二级减速器(机械课程设计)(含总结)

时间:2024.5.8

机械设计课程设计

姓名: 班级: 学号: 指导教师: 成 绩:

日期:2012 年 12 月

目 录

1. 设计目的……………………………………………………………2

2. 设计方案……………………………………………………………3

3. 电机选择……………………………………………………………5

4. 装置运动动力参数计算……………………………………………7

5.带传动设计 …………………………………………………………9

6.齿轮设计……………………………………………………………18

7.轴类零件设计………………………………………………………28

8.轴承的寿命计算……………………………………………………31

9.键连接的校核………………………………………………………32

10.润滑及密封类型选择 ……………………………………………33

11.减速器附件设计 …………………………………………………33

12.心得体会 …………………………………………………………34

13.参考文献 …………………………………………………………35

1 / 43

1. 设计目的

机械设计课程是培养学生具有机械设计能力的技术基础课。课程

设计则是机械设计课程的实践性教学环节,同时也是高等工科院

校大多数专业学生第一次全面的设计能力训练,其目的是:

(1)通过课程设计实践,树立正确的设计思想,增强创新意

识,培养综合运用机械设计课程和其他先修课程的理论与实际知

识去分析和解决机械设计问题的能力。

(2)学习机械设计的一般方法,掌握机械设计的一般规律。

(3)通过制定设计方案,合理选择传动机构和零件类型,正

确计算零件工作能力,确定尺寸和掌握机械零件,以较全面的考

虑制造工艺,使用和维护要求,之后进行结构设计,达到了解和

掌握机械零件,机械传动装置或简单机械的设计过程和方法。

(4)学习进行机械设计基础技能的训练,例如:计算,绘图,

查阅设计资料和手册,运用标准和规范等。

2. 设计方案及要求

据所给题目:设计一带式输送机的传动装置(两级展开式圆柱直

齿轮减速器)方案图如下:

2 / 43

1—输送带

2—电动机

3—V带传动

4—减速器

5—联轴器

技术与条件说明:

设计热处理车间零件清洗用设备。该传送设备的动力由电动机经减速

装置后传至传送带。每日两班制工作,工作期限为8年。

设计要求

1)减速器装配图1张;

2)零件图3张(高速级齿轮、低速级齿轮,低速级轴);

3)设计计算说明书一份,按指导老师的要求书写

4)相关参数:T=670 N·m,V=0.75m/s,D=330mm

3. 电动机的选择

3.1 电动机类型的选择

按工作要求和工作条件选用Y系列鼠笼三相异步电动机。其结

3 / 43

构为全封闭自扇冷式结构,电压为380V。

3.2 选择电动机的容量

工作机有效功率Pw=F?v, Fw=2F=4060.6 N 1000D

V=0.75。??=?1??5=0.96?0.97=0.9312

则有:Pw=F?v

1000??=4060.6?0.75=3.27KW 1000?0.9312

式中?1,?2,?3,?4,?5分别为V带传动效率, 滚动轴承效率,

齿轮传动效率,联轴器效率,卷筒效率。据《机械设计手册》知?1=0.96,?2=0.99,?3=0.98,?4=0.99,?5=0.96,则有: ??=0.96?0.993?0.982?0.96

=0.858

所以电动机所需的工作功率为:

Pd=Pw

??=3.27=3.69KW 0.859

取Pd=4.0KW

3.3 确定电动机的转速

展开式两级圆柱齿轮I齿=8~60和带的传动比I带=2~4,则系统的

传动比范围应为:

I?=I齿?i带=(8~60)?(2~4)=16~240

工作机卷筒的转速为

nw=

所以电动机转速的可选范围为

4 / 43

60?1000v60?1000?0.75=?43.43r/min ?D3.14?330

nd=I??nw=(16~240)?43.43r/min

=(694.88~10423.2)r/min

符合这一范围的同步转速有750r/min,1000r/min,1500r/min和3000r/min四种。查询机械设计手册(软件版)【常有电动机】-

【三相异步电动机】-【三相异步电动机的选型】-【Y系列(IP44)三相异步电动机技术条件】-【电动机的机座号与转速对应关系】确定电机的型号为Y112M-4.其满载转速为1440r/min,额定功率为4KW。

4. 装置运动动力参数计算

4.1 传动装置总传动比和分配各级传动比

1)传动装置总传动比 I?=

2)分配到各级传动比

因为I?=i带?i齿已知带传动比的合理范围为2~4。故取V带的传动比i带?2.5则I齿?I ? ?13.164分配减速器传动比,参考公式i带nd1440??33.16 nw43.43

i1=1.3~1.4 )i齿=1.3~1.4)?13.164=4.15~4.31,分配齿轮传动比得

高速级传动比i12?4.16,低速级传动比为i23?33.16?3.19 4.16?2.5

4.2 传动装置的运动和动力参数计算

电动机轴:

转速:n0=1440r/min

输入功率:P0=Pd=4.0KW

5 / 43

输出转矩:T0=9550?Pd3.69=9550? n01440 =24.47 N?m

Ⅰ轴(高速轴)

转速:n1=n01440?r/min?576r/min i带2.5

输入功率:P1=P0??01?P0??1?3.69.?0.96?3.54KW 输入转矩

T1=9550?P13.54?9550??58.69N?m n1576Ⅱ轴(中间轴)

转速:n2=n1576??138.46r/min i124.16

输入功率:P2=P1??12?P1??2??3?3.54?0.99?0.98 =3.43KW

输入转矩:

T2=9550?P23.43?9550??236.58N?m n2138.46 Ⅲ轴(低速轴)

转速:n3=n2138.46??43.40r/min i233.19

输入功率:P3?P2??23?P2??2??3?3.43?0.99?0.98 =3.33KW

输入转矩: T3?9550p33.33?9550??732.75N?m n343.4转速:n卷?n3?43.40r/min 输入功率:P卷=P3??34?P3??2??4 =3.33?0.99?0.99

