篇一 :理论力学(运动学)总结

5    点的运动学

矢量法

直角坐标法

自然(弧坐标)法

=dr/ds

副法线单位矢量

曲率

曲率半径

速度

加速度

     

6刚体的简单运动

是指刚体的平行移动和定轴转动

6-1 刚体的平行移动

任意两点连线方向始终保持不变。

rA= rB+ rBA

刚体平移的特点 各点的运动轨迹形状,速度和加速度都一样

即:平移刚体的运动可以简化为一个点的运动

6-2 刚体的定轴转动

有两点保持不动,通过两点的直线称为转轴

w, a各点一样

v, a各点不一样

j ____转角,单位弧度(rad)

j =f(t)______ 为转动方程

角速度  w= dj/dt  代数量  rad/s

角加速度a=dw/dt   代数量  rad/s 2

转速w=2pn/60  rad/s

6-3 转动刚体内各点的速度和加速度

点的弧坐标: s = Rj

速度 v= R w

方向:沿圆周的切线,指向与转动方向一致

切向加速度 at= Ra

法向加速度 an= Rw2

方向与速度垂直并指向轴线

7点的合成运动

7-1 点的合成运动概念

定系  固结于地面上的坐标系

动系 固结于相对于地面运动物体上的坐标系

绝对运动a(动点相对静系)

牵连运动e(动系相对静系)

相对运动r(动点相对动系)

动点  牵连点

7-2 点的速度合成定理

va = ve + vr

va动点的绝对速度;

vr动点的相对速度;

ve动点的牵连速度,是动系上一点(牵连点)的速度

①动系作平移时,动系上各点速度都相等;

②动系作转动时,ve必须是该瞬时动系上与动点相重合点的速度。

…… …… 余下全文

篇二 :理论力学运动学知识点总结

运动学重要知识点

一、刚体的简单运动知识点总结

1.刚体运动的最简单形式为平行移动和绕定轴转动。

2.刚体平行移动。

·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。

·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。

·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。

3.刚体绕定轴转动。

? 刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ? 刚体的转动方程 φ=f(t)表示刚体的位置随时间的变化规律。

? 角速度 ω表示刚体转动快慢程度和转向,是代数量,

以用矢量表示,

,当 α与 ω。角速度也可 ? 角加速度表示角速度对时间的变化率,是代数量,

同号时,刚体作匀加速转动;当 α 与 ω异号时,刚体作匀减速转动。角加速度也可以用矢量表示,

? 绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:

速度、加速度的代数值为

? 传动比

一、点的运动合成知识点总结

1.点的绝对运动为点的牵连运动和相对运动的合成结果。

? 绝对运动:动点相对于定参考系的运动;

? 相对运动:动点相对于动参考系的运动;

? 牵连运动:动参考系相对于定参考系的运动。

2.点的速度合成定理。

? 绝对速度

:动点相对于定参考系运动的速度;

? 相对速度

:动点相对于动参考系运动的速度;

? 牵连速度

:动参考系上与动点相重合的那一点相对于定参考系运动的速度。

3.点的加速度合成定理。

? 绝对加速度

:动点相对于定参考系运动的加速度;

? 相对加速度

:动点相对于动参考系运动的加速度;

? 牵连加速度

:动参考系上与动点相重合的那一点相对于定参考系运动的加速度;

? 科氏加速度

…… …… 余下全文

篇三 :理论力学总结

xxx  xxx   学号:xxxxxxxx

20##学年理论力学课程总结

说到课程总结,不得不先谈一下理论力学这一学科。理论力学属于一般力学的范畴,而之后我们要接触到的材料力学和结构力学均属于固体力学,而力学的另一个分类流体力学主要研究液体和气体。

本学期所学的理论力学主要分为静力学、运动学与动力学三个方面。故名思议静力学主要研究平衡物体;运动学主要从集合的角度研究物体的运动速度加速度等;而动力学主要研究物体的运动与作用力之间的关系。

