传感器课程设计报告

时间:2024.4.22

传感器课程设计报告

    目:霍尔转速器

指导老师: 

    名: 

    号: 

摘 要:

转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。

关键词:转速测量,霍尔传感器,信号处理,数据处理

一 前言

在工农业生产和工程实践中,经常会遇到各种需要测量转速的场合,例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要测量和显示其转速。要测速,首先要解决的是采样问题。测量转速的方法分为模拟式和数字式两种。模拟式采用测速发电机为检测元件,得到的信号是模拟量。早期直流电动机的控制均以模拟电路为基础,采用运算放大器,非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难。数字式通常采用光电编码器、圆光栅、霍尔元件等为检测元件,得到的信号是脉冲信号。随着微型计算机的广泛应用,单片机技术的日新月异,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法,使得许多控制功能及算法可以采用软件技术来完成,智能化微电脑代替了一般机械式或模拟式结构,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。

直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速。测速电机的电压高低反映了转速的高低,在许多需要调速或快速正反向电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。本文介绍一种用STC89C51单片机测量小型电动机转速的方法。系统以单片机STC89C51为控制核心,用NJK-8002D霍尔集成传感器作为测量小型直流电机转速的检测元件,经过单片机数据处理,用8位LED数码管动态显示小型直流电机的转速。

霍尔传感器在实际应用中越来越广泛,将永磁体按适当的方式固定在被测轴上,霍尔传感器置于磁铁的气隙中,当轴转动时,霍尔传感器输出的电压则包含有转速的信息。将霍尔传感器输出电压经后续电路处理,便可得到转速的数据。基于以上特点,我们设计了感器的直流电机转速测量系统。利用霍尔效应测量转速的工作原理非常简单,可靠性高,性能稳定,率响应快、抗干扰能力强等优点

二 系统概述

2.1  系统组成

系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化为脉冲信号。信号预处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。 处理器采用STC89C51单片机,显示器采用8位LED数码管动态显示。系统原理框图如图所示:

 

转速测量系统原理框图

系统软件主要包括测量初始化模块、信号频率测量模块、浮点数算术运算模块、浮点数到BCD码转换模块、显示模块、按键功能模块、定时器中断服务模块。系统软件框图如图所示。

2.2  处理方法

系统的设计以STC89C51单片机为核心,利用它内部的定时/计数器完成待测信号频率的测量。测速实际上就是测频,通常可以用计数法、测脉宽法和等精度法来进行测试。所谓计数法,就是给定一个闸门时间,在闸门时间内计数输入的脉冲个数;测脉宽法是利用待测信号的脉宽来控制计数门,对一个高精度的高频计数信号进行计数。由于闸门与被测信号不能同步,因此,这两种方法都存在±1误差的问题,第一种方法适用于信号频率高时使用,第二种方法则在信号频率低时使用。等精度法则对高、低频信号都有很好的适应性。此系统采用计数法测速。单片机STC89C51内部具有 2 个 16 位定时/计数器 ,定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出中断要求的功能。在构成为定时器时,每个机器周期加 1(使用12MHz 时钟时,每 1us 加 1),这样以机器周期为基准可以用来测量时间间隔。在构成为计数器时,在相应的外部引脚发生从 1 到 0 的跳变时计数器加1,这样在计数闸门的控制下可以用来测量待测信号的频率。外部输入每个机器周期被采样一次,这样检测一次从1到0的跳变至少需要2个机器周期(24 个振荡周期),所以最大计数速率为时钟频率的1/24(使用12MHz时钟时 ,最大计数速率为 500KHz)。定时/计数器的工作由相应的运行控制位TR控制,当TR置1时,定时/计数器开始计数,当 TR清0时,停止计数。

 

 

2.3  系统工作原理

转速是工程上一个常用的参数,旋转体的转速常以每分钟的转数来表示。其单位为 r/min。由霍尔元件及外围器件组成的测速电路将电动机转速转换成脉冲信号,送至单片机STC89C51的计数器 T0进行计数,用T1定时测出电动机的实际转速。此系统使用单片机进行测速,采用脉冲计数法,使用霍尔传感器获得脉冲信号。其机械结构也可以做得较为简单,只要在转轴的圆盘上粘上两粒磁钢,让霍尔传感器靠近磁钢,机轴每转一周,产生两个脉冲,机轴旋转时,就会产生连续的脉冲信号输出。由霍尔器件电路部分输出,成为转速计数器的计数脉冲。控制计数时间,即可实现计数器的计数值对应机轴的转速值。单片机CPU将该数据处理后,通过LED显示出来。

 