6 / 43

=3.26KW

p43.26

?717.35 N?m 输入转矩:T卷?9550??9550?

n443.40

各轴运动和动力参数表4.1

二级减速器机械课程设计含总结

5)计算纵向重合度

???0.318?dz1tan??0.318*24*tan14=1.903

5.带传动设计

5.1 确定计算功率Pca

据表8-7查得工作情况系数KA=1.2。故有: Pca=KA?P?1.2?4.0?4.8KW

5.2 选择V带带型

据Pca和n查图8-11选用A带。

5.3 确定带轮的基准直径dd1并验算带速

(1)初选小带轮的基准直径dd1查表8-6和8-8,取小带轮直径

dd1=90mm。

7 / 43

(2)验算带速v,有:

v???dd1?n0

60?1000

m?3.14?90?1440 60?1000 =6.78

因为6.78m/s在5m/s~30m/s之间,故带速合适。

(3)计算大带轮基准直径dd2

dd2?i带?dd1?2.5?90?225mm 取dd2=224mm

5.4 确定V带的中心距a和基准长度Ld

(1)据式8-20初定中心距a0=500mm

(2)计算带所需的基准长度

(dd1?dd2)2 Ld0?2a0?(dd1?dd2)? 24a0?

3.14(224?90)2 ?2?500? (90?224)?24?500

=1502mm

由表8-2选带的基准长度Ld=1600mm

(3)计算实际中心距

a?a0?Ld?Ld01600?1502?500??549mm 22

d中心距变动范围:amin?a?0.015L?525mm

amax?a?0.03L?597mm d

5.5 验算小带轮上的包角

??180?(dd2?57.3??dd1)??166??90? a

5.6 计算带的根数z

8 / 43

(1)计算单根V带的额定功率Pr

由dd1?90mm和n0?1440r/min查表8-4a得

由插值法得 P0=0.93+(1.07-0.93)?

据n0=1440r240=1.0644 KW 250,i带=2.5和A型带,查表8-4b得

51 由插值法得 ?P0=0.15+(0.17-0.15) ?=0.964KW

1查表8-5得K?=0.96+(0.98-0.96) ?=0.964 5

查表8-2得KL=0.99

于是: Pr=(P0+?P0)?KL?K?

=(1.0664+0.1692)?0.964?0.99 =1.18KW

(2)计算V带根数z

Z?pca4.8??4.07 Pr1.18

故取5根。

5.7 计算单根V带的初拉力最小值(F0)min

由表8-3得A型带的单位长质量q=0.1

(F0)min?500?(2.5?K?)Pca?qv2 K??z?v

(2.5?0.964)?4.8?0.1?6.782 0.964?5?6.78kg。所以 ?500?

=117.4 N

应使实际拉力F0大于(F0)min

5.8 计算压轴力Fp

压轴力的最小值为:

9 / 43

(Fp)min=2?z?(F0)min

=1165.25 N ??sin2=2?5?117.4?sin166? 2

5.9 带轮设计

(1)小带轮设计

由Y112M-4电动机可知其轴伸直径为d=28mm,故因小带轮与

其装配,故小带轮的轴孔直径d0=28mm。

(2)大带轮设计

大带轮轴孔由I轴最小直径确定,取值由下面I轴设计计算可得30mm。且大带轮的直径dd2=380>300mm,故大带轮采用辐板式。

6.齿轮设计

6.1高速级齿轮设计

1.选定齿轮类型,精度等级,材料及齿数

1)按要求的传动方案,选用圆柱斜齿轮传动;

2)运输机为一般工作机器,速度不高,故用7级精度;(GB10095—88)

3)材料的选择。由表10-1选择小齿轮材料为40Cr(调质)硬度为280HBS,大齿轮的材料为45钢(调质)硬度为240HBS,两者硬度差为40HBS;

4)选小齿轮齿数为Z1=24,大齿轮齿数Z2可由Z2=i12?Z1得 Z2=99.84,取Z2=100;i= Z2/ Z1=4.17

5)选取螺旋角 初选螺旋角为β=14°

2.按齿面接触疲劳强度设计

10 / 43

按公式:

d1t?2.32?3KtT1u?1ZH2??() ?du[?H]

(1)确定公式中各数值

1)试Kt=1.6

2)由表10-7选取齿宽系数?d=1;

由图10-30选取区域系数ZH=2.433

3)计算小齿轮传递的转矩,由前面计算可知:

T1=58.69 N?m

4)由查10-6的材料的弹性影响系数ZE=189.8MP

5)由图10-21d按齿面硬度查的小齿轮的接触疲劳强度极限

?Hlim1=600MP;大齿轮的接触疲劳强度极限?Hlim2=550MP。 12

6)由图10-19取接触疲劳寿命系数KHN1=0.9;

KHN2=0.95。

7)计算接触疲劳许用应力。

取失效概率为1,安全系数S=1,有

KHN1?Hlim1=0.9?600=540MPa S

KHN1?Hlim1 [?H]2==0.95?550=522.5MPa S0 [?H]1=

许用接触应力:[?H]=531.25MPa

(2) 计算 确定小齿轮分度圆直径d1t,代入 [?H]中较小的值

1)计算小齿轮的分度圆直径d1t,由计算公式可得:

d1t?2ktT1u?1ZHZE2() Φdεαu[σ H]

11 / 43

d1t?

2?1.6?58.69?1034.17?12.433?189.82??()=47.42mm 1?1.654.17531.25

2)计算圆周速度。

v??d1tn1

60?1000?3.14?47.42?576=1.43m/s 60?1000

3)计算齿宽b

b=?d?d1t=1?47.42=47.42mm

4)计算模数与齿高

模数mt?d1tcosβ47.42?cos14???1.92mm z124 齿高h?2.25mt?2.25?1.52?4.46mm

5) 计算齿宽与齿高之比 b47.42??10.63 h4.46bh

6)计算纵向重合度??

