脉冲核磁共振

时间:2024.4.1

2.4 脉冲核磁共振

验者:杨亿斌(06325107)   合作者:吴聪(06325096)

(中山大学物理系,光信息科学与技术06级3班)

20##年11月13日

【引言】

核磁共振(简称NMR)是指受电磁波作用的原子核系统在外磁场中磁能级之间发生共振跃迁的现象。核自旋包括质子自旋和中子自旋,只有非零自旋才能产生核磁共振。本实验采用脉冲射频场作用于原子核系统,通过观测NMR自旋回波分析共振吸收弛豫过程。

【实验目的】

1.  初步了解瞬态法观察核磁共振现象;

2.  理解脉冲在核磁共振现象观测中的物理作用;

3.  采用最基本的脉冲序列方法测量弛豫时间。

【实验原理】

共振吸收信号与核自旋系统的弛豫过程有关。原子核与周围介质相互作用,即自旋-晶格弛豫,使核能级谱线具有一定宽度;原子核之间相互作用,即自旋-自旋弛豫,致使满足共振条件的外磁场并非单一值,两者的作用使满足共振条件:

                           (1)

的外磁场具有一定的展宽。其中为核朗德因子,为核磁子,为射频场光子能量。因此从核磁共振吸收线形可以定性或半定量地分析弛豫参数。

磁矩在外磁场作用下的运动方程

                             (2)

式中为旋磁比。考虑特定情况,设磁场包括了轴方向的稳恒磁场方向的射频磁场,且。代入式(2),可得:

                        (3)

由于,故,认为为二级小量可略去。由(2)可得:

                         (4)

即有:

                        (5)

其中为静磁化率。当

                                 (6)

时,为无限大,即出现共振现象。无限大是由于上述分析中没有考虑阻尼力矩的作用。

(一)弛豫过程的唯象描述

当存在阻尼力矩时,磁矩在外磁场作用下的运动方程为

                            (7)

布洛赫在研究核磁共振时,提出阻尼力矩的表达方式为:

                            (8)

式中分别为平衡时方向的分量,分别为纵向和横向弛豫时间。若取稳恒外磁场方向为方向,则只有纵向分量不为零,横向分量均为零,从而可得:

                               (9)

将式(9)代入式(7),可得布洛赫方程:

                 (10)

式中,外磁场包括稳恒磁场和射频磁场。对于圆偏振射频磁场可表达为:

正圆偏振磁场:,或

负圆偏振磁场:,或

或写为:

                           (11)

式中下标为“”号表示正圆偏振磁场;“”号表示负圆偏振磁场。分别表示轴方向上的单位矢量。

由于线偏振磁场可分解为大小相等,旋转方向相反的两个圆偏振磁场,对于沿方向的线偏振射频磁场,可表达为:

                       (12)

若稳恒磁场沿方向且大小为,并假设射频场圆频率变化很慢或外磁场通过共振区的时间远大于,布洛赫方程的稳态解为

                      (13)

式中,静磁化率。复数磁化率的实部和虚部分别为:

                  (14)

称为布洛赫磁化率。分别为色散磁化率和吸收磁化率,随射频场圆频率的变化关系分别称为核磁共振色散波谱和吸收波谱。由式(15)可见,核磁共振峰型提供了弛豫过程的物理参数。

(二)射频脉冲作用分析

若稳恒磁场沿方向且大小为,圆偏振射频场以圆频率加在样品上,其分量为:

                      (15)

当脉冲作用时间远远小于弛豫时间(即),那么将式(15)代入布洛赫方程,可得到:

                 (16)

其中。根据脉冲作用时间可将脉冲分为脉冲、脉冲、脉冲、脉冲。

时,称为脉冲。根据初始条件分以下三种情况进行分析:

(1)基态为:经过脉冲后得到:

因为对电磁辐射有贡献的是方向,所以在基态经过脉冲后可以得到最强的电磁辐射。注意最强的辐射不是完全在激发态,因为完全在激发态时虽然激发态能量最高,但是与电磁场耦合最弱。

(2)激发态为:,经过脉冲后得到:

所以在激发态经过脉冲后也可以得到最强的电磁辐射。

(3)辐射状态为:

,经过脉冲后得到

因为对电磁辐射有贡献的是方向,所以在横向最强时经过脉冲后不管处于激发态还是基态辐射为零。

时,称为脉冲,根据初始条件分以下两种情况进行分析:

    (1)基态为:经过脉冲后得:

 ,即基态跃迁至激发态,原子核在激发态下辐射为零。

(2)任意状态:

经过脉冲后得,

 或为

即沿着轴方向翻转

(三)自由感应衰减(FID)信号

当不加射频场,即仅考虑稳恒外磁场得作用,布洛赫方程(10)改写为:

                      (17)

其解为:

                    (18)

上式为磁化率各分量的弛豫过程公式。在这个弛豫过程中,若垂直于轴方向上置一接收线圈,则可感应出一个射频信号,其频率为但幅值按指数衰减,即为自由感应衰减(FID)信号。FID信号与平面上横向分量的大小有关,故脉冲的FID信号幅值最大,脉冲的FID信号幅值为零。

(四)自旋回波信号

在实际应用中,通常采用两个或多个射频脉冲组成脉冲序列,周期性地作用于被观测对象。在脉冲作用之后,经过时间再施加一个射频脉冲作用,从而组成了脉冲序列。同时要求,序列中的脉冲宽度和脉冲间隔应满足脉冲序列作用结果如图1所示:

紧随在脉冲之后,可观察到FID信号;在射频脉冲后面对应于初始时刻的处,可观察到一个回波信号。

自旋回波的产生过程见图2。图2(a)表示总磁化强度射频脉冲作用下绕轴转到轴上;图2(b)表示脉冲消失后,由于核磁矩自由旋进收到磁场不均匀的影响,样品中各部分磁矩的旋进频率不同,使磁矩相位分散并呈扇型展开;图2(c)表示射频脉冲作用使磁化强度各分量绕轴翻转,并继续它们原来的转动方向运动,但各分量的顺序反转;图2(d)表示时刻各磁化强度分量刚好汇聚在轴上;图2(e)表示以后,由于磁化强度各分量继续转动又再次呈扇型展开。因此在处得到图1的自旋回波信号。

自旋回波与FID信号密切相关。如果不存在横向弛豫,则自旋回波幅值应等于初始的FID信号幅值。但由于在时间内横向弛豫作用不能忽略,磁化强度各横向分量相应减小,从而使自旋回波幅值小于初始的FID信号幅值,而且,随脉冲间隔增大而自旋回波幅值减小。

(五)弛豫时间的测量

由布洛赫阻尼力矩,可得磁化强度各分量的弛豫表达式:

                        (19)

实验上,可通过选择不同的脉冲序列产生FID信号和自旋回波信号的方法来测量弛豫时间

(1)的测量 本实验中采用脉冲序列的自旋回波观测方法,上面已分析了该脉冲序列回波产生的物理过程。根据式(19)可知,磁化强度横向分量的弛豫过程为:

                          (20)

时刻自旋回波的幅值成正比,即

                             (21)

式中射频脉冲刚结束时FID信号的幅值,与成正比。只要改变脉冲间隔,则自旋回波的峰值也相应的改变。若依次增大,测量对应的回波峰值,可得按指数衰减的包络线。对式(21)两边取对数,可得

                             (22)

为自变量,则直线斜率的倒数即为

(2)的测量 实验中采用脉冲序列的反转恢复观测方法。首先施加射频脉冲把磁化强度轴翻转到轴,这时不存在横向分量,即没有FID信号。当纵向弛豫过程使经过零值向平衡值恢复,在恢复过程的时刻施加射频脉冲,则便翻转到轴上。这时接收线圈将会感应得到FID信号,该信号的幅值正比于的大小。的变化规律可由:

                          (23)

求得。根据射频脉冲作用后的初始条件为,可得:

                       (24)

由上式可见,实验中通过改变的大小使时,(FID信号为零),即可得

                              (25)

【实验技术方法】

脉冲核磁共振实验装置如图3所示:

实验系统包括电磁铁(及其励磁电源)、射频脉冲发生器、射频开关放大器、射频相位检波器、探头和示波器(或计算机数据采集系统)。具体连接方法如下:

脉冲发生器“射频脉冲输出”<——>射频放大器“射频脉冲输入”

脉冲发生器“脉冲输出A”<——>射频放大器“开关输入”

脉冲发生器“脉冲输出B”<——>示波器“CH1”(同时作为同步信号)

脉冲放大器“信号输出”<——>射频相位检波器“射频输入”

射频相位检波器“检波输出”<——>示波器“CH2”