2.3.1  霍尔传感器

霍尔传感器是对磁敏感的传感元件,由磁钢、霍耳元件等组成。测量系统的转速传感器选用SiKO 的 NJK-8002D 的霍尔传感器,其响应频率为100KHz,额定电压为5-30(V)、检测距离为10(mm)。其在大电流磁场或磁钢磁场的作用下,能测量高频、工频、直流等各种波形电流。该传感器具有测量精度高、电压范围宽、功耗小、输出功率大等优点,广泛应用在高速计数、测频率、测转速等领域。输出电压4~25V,直流电源要有足够的滤波电容,测量极性为N极。安装时将一非磁性圆盘固定在电动机的转轴上,将磁钢粘贴在圆盘边缘,磁钢采用永久磁铁,其磁力较强,霍尔元件固定在距圆盘1-10mm处。当磁钢与霍尔元件相对位置发生变化时,通过霍尔元件感磁面的磁场强度就会发生变化。圆盘转动,磁钢靠近霍尔元件,穿过霍尔元件的磁场较强,霍尔元件输出低电平;当磁场减弱时,输出高电平,从而使得在圆盘转动过程中,霍尔元件输出连续脉冲信号。这种传感器不怕灰尘、油污,在工业现场应用广泛。

2.3.2霍尔元件的工作原理及结构

霍尔元件是根据霍尔效应进行磁电转换的磁敏元件,其典型的工作原理图如图所示。霍尔元件是一个N型半导体薄片,若在其相对两侧通以控制电流I,而在薄片垂直方向加以磁场氏 则在半导体另外两侧便会产生一个大小与电流,和磁场B的乘积成工比的电压。这个现象就是霍尔效应,所产生的电压叫霍尔电压UR.

式中:UH---霍尔电压;

RH---霍尔系数;

d---霍尔元件的厚度;

I---通过霍尔元件的电流;

B---加在霍尔元件上的磁场磁力线密度;

---元件形状函数,其中L为元件的长度,W为元件的宽度。

从上面的公式可以看出,霍尔电压正比于电流强度和磁场强度,且与霍尔元件的形状有关。在电流强度恒定以及霍尔元件形状确定的条件下,霍尔电压正比于磁场强度。当所加磁场方向改变时,霍尔电压的符号也随之改变因此,霍尔元件可以用来测量磁场的大小及方向。

霍尔元件常采用锗、硅、砷化镓、砷化铟及锑化钢等半导体制作。用锑化铟半导体制成的霍尔元件灵敏度最高,但受温度的影响较大。用锗半导体制成的霍尔元件,虽然灵敏度较低,但它的温度特性及线性度较好。目前使用锑化铟霍尔元件的场合较多。

2.3.3  转速测量原理

霍尔器件是由半导体材料制成的一种薄片,器件的长、宽、高分别为 l、b、d。若在垂直于薄片平面(沿厚度 d)方向施加外磁场B,在沿l方向的两个端面加一外电场,则有一定的电流流过。由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为:

式中:f—洛仑磁力, q—载流子电荷, V—载流子运动速度, B—磁感应强度。

这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差称为霍尔电压。

霍尔电压大小为: (mV)

式中:—霍尔常数, d—元件厚度, B—磁感应强度, I—控制电流

, 则=(mV)

为霍尔器件的灵敏系数(mV/mA/T),它表示该霍尔元件在单位磁感应强度和单位控制电流下输出霍尔电动势的大小。应注意,当电磁感应强度B反向时,霍尔电动势也反向。图2.3为霍耳元件的原理结构图。

 若控制电流保持不变,则霍尔感应电压将随外界磁场强度而变化,根据这一原理,可以将两块永久磁钢固定在电动机转轴上转盘的边沿,转盘随被测轴旋转,磁钢也将跟着同步旋转,在转盘附近安装一个霍尔元件,转盘随轴旋转时,霍尔元件受到磁钢所产生的磁场影响,输出脉冲信号。传感器内置电路对该信号进行放大、整形,输出良好的矩形脉冲信号,测量频率范围更宽,输出信号更精确稳定,已在工业,汽车,航空等测速领域中得到广泛的应用。其频率和转速成正比,测出脉冲的周期或频率即可计算出转速。   

          图2.3  霍耳元件的原理结构图

  系统硬件电路设计

3.1  单片机控制电路设计

系统选用 STC89C51 作为转速信号的处理核心。STC89C51 包含 2 个16位定时/计数器、4K×8 位片内 FLASH 程序存储器、4个8位并行I/O口。16 位定时/计数器用于实现待测信号的频率测量。8位并行口P0、P2用于把测量结果送到显示电路。4K×8 位片内FLASH程序存储器用于放置系统软件。STC89C51与具有更大程序存储器的芯片管脚兼容,如:89C52(8K×8 位)或 89C55(32K×8 位),为系统软件升级打下坚实的物质基础。STC89C51最大的优点是:可直接通过计算机串口线下载程序,而无需专用下载线和编程器。