??=0.318ΦdZ1tanβ=0.318?1?24?tan14°=1.903

7)计算载荷系数K。

已知使用系数KA=1,根据v=1.43m/s, 7级精度。由《机械设

计》课本图10-8得Kv=1.07,由插值法可求得

KH?=1.417+(1.426-1.417)×7.42=1.42 40

由《机械设计》课本图10-13查得KF?=1.26,由表10-3查得KH?= KF?=1.2

故载荷系数:

K= KAKvKH?KH?

12 / 43

=1?1.07?1.2?1.42=1.82

8)按实际的载荷系数校正所算得的分度圆直径: d1?d1tK1.82?47.42??49.5mm Kt1.6

9)计算模数mn

mn=d149.5??2.0625 mm Z124

3.齿根弯曲疲劳强度设计

按公式:

mn?2KT1Y?cos2?

?dZ12???YFaYSa [?F]

(1)确定计算参数

1)计算载荷系数

K=KAKVKF?KF?=1?1.07?1.2?1.35=1.73

2)根据纵向重合度??=1.903,从图10-28查得螺旋角影响系数

Y?=0.88

3)计算当量齿数

Zv1?

Zv2?Z124?=26.27 cos3?cos314?Z2100?=109.45 33cos?cos14?

4)查取齿形系数

由表10-5查得由插值法得 YFa1=2.592,YFa2=2.172

5)查取应力校正系数

由表10-5查得YSa1=1.596,YSa2=1.830

13 / 43

6)由图10-20c查得小齿轮的弯曲疲劳强度极?FE1=500MPa,大齿

轮的弯曲疲劳强度极限?FE2=380MPa

7)由图10-18取弯曲疲劳寿命系数KFN1=0.9,KFN2=0.93

6)计算弯曲疲劳许用应力

取弯曲疲劳安全系数S=1.4,则有:

[?F]1?

[?F]2?KFN1?FE10.9?500=321.43MPa ?S1.4KFN2?FE20.93?380=252.43MPa ?S1.4

YFaYSa

[?F]7)计算大、小齿轮的

,并加以比较 YFa1YSa12.592?1.596?=0.01287 [?F]1321.43YFa2YSa22.172?1.83==0.01575 [?F]2252.43

经比较大齿轮的数值大。

(2)设计计算

m?2?1.73?58.69?103?0.88?cos14??0.01575=1.41 1?242?1.65

对比计算结果,由齿面接触疲劳强度计算的模数m大于由齿根弯曲疲劳强度计算的法面模数,取 m =2.0 mm,已可满足弯曲疲劳强度。于是有: Z1?d1cos?49.5cos14?==24.01 2m

取Z1=24,则Z2?i12?Z1?4.17?24=100.08

14 / 43

取Z2=100,新的传动比i12?4.几何尺寸计算

(1)计算中心距 a?

(Z1?Z2)m2cos?

100

?4.167 24

?

(24?100)?2

=127.8 mm

2?cos14?

(2)按圆整后的中心距修正螺旋角 β=arccos

(Z1?Z2)m(24?100)?2

=arccos=14.36° 2a2?128

因β值变化不大,故参数??,K?,ZH等不必修正。 (3)计算大、小齿轮分度圆直径 d1? d2?

Z1mn24?2??49.55mm cos?cos14.36?

Z2mn100?2

??206.45mm cos?cos14.36?

(4)计算齿轮宽度

b=?dd1?1?49.55?49.55mm 圆整后取B1=55mm,B2=50mm 5. 大小齿轮各参数见下表

高速级齿轮相关参数(单位mm)表6-1

二级减速器机械课程设计含总结

15 / 43

表6-1 6.2 低速级齿轮设计

1.选定齿轮类型,精度等级,材料及齿数

1)按要求的传动方案,选用圆柱直齿轮传动;

2)运输机为一般工作机器,速度不高,故用7级精度;(GB10095—88)

3)材料的选择。由表10-1选择小齿轮材料为40Cr(调质)硬度为280HBS,大齿轮的材料为45钢(调质)硬度为240HBS,两者硬度差为40HBS;

16 / 43

二级减速器机械课程设计含总结

4)选小齿轮齿数为Z1=24,大齿轮齿数Z2可由Z2=i23

?Z1得Z2=3.19?Z1?76.56;取Z2=77

2.按齿面接触疲劳强度设计

按公式:

KTu?1ZH2?() d1t?2.32?t1??du[?H]

(1)确定公式中各数值

1)试选Kt=1.3。

2)由表10-7选取齿宽系数?d=1。

3)计算小齿轮传递的转矩

T1?9550?P19550?3.43??236.58N·m n1138.46

1

2 4)由表10-6查的材料的弹性影响系数ZE=189.8MPa

5)由图10-21d按齿面硬度查的小齿轮的接触疲劳强度极限

?Hlim1=600MPa;大齿轮的接触疲劳强度极限?Hlim2=550MPa。

6)由N1=60n1jLh=60?138.46?1?12?8?300=2.393?108;

N2?N1=7.5?107 3.19

查图10-19取接触疲劳寿命系数KHN1=0.96;

KHN2=0.99。

7)计算接触疲劳许用应力。

取失效概率为1,安全系数S=1,有

[?H]1?KHN1?Hlim1=0.96?600=576MPa S

17 / 43

[?H]2?KHN2?Hlim2=0.99?550=544.5MPa S

(2) 计算 确定小齿轮分度圆直径d1t,代入 [?H]中较小的值

1)计算小齿轮的分度圆直径d1t,由计算公式可得:

31.3?236.58?104.19189.82??()=84.94mm d1t?2.32?13.19544.5

2)计算圆周速度。

v??d1tn1

60?1000?3.14?84.94?138.46=0.62m/s 60?1000

3)计算齿宽b

b=?d?d1t=1?84.94=84.94 mm

4)计算模数与齿高

模数mt?d1t84.94??3.54mm z124

齿高h=2.25mt=2.25?3.54=7.97 mm

b

5) 计算齿宽与齿高之比h b84.94 ?=10.66 h7.97

6)计算载荷系数K。

已知使用系数KA=1,据v=0.62 m/s,7级精度。由图10-8得

Kv=1.04,KH?=1.427。由图10-13查得KF?=1.35,由表10-3查得KH?= KF?=1

故载荷系数:

K= KAKvKH?KH?