励磁电源直流输出<——>磁铁线圈

射频脉冲发生器所产生的射频信号频率与由励磁电流调节得稳恒磁场必须满足共振条件(1)。本实验中,采用固定射频场频率(20MHz),通过调节磁场搜索共振信号的方法。射频脉冲发生器能提供双脉冲序列,它们的脉冲宽度、脉冲间隔和脉冲周期均连续可调。从图4可见,第一和第二脉冲“宽度”量程及“宽度”旋钮分别调节第一和第二脉冲宽度;“脉冲间隔”旋钮用于调节第一脉冲与第二脉冲之间的时间间隔;“重复时间”量程及“重复时间”旋钮调节脉冲序列周期。根据实验测量需要,可以设计产生或更多组合的脉冲序列。

为方便实验观测,励磁电源提供了“粗调”和“细调”电流调节。使用特斯拉计(或高斯计)测量磁场强度。

【实验步骤】

1.  连接好电路,确认无误,通电。(严禁在未接开关输入的情况下打开射频放大器尤其是射频脉冲已经接入。虽然已经安装保护装置但也存在射频脉冲烧坏器件的可能性)。

2.  调节双通道示波器,使能同时观察到CH1和CH2,并以CH1为同步信号。

3.  分别调节脉冲发生器“重复时间”和“脉冲间隔”,观察示波器CH1和CH2信号的变化情况。

4.  进一步,分别调节脉冲发生器“第一脉冲宽度”及“第二脉冲宽度”,观察示波器CH1和CH2信号的变化情况。

5.  将脉冲发生器“重复时间”及“脉冲间隔”调至20-100ms,“第一脉冲宽度”及“第二脉冲宽度”调至0.1-0.5ms,调节励磁电流(注意:可能需要调换电流方向)直至观察到核磁共振信号。

6.  适当调节“第一脉冲宽度”和励磁电流使核磁共振信号最大。最后,在允许的范围内从0开始,逐步增加“第一脉冲宽度”,观察记录核磁共振信号的变化情况。采用相同实验步骤,观察记录核磁共振信号随“第二脉冲宽度”变化情况。理解脉冲的物理含义及其实验调节方法。

7.  自由衰减观测分析。在磁共振条件下,调节“第一脉冲宽度”为脉冲,即可观察到自由衰减过程。

8.  自旋回波观测分析。在自由衰减观察成功的基础上,调节“第二脉冲宽度”为脉冲,即可观察到自旋回波。若自旋回波信号较小,则调节磁场至回波最大或加大“重复时间”提高信号强度。

9.  采用脉冲序列,调节“脉冲间隔”,观察对应自旋回波信号幅值变化。用计算机采集波型。分析横向弛豫时间。

【实验器材】

电磁铁

0.1%硫酸铜溶液

FD-PNMR-II射频脉冲发生器(物17420 30000-2855)

FD-PNMR-II脉冲核磁共振-射频开关放大器(物17420 30000-2855)

FD-PNMR-II脉冲核磁共振-射频相位检波器(物17420 30000-2855)

FD-PNMR-II脉冲核磁共振-磁场电源(物17420 30000-2855)

FD-TX-YC匀场线圈电源(物17420 30000-2855)

IWATSU OSCILLOSCOPE SS-7802A(物17432 30000-2868)

计算机数据采集系统(物17464 30000-2899)

【实验环境】

第一次实验:

20##年 10月 29日       时间:14:30—17:00   地点:物理楼339

温度:         湿度:59%         

第二次实验:

20##年 11月5日       时间:14:30—17:30   地点:物理楼339

温度:         湿度:58%         

【实验现象和实验数据分析】

一、分别调节脉冲发生器“重复时间”和“脉冲间隔”,观察示波器CH1和CH2信号的变化情况。

调节示波器频率旋钮使出现共振信号,如图5

图5 脉冲核磁共振信号

1.增大重复时间,则CH1的脉冲信号和CH2的共振信号相邻两次之间的时间间隔增大。如图6和图7所示

图6 重复时间为0.024s

图7 重复时间为0.028s

2.增大脉冲间隔,则“第一脉冲”和“第二脉冲”之间间隔增大。如图8和图9所示:

图8 脉冲间隔为0.005s

                            图9 脉冲间隔为0.010s

二、自由感应衰减(FID)信号

通过微调稳恒磁场电量和射频脉冲宽度,寻找FID信号。观测脉冲宽度对FID信号的影响。在磁共振条件下,调节第一脉冲宽度为脉冲,即可观察到自由衰减过程如图10

   图10自由感应衰减(FID)信号

三、观察自旋回波信号

在自由衰减观察成功的基础上,调解“第二脉冲宽度”寻找自旋回波信号。当脉冲宽度为时,即可观测到自旋回波如图11所示:

图11 自旋回波信号

由第一步中的图6到图10可知:

增大重复时间,自旋回波信号减弱;增大脉冲间隔,自旋回波信号减弱。

四、测量横向迟豫时间

由于利用Cool Edit采集数据,采集时候数据频率是,而观测分频信号时的固定射频场频率是,所以采集做出的波形并不是实际的存在的物理波形。上面的波形出现偏离真实波形是由于采集的数据的点不会刚好在每个射频脉冲的峰值。由于波形幅值对于0轴不是对称的,所以我们采集自旋回波幅值时,是用正的最大值和负的最大值的绝对值的平均值。因为自选回波幅值的真值肯定存在于正负两个最大值之间,所以我们将定在对应于两个最大值的中间,希望能够减少误差。

采用90°-τ-180°脉冲序列,记录脉冲间隔τ及对应自旋回波信号幅值,分析横向迟豫时间。

对于本次实验,为了包络的读取方便,直接读取峰值处,并且是用正的最大值和负的最大值的绝对值的平均值来作为峰值;当然在读取数据的时候,对一些明显失真的波形,我们先进行了图形模拟,然后在读取数值;还有对于每个脉冲间隔我们读取五个回波的峰值和2倍脉冲间隔时间2τ,取其平均均值,一次进一步减小误差

由此得到脉冲间隔2及对应自旋回波信号幅值的数据见表一:

表一:脉冲间隔与回波幅值

为纵坐标,为横坐标,用Origin对数据点作线性拟合,得到图12:

图12 回波幅度与脉冲间隔关系图

Y = A + B1 * X

Parameter       Value      Error

------------------------------------------------------------

A           9.82773      0.04942

B1        -0.05333       0.00289

------------------------------------------------------------

R-Square(COD)     SD      N      P

------------------------------------------------------------

0.98836            0.03892   6     <0.0001

拟合的相关系数R=0.98836,说明数据拟合得很。

由公式,代入,得

=-ms

因此可得弛豫时间:

五.测量纵向弛豫时间

采用脉冲序列的反转恢复观测方法,改变”脉冲间隔” ,使自由感应衰减(FID)信号为零.利用式(2-4-24)分析纵向弛豫时间.如图13

                   图13 自由感应衰减(FID)信号为零

此时测得=7ms ,则由公式(2-4-24): 

思考与讨论

1、脉冲核磁共振与稳态共振对射频场得要求有什么不同?

   脉冲核磁共振对射频磁场得频率要求要低于稳态共振对磁场得要求,即脉冲核磁共振可以在频率较低的射频场中进行;而稳态共振则需要较高频率的射频场作用。并且稳态共振可以采用扫场法或扫频法,只要固定的射频场或者可调频的射频场即可。但是脉冲核磁共振需要双脉冲序列,并且脉冲间隔、脉冲宽度、脉冲周期要连续可调,以产生各种组合的脉冲序列。

2、如何理解脉冲宽度?何谓90°脉冲或180°脉冲?,90°脉冲和180°脉冲如何影响FID信号?

脉冲宽度是脉冲在随时间变化的坐标上刚好形成了宽度的脉冲。90°脉冲是当,基态经过90°脉冲后可得到最强的电磁辐射。激发态经过90°脉冲也可得到最强的电磁辐射。B在最强时经过90°脉冲后不管处于激发态还是基态辐射为0。180°脉冲是当,任意状态经过180°脉冲,磁矩沿着x轴方向翻转180°。

3、磁场的不均匀对FID信号和自旋回波信号有何影响?