而所有的内容都可以归为一个公式

任何事物的研究都应该是由简到繁,再由繁中去寻找简与繁之间的桥梁。理论力学的研究也是如此。就好像要练就一本武林秘籍一样,首先要打好基础,才能一步步的开始研究学习。

简,即为静止事物的研究,也就是说牛顿第二定律中=0。此时研究起来就会免去很多由于运动而带来的不便。也就是课本前三章讲的内容。

繁,即为运动物体的研究,即。而如果要研究运动物体的受力情况,就必须要先弄明白物体的运动情况,即其速度与加速度的分析,也就是4-6章的内容。

要分析运动物体的受力情况,就要寻找简与繁之间的桥梁,这也就出现了第7章的虚位移原理,与第八章的达朗贝尔原理。在我个人的理解,虚位移原理,即为将运动加入到了静止的结构中,通过计算虚功,另起为0,得到结构中的约束力等,这里主要会用到第4-6章中的速度分析来将其解出。也就是说解决这里问题的前提是学号了速度的分析。而说道达朗贝尔原理,即将静力学的内容加入到运动物体的分析之中,从来认为的引入了惯性力和惯性力偶的概念,而分析惯性力和惯性力偶的前提是第4-6章中的加速度分析。这也是我学期结束后,我认为运动学这部分重要的原因。

而后面的动力学三大定理以及拉格朗日方程则是在解决某些动力学问题的简单方法。在动力学普遍定理这一章有刚体平面运动微分方程,仔细看的话不难发现,其实就是达朗贝尔的变形,抑或说达朗贝尔原理是刚体平面运动微分方程的变形。

…… …… 余下全文

篇四 :理论力学动力学知识点总结

质点动力学的基本方程

知识总结

1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例;

作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为

,应用时取投影形式。

3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题:

(1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。

求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。

动量定理

知识点总结

1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例;

作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为

,应用时取投影形式。

3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题:

(1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。

求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。 常见问题

问题一 在动力学中质心意义重大。质点系动量,它只取决于质点系质量及质心速度。

问题二 质心加速度取决于外力主失,而与各力作用点无关,这一点需特别注意。

动量矩定理

知识点总结 1.动量矩。

质点对点 O 的动量矩是矢量

质点系对点 O 的动量矩是矢量

若 z 轴通过点 O ,则质点系对于 z 轴的动量矩为

…… …… 余下全文

篇五 :机械原理与理论力学中运动学部分的比较与总结

机械原理与理论力学中运动学部分的比较与总结

作者:方俊 吴小平

来源:《教育教学论坛》20xx年第52期

摘要:本文笔者通过对机械原理与理论力学中运动学部分的比较,总结并反思了机械原理教材中对运动学问题表述方式与求解方法中存在的缺陷;对机械系专业课程与基础课程内容的衔接以及教学方法的改革提出了自己的见解。

关键词:机械原理;理论力学;运动学

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(20xx)52-0096-02

普通高等工科院校机械类各专业所学的《机械原理》课程,内容一般可以归纳为三个部分:机构的结构、机构的运动学以及机器动力学。而其中机构的运动学部分,主要研究了机构各点的轨迹、位移、速度、加速度的求法和机构的运动规律,这与《理论力学》中的运动学部分所研究的内容是一致的。从课程间的关系上看,《机械原理》原本就是以《理论力学》[1]为基础的,因此对于运动学的研究方法和思想也应该是一致的;但事实上,国内大部分机械原理教材对于运动学问题的求解方法与理论力学还是有一些区别的,下面我们将举例详细说明。以组成移动副的两构件重合点间的速度和加速度的求法为例,如图1(a)中的四杆机构,已知机构的位置、各构件长度及构件1的等角速度ω1,求构件3的角速度ω3和角加速度ε3(为表述方便,所有符号以《机械原理》教材为准[2])。