=1?1.04?1?1.427=1.484

18 / 43

7)按实际的载荷系数校正所算得的分度圆直径: d1=d1t?KK=84.94 ?.4841.3=188.772 mm

t

8)计算模数mn

mn?d188.772Z?=3.7 mm

124

3.按齿根弯曲疲劳强度设计

按公式:

mKT1

n?2?Z2?YFaYSa

d1[?F]

(1)确定计算参数

1)计算载荷系数。

K=KAKVKF?KF?=1?1.04?1?1.35

=1.404

2)查取齿形系数

由表10-5查得YFa1=2.65,YFa2=2.226

3)查取应力校正系数

由表10-5查得YSa1=1.58,YSa2=1.764

4)由图10-20c查得小齿轮的弯曲疲劳强度极?FE1=500 MPa,大齿轮的弯曲疲劳强度极限?FE2=380 MPa

5)由图10-18取弯曲疲劳寿命系数KFN1=0.95,KFN2=0.96

6)计算弯曲疲劳许用应力

取弯曲疲劳安全系数S=1.4,则有:

19 / 43

[?F]1?

[?F]2?KFN1?FE10.95?500=339.29Mpa ?S1.4KFN2?FE20.96?380=260.57MPa ?S1.4

YFaYSa ,并加以比较 [?F]7)计算大、小齿轮的

YFa1YSa12.65?1.58??0.01234 [?F]1339.29YFa2YSa22.226?1.764??0.01507 [?F]2260.57

经比较大齿轮的数值大。

(2)设计计算

m?2?1.404?236.58?103?0.01507?2.59 mm 21?24

对比计算结果,由齿面接触疲劳强度计算的模数m小于由齿根弯曲疲劳强度计算的法面模数,取 m =3mm,已可满足弯曲疲劳强度。 于是有:

Z1=d188.772??29.59 m3

取Z1=30,则Z2?i23?Z1?3.19?30=95.7取Z2=96;

新的传动比i12?

4.几何尺寸计算

(1)计算分度圆直径

d1=mZ1=3?30=90 mm

d2=mZ2=3?96=288 mm

(2)计算中心距

20 / 43

96?3.2 30

a?

(Z1?Z2)m

2

?

(30?96)?3

?189 mm 2

(3)计算齿轮宽度

b??dd1?1?90=90 mm B1=95 mm,B2=90 mm 5. 大小齿轮各参数见下表

低速级齿轮相关参数表6-2(单位mm)

二级减速器机械课程设计含总结

21 / 43

表6-2 7.轴类零件设计

7.1 I轴的设计计算

1.求轴上的功率,转速和转矩

由前面算得P1=5.76KW,n1=576r/min,T 1=9.55?104N?mm

2.求作用在齿轮上的力

已知高速级小齿轮的分度圆直径为d1=66mm

而 Ft?2T12?95500=2894N ?d166

? Fr=Fttan??2894?tan20=1053N

3.初步确定轴的最小直径

现初步估算轴的最小直径。选取轴的材料为45钢,调质处理据表15-3,取A0=110,于是得:

dmin=A0P5.761?110?23.7mm n1576

因为轴上应开1个键槽,所以轴径应增大3%故d=24.4mm,又此段轴与大带轮装配,综合考虑两者要求取dmin=30mm,因为带轮宽B=78mm故此段轴长取76mm。

4.轴的结构设计

(1)拟定轴上零件的装配方案

通过分析比较,装配示意图7-1

22 / 43

二级减速器机械课程设计含总结

图7-1

(2)据轴向定位的要求确定轴的各段直径和长度

1)I-II段是与带轮连接的其dI?II=30mm,LI?II=76mm。

2)II-III段用于安装轴承端盖,轴承端盖的e=9.6mm(由减速

器及轴的结构设计而定)。根据轴承端盖的拆卸及便于对轴承添加润

滑油的要求,取端盖与I-II段左端的距离为38mm。故取LII?III=58mm,

因其右端面需制出一轴肩故取dII?III=36mm。

3)初选轴承,因为有轴向力故选用深沟球轴承,参照工作要求

并据dII?III=36mm,由轴承目录里初选6208号其尺寸为

d?D?B=40mm?80mm?18mm故dIII?IV=40mm。又右边采用轴肩定位

取dⅣ?Ⅴ=48mm所以LⅣ?Ⅴ=100mm。

4)齿轮右边Ⅶ-Ⅷ段为轴套定位,且继续选用6208轴承,则此

处dⅦ?Ⅷ=40mm。取LⅦ?Ⅷ=46mm,取安装齿轮段轴径为dⅥ?Ⅶ=46mm,

齿轮左端与左轴承之间用套筒定位,已知齿轮宽度为70mm为是套筒

端面可靠地压紧齿轮,此轴段应略短于齿轮宽度故取LⅥ?Ⅶ=68mm。

dⅤ?Ⅵ=58mm,LⅤ?Ⅵ=10mm

(3)轴上零件的周向定位

23 / 43

二级减速器机械课程设计含总结

齿轮,带轮与轴之间的定位均采用平键连接。按dI?II由表6-1查得平键截面b?h?10?8,键槽用键槽铣刀加工长为60mm。同时为了保证带轮与轴之间配合有良好的对中性,故选择带轮与轴之间的配合为H7,同样齿轮与轴的连接用平键14?9?52,齿轮与轴之间的配合为n6

