实验5霍尔效应实验和霍尔法测量磁场

时间:2024.3.31

实验19 霍尔效应实验和霍尔法测量磁场

霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。

 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。

[实验目的]

1、霍尔效应原理及霍尔元件有关参数的含义和作用

2、测绘霍尔元件的VH—Is,VH—IM曲线,了解霍尔电势差VH与霍尔元件工作电流Is、磁感应强度B及励磁电流IM之间的关系。

3、学习利用霍尔效应测量磁感应强度B及磁场分布。

4、学习用“对称交换测量法”消除负效应产生的系统误差。

[实验仪器]

DH4512系列霍尔效应实验仪    

[实验原理]

  霍尔效应从本质上讲,是运动的带

电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。如图2-1所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(称为工作电流),假设载             图2-1                                     

流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动。

  由于洛仑兹力fL作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力 f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时, fL=-fE,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场EH,相应的电势差称为霍尔电势VH

设电子按均一速度,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

     fL=-eB

式中:e 为电子电量,为电子漂移平均速度,B为磁感应强度。

同时,电场作用于电子的力为:

f El    

式中:EH为霍尔电场强度,VH为霍尔电势,l为霍尔元件宽度

当达到动态平衡时:

              fL=-f E     B=VH/l                   (1)

设霍尔元件宽度为,厚度为d ,载流子浓度为 n ,则霍尔元件的工作电流为

                              (2)

由(1)、(2)两式可得:

                (3)

即霍尔电压VH (A、B间电压)与Is、B的乘积成正比,与霍尔元件的厚度成反比,比例系数 称为霍尔系数(严格来说,对于半导体材料,在弱磁场下应引入一个修正因子      ,从而有           ),它是反映材料霍尔效应强弱的重要参数,根据材料的电导率的关系,还可以得到:

                (4)

式中:为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用N型半导体材料。

当霍尔元件的材料和厚度确定时,设:

                      (5)

将式(5)代入式(3)中得:

                             (6)

式中:称为元件的灵敏度,它表示霍尔元件在单位磁感应强度和单位控制电流下的霍尔电势大小,其单位是,一般要求愈大愈好。由于金属的电子浓度很高,所以它的RH或KH都不大,因此不适宜作霍尔元件。此外元件厚度d愈薄,KH愈高,所以制作时,往往采用减少d的办法来增加灵敏度,但不能认为d愈薄愈好,因为此时元件的输入和输出电阻将会增加,这对霍尔元件是不希望的。本实验采用的双线圈霍尔片的厚度d为0.2mm,宽度为2.5mm,长度L为3.5mm。螺线管霍尔片的厚度d为0.2mm,宽度为1.5mm,长度L为1.5mm。

    应当注意:当磁感应强度B和元件平面法线成一角度时(如图2-2),作用在元件上的有效磁场是其法线方向上的分量,此时:

                       

所以一般在使用时应调整元件两平面方位,使VH达到最大,即:*,这时有:

                  (7)

由式(7)可知,当工作电流Is或磁感应强度B,两者之一改变方向时,霍尔电势VH方向随之改变;若两者方向同时改变,则霍尔电势VH极性不变。

 

图2-2                           图2-3

霍尔元件测量磁场的基本电路(如图2-3),将霍尔元件置于待测磁场的相应位置,并使元件平面与磁感应强度B垂直,在其控制端输入恒定的工作电流Is,霍尔元件的霍尔电势输出端接毫伏表,测量霍尔电势VH的值。

[实验项目]

一、研究霍尔效应及霍尔元件特性(DH4512、DH4512A、DH4512B适用)

1、测量霍尔元件零位(不等位)电势V0及不等位电阻R0=V0/IS

2、研究VH与励磁电流IM和工作电流IS之间的关系

二、测量通电圆线圈的磁感应强度B(DH4512、DH4512A适用)          

1、测量通电圆线圈中心的磁感应强度B          

2、测量通电圆线圈中磁感应强度B的分布  

[实验方法与步骤]

