齐次线性方程组

(1)解的情况:

利用判定定理。

(2)解的结构:

X=u+c1α1+c2α2+…+Cn-rαn-r。

(3)无穷多组解的求解方法和步骤:

与齐次线性方程组相同。

(4)唯一解的解法:

有克莱姆法则、逆矩阵法、消元法(初等变换法)。

四、向量组

1.N维向量的定义

注:向量实际上就是特殊的矩阵(行矩阵和列矩阵)。

2.向量的运算:

(1)加减、数乘运算(与矩阵运算相同);

(2)向量内积 α'β=a1b1+a2b2+…+anbn;

(3)向量长度

|α|=√α'α=√(a1^2+a2^2+…+an^2) (√ 根号)

(4)向量单位化 (1/|α|)α;

(5)向量组的正交化(施密特方法)

设α1,α 2,…,αn线性无关,则

β1=α1,

β2=α2-(α2’β1/β1’β)*β1,

β3=α3-(α3’β1/β1’β1)*β1-(α3’β2/β2’β2)*β2,………。

3.线性组合

(1)定义 若β=k1α1+k2α 2+…+knαn,则称β是向量组α1,α 2,…,αn的一个线性组合,或称β可以用向量组α1,α 2,…,αn的一个线性表示。

(2)判别方法 将向量组合成矩阵,记

A=(α1,α 2,…,αn),B=(α1,α2,…,αn,β)

若 r (A)=r (B),则β可以用向量组α1,α 2,…,αn的一个线性表示;

若 r (A)≠r (B),则β不可以用向量组α1,α 2,…,αn的一个线性表示。

(3)求线性表示表达式的方法:

将矩阵B施行行初等变换化为最简阶梯阵,则最后一列元素就是表示的系数。

4.向量组的线性相关性

(1)线性相关与线性无关的定义

设 k1α1+k2α2+…+knαn=0,

若k1,k2,…,kn不全为0,称线性相关;

若k1,k2,…,kn全为0,称线性无关。

(2)判别方法:

① r(α1,α 2,…,αn)<n,线性相关;

r(α1,α 2,…,αn)=n,线性无关。

②若有n个n维向量,可用行列式判别:

n阶行列式aij=0,线性相关(≠0无关)(行列式太不好打了)

5.极大无关组与向量组的秩

(1)定义 极大无关组所含向量个数称为向量组的秩

(2)求法 设A=(α1,α 2,…,αn),将A化为阶梯阵,则A的秩即为向量组的秩,而每行的第一个非零元所在列的向量就构成了极大无关组。

五、矩阵的特征值和特征向量

1.定义 对方阵A,若存在非零向量X和数λ使AX=λX,则称λ是矩阵A的特征值,向量X称为矩阵A的对应于特征值λ的特征向量。

2.特征值和特征向量的求解:

求出特征方程|λI-A|=0的根即为特征值,将特征值λ代入对应齐次线性方程组(λI-A)X=0中求出方程组的所有非零解即为特征向量。

3.重要结论:

(1)A可逆的充要条件是A的特征值不等于0;

(2)A与A的转置矩阵A'有相同的特征值;

(3)不同特征值对应的特征向量线性无关。

六、矩阵的相似

1.定义 对同阶方阵A、B,若存在可逆矩阵P,使P^-1AP=B,则称A与B相似。

2.求A与对角矩阵∧相似的方法与步骤(求P和∧):

求出所有特征值;

求出所有特征向量;

若所得线性无关特征向量个数与矩阵阶数相同,则A可对角化(否则不能对角化),将这n个线性无关特征向量组成矩阵即为相似变换的矩阵P,依次将对应特征值构成对角阵即为∧。

3.求通过正交变换Q与实对称矩阵A相似的对角阵:

方法与步骤和一般矩阵相同,只是第三歩要将所得特征向量正交化且单位化。

七、二次型

n

1.定义 n元二次多项式f(x1,x2,…,xn)=∑ aijxixj称为二次型,若aij=0(i≠j),则称为二交型的标准型。

i,j=1

2.二次型标准化:

配方法和正交变换法。正交变换法步骤与上面对角化完全相同,这是由于对正交矩阵Q,Q^-1=Q',即正交变换既是相似变换又是合同变换。

3.二次型或对称矩阵的正定性:

(1)定义(略);

(2)正定的充要条件:

①A为正定的充要条件是A的所有特征值都大于0;

②A为正定的充要条件是A的所有顺序主子式都大于0;

更多相关推荐:
考研.数学 线性代数总结2

线性代数部分—矩阵理论一、矩阵基本概念?a11??a211、矩阵的定义—形如????a?m1a12a22?am2?a1n???a2n?,称为矩阵m?n,记为A?(aij)m?n。?????amn??特殊矩阵有(…

线性代数总结-1

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确?A可逆?r(A)?n??A的列(行)向量线性无关??A的特征值全不为0?Ax??只有零解??x??,Ax???A?0??n???R,Ax??总有唯一解…

线性代数总结-1

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确?A可逆??r(A)?n?A的列(行)向量线性无关??A的特征值全不为0??Ax??只有零解??x??,Ax??A?0??n????R,Ax??总有唯一…

线性代数总结(西工大徐仲老师总结精华)

线性代数总结一、课程特点特点一:知识点比较细碎。如矩阵部分涉及到了各种类型的性质和关系,记忆量大而且容易混淆的地方较多。特点二:知识点间的联系性很强。这种联系不仅仅是指在后面几章中用到前两章行列式和矩阵的相关知…

线性代数总结

线性代数公式汇总1、行列式1.n行列式共有n2个元素,展开后有n!项,可分解为2n行列式;2.代数余子式的性质:①、Aij和aij的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(…

线性代数总结

线性代数总结1.二阶行列式定义:记号a11a21a12a22=a11a22-a12a21,称为二阶行列式(三阶与二阶类似)。2.对角线法则只适用于二阶与三阶,四阶及以后不能用。3.n级排列:由自然数1,2,…,…

线性代数总结

1、行列式1.行列式共有个元素,展开后有项,可分解为行列式;2.代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为…

20xx考研数学线性代数重点内容和典型题型总结

线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,万学海文数学考研辅导专家们在这里,提醒广大的20xx年的考生们必须注重计算能力.线性代数在数学一、…

线性代数总结

第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组…

20xx考研真题线性代数试题特点总结

20xx年x月x日来源:跨考教育分享到:新浪微博搜狐微博腾讯微博网易微博人人网20xx年线性代数依旧是5道考题,两个选择题,一个填空题,两个解答题,两个解答题是22分,今年这两道大题都是常考知识点,并且数学…

线性代数中必考知识点归纳总结

20xx年线性代数必考的知识点1、行列式1.n行列式共有n2个元素,展开后有n!项,可分解为2n行列式;2.代数余子式的性质:①、Aij和aij的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为…

线性代数总结

线性代数总结通过了对线性代数前三章(N阶行列式矩阵及其运算矩阵的初等变换与线性方程组)的学习,使我获得了线性代数的基本思想方法和行列式`矩阵`线性方程组方面的知识。它一方面为后继课程提供了一些所要的基础理论和知…

线性代数总结(58篇)