H7轴承与轴之间的周向定位是用过渡配合实现的,此处选轴的直径n6

尺寸公差为m6。

(4)确定轴上圆角和倒角尺寸

参考[2]表15-2取轴端倒角为2?45?.其他轴肩处圆觉角见图。

5.求轴上的载荷

先作出轴上的受力图以及轴的弯矩图和扭矩图

二级减速器机械课程设计含总结

7-2

24 / 43

图7-2

现将计算出的各个截面的MH,MV 和M的值如下:

FNH1=1402N FNH2=1613N FNV1=2761N FNV2=864N MH1=86924N?mm

MH2=103457N?mm

MV=171182N?mm

2255 M1=0.87?1.7?10=2.0?10N?mm

M2=MH2=103457N?mm

T1=1.3?10N?mm

6.按弯扭合成应力校核轴的强度

进行校核时,通常只校核危险截面的强度,从轴的结构图以及弯矩图和扭矩图中可以看出截面A是轴的危险截面。则根据[2]式15-5及上面的数据,取?=0.6轴的计算应力:

?ca?M12?(?T3)2

W5

?2.02?(0.6?1.3)2?105

=23.7MP 0.1?463

前面选用轴的材料为45钢,调制处理,由[2]表15-1

查得[??1]=60Mp,?ca?[??1],故安全。

7.2 II轴的设计计算

1.求轴上的功率,转速和转矩

由前面的计算得P=5.76KW,n1=5761,T 1=9.55?104N?mm

25 / 43

2.求作用在齿轮上的力

已知中间轴大小齿轮的分度圆直径为 d2=288.8mm d3=100mm

而 Ft12T12?9.55?104?=661N ?d2288.8

Fr1=Ft1tan??661?tan 20?=241N

同理可解得:

Ft22T22?4?105?=?8000N,Fr2=Ft2tan??2912N d4100

3.初步确定轴的最小直径

现初步估算轴的最小直径。选取轴的材料为45钢,调质处理据[2]表15-3,取A0=110,于是得:

dmin=A0P25.5?110??38.2mm n2131.2

因为轴上应开2个键槽,所以轴径应增大5%-7%故dmin=40.9mm,又此段轴与轴承装配,故同时选取轴承,因为轴承上承受径向力,故选用深沟球轴承,参照工作条件可选6209其尺寸为:d?D?B=45?85?19故dI?II=45mm右端用套筒与齿轮定位,套筒长度取24mm所以LI?II=48mm

4.轴的结构设计

(1)拟定轴上零件的装配方案通过分析比较,装配示意图7-4

26 / 43

图7-4

(2)据轴向定位的要求确定轴的各段直径和长度

1)II -III段为高速级大齿轮,由前面可知其宽度为65mm,为了使套筒端面与大齿轮可靠地压紧此轴段应略短于齿轮轮毂宽度。故取LII?III=62mm,dII?III=50mm。

2)III-IV段为大小齿轮的轴向定位,此段轴长度应由同轴条件计算得LIII?IV =8mm,dIII?IV=60mm。

3)IV-V段为低速级小齿轮的轴向定位,由其宽度为105mm可取LIV?V=102mm,dIV?V=50mm

4)V-VI段为轴承同样选用深沟球轴承6209,左端用套筒与齿轮定位,取套筒长度为24mm则 LV?VI =48mm dV?VI=45mm

(3)轴上零件的周向定位

两齿轮与轴之间的定位均采用平键连接。按dⅡ?Ⅲ由[5]P53表4-1查得平b?h?L?16?10?54,按dIV?V得平键截面b?h?L=16?10?94其与轴的配合均为H7。轴承与轴之间的周向定位是用过渡配合实现n6

的,此处选轴的直径尺寸公差为m6。

(4)确定轴上圆角和倒角尺寸

参考[2]表15-2取轴端倒角为2?45?.个轴肩处圆觉角见图。

27 / 43

二级减速器机械课程设计含总结

5.求轴上的载荷

先作出轴上的受力图以及轴的弯矩图和扭矩图如图7-4。现将计算出的各个截面的MH,MV 和M的值如下:

FNH1=719N FNH2=2822N FNV1=4107N FNV2=7158N

MH1=49611N?mm

MH1=253980N?mm

MV1=-283383N?mm

MV2=-644220N?mm

225 M1=2.8?0.5?10=284000N?mm

M=26.42?(2.5)2?105

5=690000N?mm T2=5.6?10N?mm

28 / 43

图7-4

6.按弯扭合成应力校核轴的强度

进行校核时,通常只校核危险截面的强度,从轴的结构图以及弯矩图和扭矩图中可以看出截面B和Ⅵ的右侧是轴的危险截面,对该轴进行详细校核,对于截面B则根据[2]式15-5及上面的数据,取?=0.6,轴的计算应力

?ca?2M2?(?T3)2

W

?6.92?(0.6?5.6)2?105

=50.6MP 30.1?56

29 / 43

二级减速器机械课程设计含总结

前面选用轴的材料为45钢,调制处理,由[2]表15-1查得[??1]=60Mp,?ca?[??1]。

对于Ⅵ的右侧

W?0.1?d3?0.1?563?17561mm3

Wt?0.2?563?35123mm3

M690000??39.3MPa W17561

T560000 ?T???16.1MPa WT35123 ?b?

由[2]表15-1查得?B?640MPa ??1?275MPa ??1?155MPa 由[2]表3-8查得k?