一、从速度分析看相对运动原理的不同描述

首先看《机械原理》对该问题中相对运动的分析方法:图1中构件2和3组成移动副,构件2上的点B2与构件3上的点B3为组成移动副两构件的重合点,因此可以根据相对运动原理列出相对速度和相对加速度矢量方程式。已知构件1上B的速度为vB1=ω1lAB,方向垂直于AB且指向与ω1转向一致;由于构件1、2用转动副B相联,因此vB1=vB2,构件2、3组成移动副,其重合点B的相对速度矢量方程式为:■=■+■(1)式中■为点B3相对于点B2的运动速度,该矢量等式中仅■与■的大小未知,故可画出速度多边形,如图1(b)所示。接下来通过解三角形或者按速度比例尺作图便可求出■的大小,进而解得构件3的角速度ω3。可以看出,这种方法是以B2为参考点所列出的速度矢量方程,用《理论力学》中点的合成运动理论来解释,就是以B3为动点,并将动系固结在构件2上,此时的点B2实际上就是牵连运动中与动系固结的“牵连点”,因此■就是牵连速度■,■相对速度■,■则是绝对速度■,这就满足了点的速度合成定理■=■+■。但是理论力学在解决该类问题的时候,更习惯于以B2为动点,将动系固结到构件3上。这样做的优点,不仅绝对运动中动点的速度和轨迹比较容易确定,而且牵连运动的形式也更容易判断(动系作定轴转动),牵连点则是任意时刻BC杆上与B2重合

…… …… 余下全文

篇六 :理论力学(动力学)总结

9质点动力学

9-1动力学的基本定律

牛顿定律

1.第一定律(惯性定律):

2.第二定律(力与加速度之间的关系定律)

3.第三定律(作用与反作用定律)

9-2质点的运动微分方程

1.矢量形式

2.直角坐标形式

3.自然形式

质点动力学的两类基本问题

1.已知质点的运动规律,求作用于质点上的力。----求微分问题

2.已知质点上所受的力,求质点的运动规律。----求积分

10 动量定理

10-1动量与冲量

动量 p=mv 

度量物体机械运动强弱程度

无论是质点系还是刚体系统,动量的主矢不能理解为作用在系统的质心上。

冲量I=Ft

累积效应

10-2动量定理

质点的动量定理:质点的动量对时间的导数等于作用于质点的力

质点系的动量定理: 质点系动量对时间的导数等于作用在质点系上所有外力的矢量和。

动量定理与动量矩定理只涉及系统的外力,而与内力无关

外力                  内力

只有外力才能改变质点系的动量,内力不能改变整个质点系的动量,但可以引起系统内各质点动量的传递。

10-3质心运动定理

质心运动定理: 质点系的质量与加速度的乘积等于作用于质点系上所有外力的矢量和

对于任意一个质点系, 无论它作什么形式的运动, 质点系质心的运动可以看成为一个质点的运动, 并设想把整个质点系的质量都集中在质心这个点上,所有外力也集中作用在质心这个点上。

若作用在质点系上的合外力ΣF=0,则 ac=0,VC=常量,即质系的质心做惯性运动

若初始 vc= 0,则质心保持静止不动

11 动量矩定理

动量定理与动量矩定理只涉及系统的外力,而与内力无关

…… …… 余下全文

篇七 :理论力学重点总结

绪论

1.学习理论力学的目的:在于掌握机械运动的客观规律,能动地改造客观世界,为生产建设服务。

2.学习本课程的任务:一方面是运用力学基本知识直接解决工程技术中的实际问题;另一方面是为学习一系列的后继课程提供重要的理论基础,如材料力学、结构力学、弹性力学、流体力学、机械原理、机械零件等以及有关的专业课程。此外,理论力学的学习还有助于培养辩证唯物主义世界观,树立正确的逻辑思维方法,提高分析问题与解决问题的能力。