一、按仪器面板上的文字和符号提示将DH4512型霍尔效应测试仪与DH4512型霍尔效应实验架正确连接。

1、将DH4512型霍尔效应测试仪面板右下方的励磁电流IM的直流恒流源输出端(0~0.5A),接DH4512型霍尔效应实验架上的IM 磁场励磁电流的输入端(将红接线柱与红接线柱对应相连,黑接线柱与黑接线柱对应相连)。

2、“测试仪”左下方供给霍尔元件工作电流IS的直流恒流源(0~3mA)输出端,接“实验架”上IS霍尔片工作电流输入端(将红接线柱与红接线柱对应相连,黑接线柱与黑接线柱对应相连)。

3、“测试仪”VH霍尔电压输入端,接“实验架”中部的VH霍尔电压输出端。

注意:以上三组线千万不能接错,以免烧坏元件。

4、用一边是分开的接线插、一边是双芯插头的控制连接线与测试仪背部的插孔相连接(红色插头与红色插座相联, 黑色插头与黑色插座相联)。

二、研究霍尔效应与霍尔元件特性

1、测量霍尔元件的零位(不等位)电势V0和不等位电阻R0

I.用连接线将中间的霍尔电压输入端短接,调节调零旋钮使电压表显示0.00mV;

II.将IM电流调节到最小

III.调节霍尔工作电流IS=3.00mA,利用IS 换向开关改变霍尔工作电流输入方向分别测出零位霍尔电压V01 、V02,并计算不等位电阻:

R01,R02                (8)

2、测量霍尔电压VH与工作电流Is的关系

I、先将Is,IM都调零,调节中间的霍尔电压表,使其显示为0mV。

II、将霍尔元件移至线圈中心(上下20cm,左右50cm),调节IM =500mA,调节Is =0.5mA,按表中Is,IM正负情况切换“实验架”上的方向,分别测量霍尔电压VH值(V1,V2,V3,V4)填入表(1)。以后Is每次递增0.50mA,测量各V1,V2,V3,V4值。绘出Is—VH曲线,验证线性关系。

表1             IM =500mA

3、测量霍尔电压VH与励磁电流IM的关系

1)  先将IM、Is调零,调节Is至3.00mA。

2)调节IM=100、150、200……500mA(间隔为50mA),分别测量霍尔电压VH值填入表(2)中的值。

3)根据表(2)中所测得的数据,绘出IM—VH曲线,验证线性关系的范围,分析当IM达到一定值以后,IM—VH直线斜率变化的原因。

表2      VH—IM       IS =3.00mA

4、计算霍尔元件的霍尔灵敏度

如果已知B,根据公式可知

KH=                      (9)

本实验采用的双个圆线圈(DH4512、DH4512A)的励磁电流IM与总的磁感应强度对应表如下:

    选择一个IM,Is和与之对于的VH,计算KH=

 5、测量样品的电导率σ

 


                           图2-4  Vσ测量连线示意图

样品的电导率σ为:

                             (10)

式中Is是流过霍尔片的电流,单位是A,Vσ是霍尔片长度L方向的电压降,单位是V,长度L、宽度和厚度d的单位为m,则σ的单位为(1S=1Ω-1)。

测量Vσ前,先对毫伏表调零。连线图如图2-4 ,其中IM必须为0,或者断开IM连线。因为霍尔片的引线电阻相对于霍尔片的体电阻来说很小,因此可以忽略不计。

将工作电流从最小开始调节,用毫伏表测量Vσ值,由于毫伏表量程所限,这时的Is较小。如需更大电压量程,也可用外接数字电压表测量。测量5组数据,分别计算其对应的σi,然后求他们的平均值,即为样品的电导率σ。

三、测量通电圆线圈中磁感应强度B的分布

1、先将IM、Is调零,调节中间的霍尔电压表,使其显示为0mV。

2、将霍尔元件置于通电圆线圈中心(上下20cm,左右50cm),调节IM=500mA,调节IS=3.00mA,测量相应的VH

3、将霍尔元件从中心向边缘移动每隔5mm选一个点测出相应的VH,填入表3。

4、由以上所测VH值,由公式:

VH=KHISB得到 B=         

  计算出各点的磁感应强度,并绘B-X图,得出通电圆线圈内B的分布。

                      表3  VH—X    IS =3.00mA  IM =500mA

[实验系统误差及其消除]

测量霍尔电势VH时,不可避免的会产生一些副效应,由此而产生的附加电势叠加在霍尔电势上,形成测量系统误差,这些副效应有:

1)不等位电势V0

由于制作时,两个霍尔电势不可能绝对对称的焊在霍尔片两侧(图2-5a)、霍尔片电阻率不均匀、控制电流极的端面接触不良(图2-5b)都可能造成A、B两极不处在同一等位面上,此时虽未加磁场,但A、B间存在电势差V0,此称不等位电势,V0=IsR0,R0是两等位面间的电阻,由此可见,在R0确定的情况下,V0与Is的大小成正比,且其正负随Is的方向而改变。

 

图2-5a                       图2-5b

2)爱廷豪森效应

当元件X方向通以工作电流Is,Z方向加磁场B时,由于霍尔片内的载流子速度服从统计分布,有快有慢。在到达动态平衡时,在磁场的作用下慢速快速的载流子将在洛仑兹力和霍耳电场的共同作用下,沿y轴分别向相反的两侧偏转,这些载流子的动能将转化为热能,使两侧的温升不同,因而造成y方向上的两侧的温差(TA-TB)。因为霍尔电极和元件两者材料不同,电极和元件之间形成温差电偶,这一温差在A、B间产生温差电动势VE,VE∝IB。这一效应称爱廷豪森效应,VE的大小与正负符号与I、B的大小和方向有关,跟VH与I、B的关系相同,所以不能在测量中消除。

3)伦斯脱效应

 

图2-6  正电子运动平均速度     图中V’<   V”>

由于控制电流的两个电极与霍尔元件的接触电阻不同,控制电流在两电极处将产生不同的焦耳热,引起两电极间的温差电动势,此电动势又产生温差电流(称为热电流)Q,热电流在磁场作用下将发生偏转,结果在y方向上产生附加的电势差VH,且VH∝QB这一效应称为伦斯脱效应,由上式可知VH的符号只与B的方向有关。

4)里纪-杜勒克效应

如(3)所述霍尔元件在x方向有温度梯度,引起载流子沿梯度方向扩散而有热电流Q通过元件,在此过程中载流子受Z方向的磁场B作用下,在y方向引起类似爱廷豪森效应的温差TA-TB,由此产生的电势差VH∝QB,其符号与B的方向有关,与Is的方向无关。

为了减少和消除以上效应的附加电势差,利用这些附加电势差与霍尔元件工作电流Is,磁场B(即相应的励磁电流IM)的关系,采用对称(交换)测量法进行测量。

当+IS,+IM时       VAB1 =+VH+V0+VE+VN+VR

当+IS,-IM时       V AB2 =-VH+V0-VE+VN+VR

当-IS,-IM时       V AB3 =+VH-V0+VE-VN-VR

当-IS,+IM时       V AB4 =-VH-V0-VE-VN-VR

对以上四式作如下运算则得:

(VAB1-VAB2+V AB3-V AB4)=VH+VE

可见,除爱廷豪森效应以外的其他副效应产生的电势差会全部消除,因爱廷豪森效应所产生的电势差VE的符号和霍尔电势VH的符号,与IS及B的方向关系相同,故无法消除,但在非大电流、非强磁场下,VH>>VE,因而VE可以忽略不计,由此可得:

VH≈VH+VE                  (11)


第二篇:霍尔效应测量磁场实验报告


【实验题目】通过霍尔效应测量磁场

【实验目的】

1、了解霍尔效应原理以及有关霍尔器件对材料要求的知识。

2、学习用“对称测量法”消除付效应影响。

3、根据霍尔电压判断霍尔元件载流子类型,计算载流子的浓度和迁移速度,

【实验仪器】

QS-H霍尔效应组合仪

【实验原理】

1、通过霍尔效应测量磁场

霍尔效应装置如图2.3.1-1和图2.3.1-2所示。将一个半导体薄片放在垂直于它的磁场中(B的方向沿z轴方向),当沿y方向的电极A、A上施加电流I时,薄片内定向移动的载流子(设平均速率为)受到洛伦兹力的作用,