???2.64 k????2.11

由[2]附图3-4查得??????0.92

由[2]中?3?1和?3?2得碳钢的特性系数,取???0.1,???0.05 故综合系数为

K??

K??k???k??1??1?1?2.64?1?1?2.73 0.92

??????1?2.11?1?1?2.20 0.92

故Ⅵ右侧的安全系数为

S??

S????1275??2.56 K??a????m2.73?39.3?0.1?0??1155??8.56 16.116.1K??a????m2.2??0.05?22

S?S?

S2 Sca?

??S?2?2.56?8.562.56?8.5622?2.46>S=1.5

故该轴在截面Ⅵ的右侧的强度也是足够的。

30 / 43

综上所述该轴安全。

7.3 III轴的设计计算

1.求轴上的功率,转速和转矩

由前面算得P3=5.28KW,n3=40.37r/min,T3=1.25?10N?mm

2.求作用在齿轮上的力

已知低速级大齿轮的分度圆直径为 d4=325mm

2T32?1.25?106而 F?=?7692N d4325t6

Fr=Fttan??7692?tan 20??2800N

3.初步确定轴的最小直径

现初步估算轴的最小直径。选取轴的材料为45钢,调质处理据表15-3,取A0=110,于是得:

dmin=A0P35.28?110??55.8mm n340.37

同时选取联轴器型号。联轴器的计算转矩Tca=KAT3查表14-1取

KA=1.3.则:Tca?KAT3?1.3?1.76?106?2288000N?mm

按计算转矩应小于联轴器的公称转矩的条件查[5]P99表8-7可选用LX4型弹性柱销联轴器。其公称转矩为2500000N?mm。半联轴器孔径d=63mm,故取dI?II=63mm半联轴器长度L=142mm,半联轴器与轴配合的毂孔长度l1=132mm。

4.轴的结构设计

(1)拟定轴上零件的装配方案通过分析比较,装配示意图7-5

31 / 43

图7-5

(2)据轴向定位的要求确定轴的各段直径和长度

1)为满足半联轴器的轴向定位,I-II右端需制出一轴肩故II-III段的直径dII?III=65mm;左端用轴端挡圈定位取轴端挡圈直径D=65mm。半联轴器与轴配合的毂孔长为132mm,为保证轴端挡圈只压在联轴器上而不压在轴上,故I-II段长度应比L1略短一些,现取lI?II=132mm.

2)II-III段是固定轴承的轴承端盖e=12mm。据dII?III =65mm和方便拆装可取lII?III=95mm。

3)初选轴承,因为有轴向力故选用深沟球轴承,参照工作要求dⅢ?Ⅳ=70mm,由轴承目录里初选6214号其尺寸为d?D?B=70mm?125mm?24mm,lIII?IV=24mm由于右边是轴肩定位,dⅣ?Ⅴ=82mm,lⅣ?Ⅴ=98mm,dⅤ?Ⅵ=88mmmm,lⅤ?Ⅵ=12mm。

4)取安装齿轮段轴径为dⅥ?Ⅶ=80mm,已知齿轮宽为108mm取lⅥ?Ⅶ=104mm。齿轮右边Ⅶ-Ⅷ段为轴套定位,轴肩高h=6mm则此处dⅦ?Ⅷ=70mm。取lⅦ?Ⅷ=48mm

(3)轴上零件的周向定位

齿轮,半联轴器与轴之间的定位均采用平键连接。按dI?II由[5]P53表4-1查得平键截面b?h?18?11键槽用键槽铣刀加工长为125mm。选择

32 / 43

二级减速器机械课程设计含总结

半联轴器与轴之间的配合为

齿轮与轴之间的配合为H7,同样齿轮与轴的连接用平键22?14k6H7轴承与轴之间的周向定位是用过渡配合实n6

现的,此处选轴的直径尺寸公差为m6。

(4)确定轴上圆角和倒角尺寸

参考[2]表15-2取轴端倒角为2?45?.个轴肩处圆觉角见图。

5.求轴上的载荷

先作出轴上的受力图以及轴的弯矩图和扭矩图如图7-6。

现将计算出各个截面处的MH,MV和M的值如下:

FNH1=12049N FNH2=2465N FNV1=3309N FNV2=6772N MH=-211990N?mm MV=582384N?mm

225 M1=2.1?5.8?10=620000N?mm

6?10 T=1.76N?mm 1

33 / 43

图7-6

6.按弯扭合成应力校核轴的强度

进行校核时,通常只校核危险截面的强度,从轴的结构图以及弯 矩图和扭矩图中可以看出截面A是轴的危险截面,则根据[2]式15-5及上面的数据,取?=0.6,轴的计算应力

?ca?M12?(?T3)2

W

?

6.22?(0.6?17.6)2?105=24.0MP 30.1?80 34 / 43

二级减速器机械课程设计含总结

前面选用轴的材料为45钢,调制处理,由[2]表15-1 查得[??1]=60Mp,?ca?[??1],故安全。

8.轴承的寿命计算

8.1 I轴上的轴承6208寿命计算

预期寿命:L'

h?8?350?16?44800h

已知P?2761N,n?440r/min,C?29500N,??3

6610C10295003?Lh?()?()?47000h>460nP60?4402761

故 I轴上的轴承6208在有效期限内安全。

8.2 II轴上轴承6210的寿命计算

预期寿命:L'

h?8?350?16?44800h

已知P?7158N,n?93.6r/min,C?35000,

6610C10350003?Lh?()?()?20820h<44800h 60nP60?93.67158

故II轴上轴承6210须在四年大修时进行更换。

8.3 Ⅲ轴上轴承6214的寿命计算

预期寿命:L'

h?8?350?16?44800h

已知P?6772N,n?28.6r/min,C?60800

6610C10608003?Lh?()?()?426472h>44800h 60nP60?28.66772

故III轴上的轴承6214满足要求。

9.键连接的校核

9.1 I轴上键的强度校核

35 / 43

查表4-5-72得许用挤压应力为[?p]?110MPa

Ⅶ-Ⅷ段键与键槽接触疲劳强度l?L?b?70?10?60mm

故此键能安全工作。 ?p?2T2?130??33.8MPa?[?p]?110MPa?9kld0.5?8?60?32?10

Ⅱ-Ⅲ段与键槽接触疲劳强度l?L?b?67?14?53mm ?p?2T2?130??34.1MPa?[?p]?110MPa?9kld0.5?9?53?32?10 故此键能安全工作。