第一章静力学的基本公理与物体的受力分析

1-1静力学的基本概念

1.刚体:即在任何情况下永远不变形的物体。这一特征表现为刚体内任意两点的距离永远保持不变。

2.质点:指具有一定质量而其形状与大小可以忽略不计的物体。

1-3约束与约束力

1.自由体:凡可以在空间任意运动的物体称为自由体。

2.非自由体:因受到周围物体的阻碍、限制不能作任意运动的物体称为非自由体。

3.约束:力学中把事先对于物体的运动(位置和速度)所加的限制条件称为约束。约束是以物体相互接触的方式构成的,构成约束的周围物体称为约束体,有时也称为约束。

4.约束力:约束体阻碍限制物体的自由运动,改变了物体的运动状态,因此约束体必须承受物体的作用力,同时给予物体以相等、相反的反作用力,这种力称为约束力或称反力,属于被动力。

5.单面约束、双面约束:凡只能阻止物体沿一方向运动而不能阻止物体沿相反方向运动的约束称为单面约束;否则称为双面约束。单面约束的约束力指向是确定的,即与约束所能阻止的运动方向相反;而双面约束的约束力指向还决定于物体的运动趋势。

6.柔性体约束:为单面约束。只能承受拉力,作用在连接点或假想截割处,方向沿着柔软体的轴线而背离物体,常用符号FT表示。(绳索、胶带、链条)

7.光滑接触面(线)约束:为单面约束,其约束力常又称为法向约束力。光滑接触面(线)的约束力只能是压力,作用在接触处,方向沿着接触表面在接触处的公法线而指向物体,常用符号FN表示。

…… …… 余下全文

篇八 :理论力学课程总结

         理论力学课程总结

一·用一条你认为的主线来贯穿总结本课程的学习内容

理论力学是一门研究物体机械运动的一般规律的科学。经过一学期的学习,对理论力学有了初步大体的认识,笔者试图通过“运动”这条主线对课程进行梳理与总结:

1·首先要强调的是这里说的运动是指速度远小于光速的宏观物体的机械运动,他以牛顿力学的基本定律为基础,属于古典力学范畴。理论力学所研究的是这种运动中最一般、最普遍的规律,是各门力学分支的基础。理论力学的内容主要包括:静力学、运动学、动力学。但笔者认为可以通过对物体运动的分析来将其串联。

2·运动学:经典力学中运动是指运动物体空间位置的变化。那么如何描述这种变化呢?这里就涉及到运动学的知识。物体的运动和静止是相对的,运动是绝对的,静止是相对的。选取的参考体不同,那么物体相对于不同参考体的运动也不同。故描述任何运动都需要指明参考体。现只从几何的角度来研究物体的运动,同时又根据研究对象的不同分为质点运动与刚体运动,根据运动的复杂程度分为简单运动与合成运动(刚体的平面运动),根据描述方式的不同分为轨迹、速度、加速度的讨论。

质点的运动:质点运动的可以通过矢量法、直角坐标系法、自然法进行描述,三者相互联系又各有侧重和优势。点的复合运动与点的运动学方法作比较,可知前者主要研究瞬时的速度与加速度,后者通过数学知识建立动点绝对方程,可以得到持续运动中的各个运动量。重点总结点的合成运动。点的合成运动有三个对象:动点,定参考系,动参考系。

点的速度合成 :

点的加速度合成:

科氏加速度:,体现了动坐标系转动时,相对运动与牵连运动的相互影响。

其中,要强调的是瞬时牵连点的概念:任一瞬时,动系上与动点重合的点即为此瞬时动点的牵连点。而瞬时牵连点的速度与加速度即为动点的牵连速度与加速度,这个概念可以很好的判断 与 。通过做过的题目总结可知,动点与动系的选择往往是解题的关键,而易于辨析的相对轨迹是选择动点与动系的重要原则,用充分利用约束条件使得相对轨迹的速度与加速度易于求解。

…… …… 余下全文