                                        (1)

无论载流子是负电荷还是正电荷,的方向均沿着x方向,在磁力的作用下,载流子发生偏移,产生电荷积累,从而在薄片B、B两侧产生一个电位差,形成一个电场E。电场使载流子又受到一个与FB方向相反的电场力

                     (2)

其中b为薄片宽度,随着电荷累积而增大,当达到稳定状态时,即

                           (3)

这时在B、B两侧建立的电场称为霍尔电场,相应的电压称为霍尔电压,电极B、B称为霍尔电极。

另一方面,射载流子浓度为n,薄片厚度为d,则电流强度的关系为:

(4)

由(3)和(4)可得到

                              (5)

,则

                                (6)

R称为霍尔系数,它体现了材料的霍尔效应大小。根据霍尔效应制作的元件称为霍尔元件。

在应用中,(6)常以如下形式出现:

                                      (7)

式中称为霍尔元件灵敏度,称为控制电流。

由式(7)可见,若已知,只要测出霍尔电压,即可算出磁场的大小;并且若知载流子类型(n型半导体多数载流子为电子,P型半导体多数载流子为空穴),则由的正负可测出磁场方向,反之,若已知磁场方向,则可判断载流子类型。

2、霍尔效应实验中的付效应

在实际应用中,伴随霍尔效应经常存在其他效应。例如实际中载流子迁移速率u服从统计分布规律,速度小的载流子受到的洛伦兹力小于霍尔电场作用力,向霍尔电场作用力方向偏转,速度大的载流子受到磁场作用力大于霍尔电场作用力,向洛伦兹力方向偏转。这样使得一侧告诉载流子较多,相当于温度较高,而另一侧低速载流子较多,相当于温度较低。这种横向温差就是温差电动势VE,这种现象称为爱延豪森效应。这种效应建立需要一定时间,如果采用直流电测量时会因此而给霍尔电压测量带来误差,如果采用交流电,则由于交流变化快使得爱延豪森效应来不及建立,可以减小测量误差。

此外,在使用霍尔元件时还存在不等位电动势引起的误差,这是因为霍尔电极B、B’不可能绝对对称焊在霍尔片两侧产生的。由于目前生产工艺水平较高,不等位电动势很小,故一般可以忽略,也可以用一个电位器加以平衡(图2.3.1-1中电位器R1)。

我们可以通过改变IS和磁场B的方向消除大多数付效应。具体说在规定电流和磁场正反方向后,分别测量下列四组不同方向的IS和B组合的VBB’,即

+B, +I, VBB’=V1

-B,  +I, VBB’=-V2

-B,  -I, VBB’=V3

+B, -I, VBB’=-V4

然后利用得到霍尔电压平均值,这样虽然不能消除所有的付效应,但其引入的误差不大,可以忽略不计。

3、电导率测量

测量方法如图3所示。设BC间距离为L,样品横截面积为S=bd,流经样品电流为,在零磁场下,测得BC间电压为,则:               (8)

 

【实验内容及步骤】

一、验证霍尔电压与工作电流、霍尔电压与磁场)即与的关系。

1、将测试仪上输出,输出和输入三对接线柱分别与实验台上对应接线柱连接。打开测试仪电源开关,预热数分钟后开始实验。

 2、保持不变,取取1.00,1.50……,4.50mA,将数据填入表1,测绘曲线,并计算

3、保持不变,取,将数据填入表,2,测绘曲线。

4、在零磁场下,取,测

5、确定样品导电类型。

二、测量螺线管周围的磁场

,霍尔元件放在磁场种不同位置,分别测量霍尔电压。填入表2,计算出,在坐标纸上画出曲线。

【原始数据】           

表1 霍尔电压测量    (,霍尔片放在磁场中最强的地方)单位:

表2 霍尔电压测量    (,霍尔片放在磁场中最强的地方)单位:

表3  霍尔元件放在磁场种不同位置,测量霍尔电压()

【实验数据处理】

思考题

?        若磁场不恰好与霍尔元件片底法线一致,对测量结果有何影响,如果用实验方法判断B与元件发现是否一致?