9.2 II轴上键的校核

查表4-5-72得许用挤压应力为[?p]?110MPa

II-III段键与键槽接触疲劳强度l?L?b?63?16?47mm ?p?2T2?560??85.1MPa?[?p]?110MPakld0.5?10?47?56?10?9 故此键能安全工作。

IV-V段与键槽接触疲劳强度l?L?b?100?16?84mm ?p?2T2?560??47.6MPa?[?p]?110MPakld0.5?10?84?56?10?9 故此键能安全工作。

9.3 III轴上键的校核

查表4-5-72得许用挤压应力为[?p]?110MPa

I-II段键与键槽接触疲劳强度l?L?b?125?18?107mm

故此键能安全工作。 ?p?2T2?1760??94.9MPa?[?p]?110MPa?9kld0.5?11?107?63?10

Ⅵ-Ⅶ段与键槽接触疲劳强度l?L?b?100?22?78mm ?p?

2T2?1760??80.6MPa?[?p]?110MPa?9kld0.5?14?78?80?10 36 / 43

故此键能安全工作。

10.润滑及密封类型选择

10.1 润滑方式

齿轮采用飞溅润滑,在箱体上的四个轴承采用脂润滑,在中间支撑上的两个轴承采用油润滑。

10.2 密封类型的选择

1. 轴伸出端的密封

轴伸出端的密封选择毛毡圈式密封。

2. 箱体结合面的密封

箱盖与箱座结合面上涂密封胶的方法实现密封。

3. 轴承箱体内,外侧的密封

(1)轴承箱体内侧采用挡油环密封。

(2)轴承箱体外侧采用毛毡圈密封。

11.减速器附件设计

11.1 观察孔及观察孔盖的选择与设计

观察孔用来检查传动零件的啮合,润滑情况,并可由该孔向箱内注入润滑油。平时观察孔盖用螺钉封住,。为防止污物进入箱内及润滑油渗漏,在盖板与箱盖之间加有纸质封油垫片,油孔处还有虑油网。 查表[6]表15-3选观察孔和观察孔盖的尺寸分别为140?120和110?90。

11.2 油面指示装置设计

油面指示装置采用油标指示。

37 / 43

11.3 通气器的选择

通气器用来排出热膨胀,持气压平衡。查表[6]表15-6选M36?2 型通气帽。

11.4 放油孔及螺塞的设计

放油孔设置在箱座底部油池的最低处,箱座内底面做成1.5?外倾斜面,在排油孔附近做成凹坑,以便能将污油放尽,排油孔平时用螺塞堵住。查表[6]表15-7选M20?1.5型外六角螺塞。

11.5 起吊环的设计

为装卸和搬运减速器,在箱盖上铸出吊环用于吊起箱盖。

11.6 起盖螺钉的选择

为便于台起上箱盖,在上箱盖外侧凸缘上装有1个启盖螺钉,直径与箱体凸缘连接螺栓直径相同。

11.7 定位销选择

为保证箱体轴承座孔的镗孔精度和装配精度,在精加工轴承座孔前,在箱体联接凸缘长度方向的两端,个装配一个定位销。采用圆锥销,直径是凸缘连接螺栓直径的0.8倍。

12.主要尺寸及数据

箱体尺寸:

箱体壁厚?=10mm

箱盖壁厚?1=8mm

箱座凸缘厚度b=15mm

箱盖凸缘厚度b1=15mm

38 / 43

箱座低凸缘厚度b2=25mm

地脚螺栓直径df=24mm

地脚螺栓数目n=4

轴承旁联接螺栓直径d1=M16

机座与机盖联接螺栓直径d2=M12

联接螺栓d2的间距l=150mm

轴承端盖螺钉直径d3=M10

窥视孔盖螺钉直径d4=M8

定位销直径d=10mm

df,d1,d2至外箱壁的距离c1=34mm,22mm,18mm df,d2至凸缘边缘的距离c2=28mm,16mm 轴承旁凸台半径R1=16mm

凸台高度根据低速轴承座外半径确定

外箱壁至轴承座端面距离L1=70mm

大齿轮顶圆与内箱壁距离?1=14mm

齿轮端面与内箱壁距离?2=12mm

箱盖,箱座肋厚m1=m=7mm

轴承端盖外径D2:凸缘式端盖:D+(5~5.5)d3 以上数据参考机械设计课程设计指导书

传动比:

原始分配传动比:i带=2.2 i12=4.70 i23=3.27 修正后 : i带=2.24 i12=4.68 i23=3.26

39 / 43

970

?433 2.24433

n2=?92.5

4.6892.5

n3??28.4

3.26

各新的转速 :n1=

各轴的输入效率:

P1?Pd??1??2?6.0?0.96?0.99?5.7 P2?P1??3??4?5.70?0.97?0.99?5.47 P3?P2??5??6?5.47?0.97?0.99?5.25 P4?P3??7??8?5.25?0.99?0.99?5.15

各轴的输入转矩:

T1?9550

Pd6.0?i带??1??2?9550??2.24?0.96?0.99?125.8 N?m nm970

T2?T1?i12??3??4?125.8?4.68?0.97?0.99?566.4 N?m T3?T2?i12??5??6?566.4?3.26?0.97?0.99?1773.2 N?m T4?T3??7??8?1773.2?0.99?0.99?1737.87 N?m

二级减速器机械课程设计含总结

40 / 43

参考文献:

1 宋宝玉,王连明主编,机械设计课程设计,第3版。哈尔滨:哈滨工业大学出版社,20xx年1月。

2 濮良贵,纪明刚主编,机械设计,第8版。北京:高等教育出版

社,20xx年5月。

3 蔡春源主编,机械设计手册?齿轮传动,第4版,北京:机械工业

出版社,20xx年3月。

4 吴宗泽主编,机械零件设计手册,第10版,北京:机械工业出版

社,20xx年11月。

5 吴宗泽,罗圣国主编,机械课程设计手册,第3版,北京:高等

教育出版社。

6 骆素君,朱诗顺主编. 机械设计课程设计简明手册,化学工业出

版社,20xx年8月.