STC89C51单片机是在一块芯片中集成了CPU、RAM、ROM、定时器/计数器和多功能I/O口等一台计算机所需要的基本功能部件。其基本结构框图如图3.1,包括:

·一个8位CPU;

·4KB ROM;

·128字节RAM数据存储器;

·21个特殊功能寄存器SFR;

· 4个8位并行I/O口,其中P0、P2为地址/数据线,可寻址64KB ROM或64KB RAM;

·一个可编程全双工串行口;

·具有5个中断源,两个优先级,嵌套中断结构;

·两个16位定时器/计数器;            

·一个片内震荡器及时钟电路;

STC89C51单片机结构框图

STC89C51系列单片机中HMOS工艺制造的芯片采用双列直插(DIP)方式封装,有40个引脚。STC89C51单片机40条引脚说明如下:

 (1)电源引脚。V正常运行和编程校验(8051/8751)时为5V电源,V为接地端。

(2)I/O总线。P- P(P0口),P- P(P1口),P- P(P2口),P- P(P3口)为输入/输出引线。

(3)时钟。

XTAL1:片内震荡器反相放大器的输入端。

XTAL2:片内震荡器反相放器的输出端,也是内部时钟发生器的输入端。

(4)控制总线。

     由P3口的第二功能状态和4根独立控制线RESET、EA、ALE、PSEN组成。

值得强调的是,P3口的每一条引脚均可独立定义为第一功能的输入输出或第二功能。如表3.1所示。

表3.1 P3口线的第二功能定义:

STC89C51单片机的片外总线结构: 
①地址总线(AB):地址总线宽为16位,因此,其外部存储器直接寻址为64K字节,16位地址总线由P0口经地址锁存器提供8位地址(A0至A7);P2口直接提供8位地址(A8至A15)。 
②数据总线(DB):数据总线宽度为8位,由P0提供。 
③控制总线(CB):由P3口的第二功能状态和4根独立控制线RESET、EA、ALE、PSEN组成。

3.2  脉冲产生电路设计

LM358内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。
    LM358的封装形式有塑封8引线双列直插式和贴片式。

特性:

  • 内部频率补偿
  • 直流电压增益高(约100dB)
  • 单位增益频带宽(约1MHz)
  • 电源电压范围宽:单电源(3—30V)
  • 双电源(±1.5一±15V)
  • 低功耗电流,适合于电池供电
  • 低输入偏流
  • 低输入失调电压和失调电流
  • 共模输入电压范围宽,包括接地
  • 差模输入电压范围宽,等于电源电压范围
  • 输出电压摆幅大(0至Vcc-1.5V)

如图3.2所示,信号预处理电路为系统的前级电路,其中霍尔传感元件b,d为两电源端,d接正极,b接负极;a,c两端为输出端,安装时霍尔传感器对准转盘上的磁钢,当转盘旋转时,从霍尔传感器的输出端获得与转速率成正比的脉冲信号,传感器内置电路对该信号进行放大、整形,输出良好的矩形脉冲信号,图中LM358部分为过零整形电路使输入的交变信号更精确的变换成规则稳定的矩形脉冲,便于单片机对其进行计数。

3.3  按键电路设计

通过软件设置按键开关功能:        按 K0清零、复位

按K1显示计时时间

按K2显示计数脉冲数

此按键电路为低电平有效,当无按键按下时,单片机输入引脚P1.0、P1.1、P1.2、P1.3端口均为高电平。当其中任一按键按下时,其对应的P1端口变为低电平,在软件中利用这个低电平设计其功能。软件中还设置了按键防抖动误触发功能,软件中设置定时器1  50ms中断一次,每次中断都对按键进行扫描,如果扫描到有按键按下,则延迟10ms,再次进行键扫描,若仍有按键按下,则按键为真,并从P1口读取数据,低电平对应的即为有效按键,如图3.3所示。

  按键电路图

3.4  数据显示电路设计

3.4.1  数码管结构和显示原理

图为数码管的引脚接线图,实验板上以P0口作输出口,经74LS244驱动,接8只共阳数码管S0-S7。表3.2为驱动LED数码管的段代码表为低电平有效,1-代表对应的笔段不亮,0-代表对应的笔段亮。若需要在最右边(S0)显示“5”,只要将从表中查得的段代码64H写入P0口,再将P2.0置高,P2.1-P2.7置低即可。设计中采用动态显示,所以其亮度只有一个LED数码管静态显示亮度的八分之一。