对于不太粘的液体样品,由于外磁场的不均匀,样品中位置不同的核磁矩所处的外场大小不同,所以观察到的信号其实是不同进动频率信号的叠加,磁场越不均匀,FID信号衰减越快。脉冲和脉冲都达不到FID信号最大和回波信号最大的效果,并且会导致一些其他的振荡产生。

4、讨论分析90°-τ-180°脉冲序列和180°-τ-90°脉冲序列对核磁矩的作用。

当采用90°-τ-180°脉冲序列,总磁化强度M在90°射频脉冲作用下转过90°,脉冲消失后,由于核磁矩自由旋进受到磁场B不均匀的影响,样品中各部分磁矩的旋进频率不同,使磁矩相位分散并呈扇形展开。又在180°射频脉冲作用时磁化强度各分量翻转180°,并继续他们原来的转动方向运动,各分量的顺序反转,当时刻各磁化强度分量刚好聚集在一起,形成自旋回波信号。180°-τ-90°脉冲序列可作类似分析。

更多相关推荐:
脉冲核磁共振实验

脉冲核磁共振核磁共振NuclearMagneticResonance简称NMR现象是19xx年由FBloch和和MPurcell同时独立发现的它是核磁矩在静磁场中被磁化后与特定频率的射频场产生共振吸收的现象吸收...

物理实验报告_连续和脉冲核磁共振

连续和脉冲核磁共振摘要本实验主要以水中的氢核为主要研究对象理解掌握核磁共振技术的基本原理以及核磁共振信号的基本测量方法实验中利用核磁共振谱仪在连续工作方式下观察不同浓度的CuSO4溶液的共振信号并估算样品的横向...

核磁脉冲实验报告

东北大学秦皇岛分校实验报告班级姓名学号实验日期实验台号同组人实验名称脉冲核磁共振实验一实验目的1了解脉冲核磁共振的基本实验装置和基本物理思想学会用经典矢量模型方法解释脉冲核磁共振中的一些物理现象2用自由感应衰减...

核磁共振实验报告--近代物理实验

核磁共振实验报告姓名牟蓉学号20xx11141054日期20xx411指导老师王海燕摘要本实验利用连续核磁共振谱仪测量了不同浓度的CuSO4水溶液的共振信号并估算样品的横向弛豫时间同时利用核磁共振仪采用9018...

FD-PNMR-Ⅱ型脉冲核磁共振实验仪实验指导书

附实验报告一实验目的1掌握脉冲核磁共振的基本概念和方法2通过观测核磁共振对射频脉冲的响应对能级跃迁过程驰豫了解3学会用自旋回波法测量液体样品的横向驰豫时间T2二实验仪器及装置FDPNMR型脉冲核磁共振实验仪三实...

脉冲核磁共振实验

脉冲核磁共振实验实验目的1了解脉冲核磁共振的基本实验装置和基本物理思想学会用经典矢量模型方法解释脉冲核磁共振中的一些物理现象2用自由感应衰减法测量表观横向弛豫时间T2分析磁场均匀度对信号的影响3用自旋回波法测量...

核磁共振实验报告

1前言和实验目的核磁共振是指受电磁波作用的原子核系统在外磁场中磁能级之间发生共振跃迁的现象本实验的样品在外磁场中外磁场使样品核能级因核自旋不同的取向而分裂在数千高斯外磁场下核能级的裂距一般在射频波段样品在射频电...

FD-PNMR-Ⅱ型脉冲核磁共振实验

FDPNMR型脉冲核磁共振实验一引言核磁共振是指受电磁波作用的原子核系统在外磁场中能级之间发生共振跃迁的现象泡利在19xx年提出核自旋的假设19xx年在实验上得到证实只有质子数和中子数两者或者其中之一为奇数时原...

PNMR V2.0脉冲核磁共振实验软件使用说明

PNMRV10脉冲核磁共振实验软件使用说明1软件安装一般情况下只需要将EXE文件PNMRV20拷贝至使用电脑即可如果在某些电脑中操作软件不能使用首先将mscomm32ocx文件拷至该电脑中系统盘一般为C盘下WI...

核磁共振实验报告

近代物理实验报告实验课题氢核的共振研究班级物理学061班姓名任军培学号06180130指导老师楼莹老师20xx年10月17日摘要本实验主要通过本实验了解核磁共振仪的主要功能结构并且知晓核磁共振仪的操作方法在了解...

实验五 核磁共振实验

实验五核磁共振NMR实验核磁共振现象是一种利用原子核在磁场中的能量变化来获得关于核信息的技术由美国科学家柏塞尔EMPurcell和瑞士科学家布洛赫EBloch于19xx年12月和19xx年1月分别独立发现他们共...

4-1 核磁共振实验报告

核磁共振1近代物理实验报告指导教师得分实验时间20xx年MM月DD日第WW周周DD第58节实验者班级材料0705学号20xx67025姓名童凌炜同组者班级材料0705学号20xx67007姓名车宏龙实验地点综合...

脉冲核磁共振实验报告(21篇)