设计心得:

机械设计课程设计是机械课程中一个重要的环节通过了几个周的课程设计使我从各个方面都受到了机械设计的训练,对机械的有关各个零部件有机的结合在一起得到了深刻的认识。

由于在设计方面我们没有经验,理论知识学的不牢固,在设计中难免会出现问题,如:在选择计算标准间是可能会出现误差,如果是联系紧密或者循序渐进的计算误差会更大,在查表和计算上精度不够准

41 / 43

确。

课程设计运用到了很多知识,例如将理论力学,材料力学,机械设计,机械原理,互换性与测量技术等,是我对以前学习的知识有了更深刻的体会。

通过可程设计,基本掌握了运用绘图软件制图的方法与思路,对计算机绘图方法有了进一步的加深,基本能绘制一些工程上的图。 在设计的过程中,培养了我综合应用机械设计课程及其他课程的理论知识和应用生产实际知识解决工程实际问题的能力,在设计的过程中海培养出了我们的团队精神,大家共同解决了许多个人无法解决的问题,在这些过程中我们深刻地认识到了自己在知识的理解和接受应用方面的不足,在今后的学习过程中我们会更加努力和团结。

42 / 43

更多相关推荐:
二级减速器(机械课程设计)(含总结)

机械设计毕业设计姓名班级学号指导教师成绩日期20xx年6月目录1设计目的22设计方案33电机选择54装置运动动力参数计算75带传动设计96齿轮设计187轴类零件设计288轴承的寿命计算319键连接的校核3210...

二级减速器(机械课程设计)(含总结gai!!!!)

机械设计课程设计姓名班级学号指导教师成绩日期20xx年6月目录1设计目的22设计方案33电机选择54装置运动动力参数计算75带传动设计96齿轮设计187轴类零件设计288轴承的寿命计算319键连接的校核3210...

二级减速器(机械课程设计)(含总结)

机械设计课程设计姓名班级学号指导教师成绩日期20xx年6月目录1设计目的22设计方案33电机选择54装置运动动力参数计算75带传动设计96齿轮设计187轴类零件设计288轴承的寿命计算319键连接的校核3210...

二级减速器(机械课程设计)(含总结)

机械设计课程设计--二级展开式圆柱齿轮减速器设计姓名:班级:机械(国)1201学号:指导教师:成绩:日期:20##年5月目录1.设计目的22.设计方案23.电机选择44.装置运动动力参数计算65.齿轮设计86.…

二级减速器(机械课程设计)(含总结)

机械设计课程设计姓名班级学号指导教师成绩日期20xx年6月目录1设计目的22设计方案33电机选择54装置运动动力参数计算75带传动设计96齿轮设计187轴类零件设计288轴承的寿命计算319键连接的校核3210...

二级减速器(机械课程设计)(含总结)

目录1设计目的22设计方案33电机选择54装置运动动力参数计算75带传动设计96齿轮设计187轴类零件设计288轴承的寿命计算319键连接的校核3210润滑及密封类型选择3311减速器附件设计3312心得体会3...

二级减速器(机械课程设计)(含总结)

机械设计课程设计姓名班级学号指导教师成绩日期20xx年6月目录1设计目的22设计方案33电机选择54装置运动动力参数计算75带传动设计96齿轮设计187轴类零件设计288轴承的寿命计算319润滑及密封类型选择3...

二级斜齿圆柱齿轮减速器(课程设计说明书)

机械设计基础课程设计名称:二级斜齿轮减速器学院:机械工程学院专业班级:过控071学生姓名:学号:指导老师:成绩:20##年12月27日目录机械设计课程设计任务书...11绪论...21.1选题的目的和意义...…

二级斜齿圆柱齿轮减速器课程设计说明书[1]

机械设计基础课程设计目录目录机械设计课程设计任务书11绪论211选题的目的和意义22确定传动方案33机械传动装置的总体设计331选择电动机3311选择电动机类型3312电动机容量的选择3313电动机转速的选择4...

课程设计-二级展开式圆柱齿轮减速器设计说明

机械设计课程设计计算说明书设计题目二级展开式圆柱齿轮减速器机械系机械工程及自动化专业机工041班南昌工程学院07机制1班目录一设计任务书3二动力机的选择4三计算传动装置的运动和动力参数5四传动件设计计算齿轮6五...

二级展开式圆柱齿轮减速器设计计算说明书(1)

机械设计课程设计计算说明书设计题目二级展开式直齿圆柱齿轮减速器机械系机械工程及自动化专业机械0703班年目录一设计任务书3二动力机的选择4三计算传动装置的运动和动力参数5四传动件设计计算齿轮6五轴的设计12六滚...

减速器设计报告

青岛理工大学琴岛学院设计报告课题名称带式输送机传动装置设计学院机电工程系专业班级机械设计制造及其自动化095班学号xxxxxxxx学生xx指导老师xxx青岛理工大学琴岛学院教务处20xx年12月6日

二级减速器设计总结(16篇)