驱动LED数码管的段代码

数码管的引脚接线图

这里设计的系统先用 6 位LED数码管动态显示小型直流电机的转速。当转速高于六位所能显示的值(999999)时就会自动向上进位显示。

3.4.2  缓冲器74LS244

系统总线中的地址总线和控制总线是单向的,因此驱动器可以选用单向的,如74LS244。74LS244还带有三态控制,能实现总线缓冲和隔离,74LS244是一种三态输出的八缓冲器和线驱动器,该芯片的逻辑电路图和引脚图如图3.5所示。

从图可见,该缓冲器有8个输入端,分为两路——1A1~1A4,2A1~2A4。同时8个输出端也分为两路——1Y1~1Y4,2Y1~2Y4,分别由2个门控信号1G和2G控制,/1G, /2G三态允许端(低电平有效)。当1G为低电平时,1Y1~1Y4的电平与1A1~1A4的电平相同,即输出反映输入电平的高低;同样,当2G为低电平时,2Y1~2Y4的电平与2A1~2A4的电平相同。而当1G(或2G)为高电平时,输出1Y1~1Y4(或2Y1~2Y4)为高阻态。经74LS244缓冲后,输入信号被驱动,输出信号的驱动能力加大了。74LS244缓冲器主要用于三态输出的存储地址驱动器、时钟驱动器和总线定向接收器和定向发送器等。常用的缓冲器还有74LS240,241等。

  

图3.5 74LS244逻辑电路图

74LS244的极限参数如下:

电源电压 ………………………………………………7V

         输入电压 ………………………………………………5.5V

         输出高阻态时高电平电压 ……………………………5.5V

利用上述器件设计的显示电路如图3.6所示。8个共阳的LED数码管(S0-S7)同名的引脚连接在一起,由单片机P0口通过74LS244驱动(段控制),R12-R19 为限流电阻。单片机P2口的8个引脚分别通过三极管Q0-Q7控制8个LED数码管的公共端(位控制)。单片机的主时钟为12MHz。

P0口 和 P2口都是准双向口,输出时需要接上拉电阻。P0内部没有上拉电阻,P2口内部有弱上拉。所以P0口外围电路设计为低电平有效,高电平无效。要使数码管S0-S7的其中一个亮,其对应的P2端口要置高,P2的其余端口置低。如要让S0数码管亮,则要将P2.0置高,P2.1-P2.7置低即可。

系统将定时把显示缓冲区的数据送出,在数码管LED上显示。

3.5 总电路图

                                                                                                                               

   软件设计

本设计软件主要为主程序、数据处理显示程序、按键程序设计、定时器中断服务程序四个部分。

(1)主程序主要完成初始化功能,包括LED显示的初始化,中断的初始化,定时器的初始化,寄存器、标志位的初始化等。主程序流程图如图4.1所示。

(2)数据处理显示模块程序。此模块中单片机对在1秒内的计数值进行处理,转换成r/min送显示缓存以便显示。具体算法如下:设单片机每秒计数到n个值,即n/2 (r/s)(圆盘贴两个磁钢)。则n/2 (r/s)=30n(r/min)。即只要将计数值乘以30便可得到每分钟电机的转速。数据处理显示模块流程图如图4.2所示。

         

图4.1 主程序流程图         图4.2 数据处理显示模块流程图

                  

                      

   (3)按键程序设计。按键程序包括按键防抖动处理、判键及修改项目等程序。按键流程图如图4.3所示。

(4)定时器1中断服务程序设计。定时器1完成计时功能,定时50ms,进行定时中断计数并每隔1s更新一次显示数据

五  总结

霍尔传感器在实际应用中越来越广泛,将永磁体按适当的方式固定在被测轴上,霍尔传感器置于磁铁的气隙中,当轴转动时,霍尔传感器输出的电压则包含有转速的信息。测速的方法决定了测速信号的硬件连接,测速实际上就是测频,因此,频率测量的一些原则同样适用于测速。将霍尔传感器输出电压经后续电路处理,便可得到转速的数据。随着单片机的不断推陈出新,特别是高性价比的单片机的涌现,转速测量控制普遍采用了以单片机为核心的数字化、智能化的系统。本文介绍了一种由单片机c8051f060作为主控制器,使用霍尔传感器进行测量的直流电机转速测量系统。