?         能否用霍尔元件片测量交变磁场

更多相关推荐:
物理实验报告3_利用霍尔效应测磁场

实验名称利用霍耳效应测磁场实验目的a了解产生霍耳效应的物理过程b学习用霍尔器件测量长直螺线管的轴向磁场分布c学习用对称测量法消除负效应的影响测量试样的VHIS和VHIM曲线d确定试样的导电类型载流子浓度以及迁移...

霍尔元件测磁场实验报告

用霍尔元件测磁场前言霍耳效应是德国物理学家霍耳AHHall185519xx于1879年在他的导师罗兰指导下发现的由于这种效应对一般的材料来讲很不明显因而长期未得到实际应用六十年代以来随着半导体工艺和材料的发展这...

北京大学物理实验报告:霍尔效应测量磁场(docx版)

霍尔效应测量磁场霍尔效应测量磁场实验目的1了解霍尔效应的基本原理2学习用霍尔效应测量磁场仪器用具仪器名参数电阻箱霍尔元件导线SXG1B毫特斯拉仪102mTPF66B型数字多用表200mV档0032DH1718D...

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告学生姓名学号专业化学年级班级课程名称物理实验实验项目用霍尔效应测量螺线管磁场实验类型验证设计综合实验时间20xx年3月07实验指导老师实验评分一实验目的1了解霍尔效应现象掌握其测量磁场的原理...

霍耳效应法测量磁场分布实验报告

霍耳效应法测量磁场分布实验研究摘要运用霍尔效应进行磁场测量此试验在XDHRSZ1型磁场综合实验仪上进行霍尔元件为高灵敏度高稳定度高线性度的砷化镓霍尔元件其额定工作电流为5mA电压表量程应选200mV挡在此情况下...

霍尔效应测量磁场实验报告

实验题目通过霍尔效应测量磁场实验目的1了解霍尔效应原理以及有关霍尔器件对材料要求的知识2学习用对称测量法消除付效应影响3根据霍尔电压判断霍尔元件载流子类型计算载流子的浓度和迁移速度实验仪器QSH霍尔效应组合仪实...

霍尔效应法测螺线管磁场-实验报告

实验数据处理1.霍尔电势差U与螺线管通电电流Im的关系图(x=17.0cm处):直线的斜率K'=0.4301;相关系数r=1L=26.00.1cm,N=(300020)匝,平均直径D=3.50.1cm。…

6.用霍尔效应测量螺线管轴向磁场实验报告模板

实验八用霍尔效应测量螺线管磁场用霍尔传感器测量通电螺线管内励磁电流与输出霍尔电压之间关系证明霍尔电势差与螺线管内磁感应强度成正比用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的...

霍尔效应法测量螺线管磁场

霍尔效应法测量螺线管磁场实验报告实验目的1了解霍尔器件的工作特性2掌握霍尔器件测量磁场的工作原理3用霍尔器件测量长直螺线管的磁场分布4考查一对共轴线圈的磁耦合度实验仪器长直螺线管亥姆霍兹线圈霍尔效应测磁仪霍尔传...

利用霍尔效应测磁场实验的误差分析

20xx大学生物理实验研究论文利用霍尔效应测磁场实验的误差分析张晓春02A11622东南大学机械工程学院江苏南京211189摘要通过对利用霍尔效应测磁场实验的原理过程及实验数据的处理进行分析得出本实验误差的主要...

霍尔效应法测量磁场

霍尔效应测磁场霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象故称霍尔效应后来曾有人利用霍尔效应制成测量磁场的磁传感器但因金属...

通过霍尔效应测量磁场

姓名林铮学号PB07210100专业十系自动化实验题目通过霍尔效应测量磁场实验目的通过霍尔元件测量磁场判断霍尔元件载流子的类型计算载流子的浓度和迁移速率以及了解霍尔效应测试中的各种负效应以及消除的方法实验仪器小...

霍尔效应法测量磁场实验报告(19篇)