霍尔传感器具有不怕灰尘、油污,安装简易,不易损坏等优点,在工业现场得到了广泛应用。利用霍尔传感器设计的转速测量系统以单片机STC89C51为数据处理核心,采用定时器定时中断的方法实现计数,对测量数据进行计算得到转速数据,并将结果送数码管显示。整个测量系统硬件电路简单,容易调试,软件部分编程采用C51,有较高的编程效率。测试结果表明对电动机转速的测量精度较高,基本能够满足实际的测试需要,有一定的实际应用价值。

参考文献:

[1]何希才,薛永毅.传感器及其应用实例[M].北京:机械工业出版社,2004.1

[2]谭浩强.C程序设计(第二版)[M].北京:清华大学出版社,1999

[3]谢嘉奎,宣月清,冯军 . 电子线路[M].北京:高等教育出版社,2004

[4]康华光 .电子技术基础[M].北京:高等教育出版社,2004

[5]胡斌 . 图表细说电子元器件[M].北京:电子工业出版社,2004.5

[6][德]克劳斯·贝伊特.电子元件[M]. 北京:科学出版社,1999.8

[7]余锡存,曹国华.单片机原理与接口技术[M] .西安:西安电子科技大学出版社,2000.7

                                                                             

更多相关推荐:
传感器课程设计报告

一课程设计目的和任务一课程设计的目的1通过传感器的课程设计进一步加深对课本理论知识的理解掌握各类传感器的工作原理培养独立分析问题解决问题的能力提高实践技能2根据某一类传感器的特性提出具体应用3设计原理电路进行印...

20xx年最新传感器课程设计报告

成绩评定表1课程设计任务书2目录一引言4二设计目的及要求411设计目的412设计要求4三设计方案及论证之硬件电路设计521传感器简介522电路原理图6221电机测速即驱动部分6222电路供电系部分7223显示部...

传感器与检测技术课程设计报告

北方民族大学课程设计报告院(部、中心)电气信息工程学院姓名***学号***专业测控技术与仪器班级测控技术与仪器101同组人员**课程名称传感器与检测技术设计题目名称噪音测量仪的设计起止时间20**.12.27-…

传感器课程设计实验报告

河北科技大学课程设计报告姓名学号专业班级课程名称指导教师学年学期年月课程设计成绩评定表目录一设计目的1二摘要1三正文11设计题目12电路原理图13电路原理说明24电路组成说明25元器件明细表46制作加工元器件5...

传感器课程设计报告

河北科技大学课程设计报告学生姓名:**学号:**专业班级:电子信息工程L126班课程名称:传感器原理及应用学年学期:20XX20XX学年第一学期指导教师:***20XX年12月课程设计成绩评定表目录一、引言--…

传感器课程设计论文

传感器课程设计报告题目多种位移传感器特性比较和研究班级学号姓名指导老师时间前言21世纪是信息科学与技术全新发展的时代信息技术已经成为社会发展一股新的强大推动力传感器技术作为信息技术和产业的重要组成部分因此受到了...

传感器课程设计报告

完成时间20xx年4月17日项目名称光电编码器信号译码显示电路设计小组编号光电第三组设计小组名单张井组长王鸣峰袁璟报告撰写人张井上海交通大学电子信息与电气工程学院摘要光电编码器是一种位移一数字转换器它具有精度高...

传感器课程设计

课程传感器课程设计题目光敏电阻传感器应用电路设计专业测控二102姓名学号主要内容设计一个光照强度自动检测系统可分光照检测部分信号处理部分光强显示部分报警部分光照检测部分可利用光敏电阻传感器作为检测元件输入信号处...

光控传感器课程设计报告

河北科技大学课程设计报告学生姓名:xxx学号:xxx专业班级:电信132课程名称:传感器原理与应用学年学期:20XX20XX学年第一学期指导教师:XX20XX年12月课程设计成绩评定表目录一、摘要4二、设计目的…

基于DS18B20传感器温度测量课程设计报告(1)

<<基于DS18B20传感器温度测量>>课程设计报告专业:班级:姓名:指导老师:二0XX年12月27日目录1、(内容)页码2、3、4、1.设计题目《基于DS18B20传感器温度测量》2.课程设计目的通过基于MC…

二极管温度传感器课程设计报告

模拟电子技术课程设计课程设计报告题目课程专业班级姓名学号基于测温二极管传感器的温度测控电路设计传感器与测控电路课程实习模拟电子技术课程设计总目录第一部分任务书第二部分课程设计报告第三部分设计电路图模拟电子技术课...

温度传感器课程设计报告

温度传感器课程设计报告组员:专业:年级:学院:系别:完成日期:指导教师:目录1引言..32设计要求..33工作原理..34方案设计..45单元电路的设计和元器件的选择..65.1微控制器模块.65.2温度采集模…

传感器课程设计报告(32篇)