福州大学工程流体力学实验报告

时间:2024.3.23

福州大学土木工程学院本科实验教学示范中心

学生实验报告

流体力学实验

题目:

实验项目1:毕托管测速实验

实验项目2:管路沿程阻力系数测定实验

实验项目3:管路局部阻力系数测定实验

实验项目4:流体静力学实验

姓名:    学号:  组别:

实验指导教师姓名:艾翠玲

    同组成员:

20##年5月25日


              实验一  毕托管测速实验

一、实验目的要求:

     1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用测压管测量点流速的技术和使用方法。 
     2.通过对毕托管的构造和适用性的了解及其测量精度的检验,进一步明确水力学量测仪器的现实作用。

     3.通过对管口的流速测量,从而分析管口淹没出流,流线的分布规律。

二、实验成果及要求

                                       实验装置台号No  20040270  

表1       记录计算表         校正系数c= 1.002   k=  44.360    cm0.5/s

    

三、实验分析与讨论

1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?

答:若测压管内存有气体,在测量压强时,测压管及其连通管只有充满被测液体,即满足连续条件,才有可能测得真值,否则如果其中夹有气柱,就会使测压失真,从而造成误差。误差值与气柱高度和其位置有关。对于非堵塞性气泡,虽不产生误差,但若不排除,实验过程中很可能变成堵塞性气柱而影响量测精度。检验的方法:是毕托管置于静水中,检查分别与毕托管全压孔及静压孔相连通的两根测压管液面是否齐平。如果气体已排净,不管怎样抖动塑料连通管,两测管液面恒齐平。

2.毕托管的压头差Δh和管嘴上、下游水位差ΔH之间的大小关系怎样?为什么?

答:由于

这两个差值分别和动能及势能有关。在势能转换为动能的过程中,由于粘性力的存在而有能量损失,所以压头差较小。

3.所测的流速系数说明了什么?

答:若管嘴出流的作用水头为,流量为Q,管嘴的过水断面积为A,相对管嘴平均流速v,则有

称作管嘴流速系数。

若相对点流速而言,由管嘴出流的某流线的能量方程,可得

式中:为流管在某一流段上的损失系数;为点流速系数。

本实验在管嘴淹没出流的轴心处测得=0.981,表明管嘴轴心处的水流由势能转换为动能的过程中的能量损失非常小,以该实验的精确度难以测得。


          实验二  管路沿程阻力系数测定实验

一、实验目的要求:

    1.加深了解园管层流和紊流的沿程损失随平均流速变化的规律;

    2.掌握管道沿程阻力系数的量测技术和应用气—水压差及水—水银多管压差计测

量压差的方法;

    3.将测得的Re~λ关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。

二、实验成果及要求

1.有关常数。                                   实验装置台号 08610545         圆管直径d1=1.5cm, d2=2.0cm, d3=2.5cm        量测段长度L=85cm。及计算(见表1)。

2.绘图分析*    绘制lgυ~lghf曲线,并确定指数关系值m的大小。在厘米纸上以lgυ为横坐标,以lghf为纵坐标,点绘所测的lgυ~lghf关系曲线,根据具体情况连成一段或几段直线。求厘米纸上直线的斜率

                          

将从图上求得的m值与已知各流区的m值(即层流m=1,光滑管流区m=1.75,粗糙管紊流区m=2.0,紊流过渡区1.75<m<2.0)进行比较,确定流区。


表1    记录及计算表


三、实验分析与讨论

1.为什么压差计的水柱差就是沿程水头损失?如实验管道安装成倾斜,是否影响

实验成果?

答:在管道中的,水头损失直接反应于水头压力。测力水头两端压差就等于水头损失。如果管道倾斜安装,不影响实验结果。但压差计应垂直,如果在特殊情况下无法垂直,可乘以倾斜角度转化值。

2.据实测m值判别本实验的流动型态和流区。

答:曲线的斜率m=1.0~1.8,即成正比,表明流动为层流(m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。

3.本次实验结果与莫迪图吻合与否?试分析其原因。

答:通常实验点所绘得的曲线处于光滑管区,本报告所列的实验值满足该情况。但是有的实验结果点落到了莫迪图中光滑管区的右下方,如果由于误差所致,可由下式分析:

   

d和Q的影响最大。Q的误差可经多次测量消除,而d值是以实验常数提供的,由仪器制作时测量给定,一般< 1%。如果排除这两方面的误差,实验结果仍出现异常,那么只和细管的水力特性及其光洁度等方面有关。


实验三  管路局部阻力系数测定实验

一、实验目的要求:

1.掌握三点法,四点法测量局部阻力系数的技能。

2.通过对圆管突扩局部阻力系数的表达公式和突缩局部阻力系数的经 验公式的实验与分析,熟悉用理论分析法和经验法建立函数式的途径。

3.加深对局部阻力损失机理的理解。

二、实验成果及要求

1.记录计算有关常数。                          实验装置台号No200085710          

d1=D1= 0.96     cm,        d2=d3= d4= D2=1.98     cm,

d5=d6=D3=  1.01    cm,        l1—2=12cm,      l2—3=24cm,

l3—4=12cm,     l4—B=6cm,      lB—5=6cm,       l5—6=6cm,

=       0.585            

=       0.370           

2.整理记录、计算表。

3.将实测值与理论值(突扩)或公认值(突缩)比较。

记录表

2计算表

三、实验分析与讨论

1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系:

1)不同Re的突扩ξe是否相同?

2)在管径比变化相同的条件下,其突扩ξe是否一定大于突缩ξs

答:由式

表明影响局部阻力损失的因素是。由于有

突扩:

突缩:

则有

当                   

                     

时,突然扩大的水头损失比相应的突然收缩的要大。在本实验最大流量Q下,突然扩大损失较突然缩小损失约大一倍,即

     接近于1时,突然扩大的水流形态接近于逐渐扩大管的流动,因而阻力损失显著减小。

2.结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失?

答:流动演示仪1-7型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等三十多种内、外流的流动图谱。据此对于局部阻力损失的机理分析如下:

从显示的图谱可见,凡流道边界突变处,形成大小不一的漩涡区。漩涡是产生损失的主要根源。由于水质点的无规则运动和激烈的紊动,相互磨擦,便消耗了部分水体的自储能量。另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。这样就造成了局部阻力损失。

从流动仪可见,突扩段的漩涡主要发生在突扩断面以后,而且与扩大系数有关,扩大系数越大,漩涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位在突扩断面的后部。而突缩段的漩涡在收缩断面均有。突缩前仅在死角区有小漩涡,且强度较小,而突缩的后部产生了紊动度较大的漩涡环区。可见产生突缩水头损失的主要部位是在突缩断面后。

从以上分析可知,为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或昼接近流线形,以避免漩涡的形成,或使漩涡区尽可能小。如欲减小管道的局部阻力,就应减小管径比以降低突扩段的漩涡区域;或把突缩进口的直角改为圆角,以消除突缩断面后的漩涡环带,可使突缩局部阻力系数减小到原来的。突然收缩实验管道使用年份长以后,实测阻力系数减小,主要原因也在这里。


实验四  流体静力学实验

一、实验目的要求:

1. 掌握用测压管测量流体静压强的技能;

2. 验证不可压缩流体静力学基本方程;

3. 通过对诸多流体静力学现象的实验分析研讨,进一步提高解决静力学实际问题的能力。

二、实验成果及要求

1.记录有关常数。                             实验装置台号No  20085703

各测点的标尺读数为:

B =2.1 cm,▽C=  ﹣2.9 cm,▽D=  ﹣5.9 cm,=9.8×  N/cm3

2.分别求出各次测量时,A、B、C、D点的压强,并选择一基准检验同一静止液体内的任意二点C、D的是否为常数。

3.求出油的容重。

三、实验分析与讨论

1.同一静止液体内的测压管水头线是根什么线?

答:测压管水头指,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。

2.当pB<0时,试根据记录数据确定水箱内的真空区域。

(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。

(2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。

3.若再箅一根直尺,试采用另外最简便的方法测定

答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度,由式 ,从而求得

4.如测压管太细,对测压管液面的读数将有何影响?

答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差。如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。

5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部液体是同一等压面?

答:不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),相对管5和水箱中的液体而言,该水平面不是等压面。

6.用图1.1装置能演示变液位下的恒定流实验吗?

答:关闭各通气阀门,开启底阀,放水片刻,可看到有空气由C进入水箱。这时阀门的出流就是变液位下的恒定水流。因为由观察可知,测压管1的液面始终与C点同高,表明作用于底阀上的总水头不变,故为恒定流动。这是由于液位的降低与空气补充使箱体表面真空度的减小处于平衡状态。

7.该仪器在加气增压后,水箱液面将下降δ而测压管液面半升高H,实验时,若以p0=0时的水箱液面作为测量基准,试分析加气增压后,实际压强(H+δ)与视压强H的相对误差值.本仪器测压管内径为0.8cm,箱体内径为20cm.

答:加压后,水箱液面比基准面下降了δ,而同时测压管1、2的液面各比基准面升高了H,由水量平衡原理有

因而可略去不计。对单根测压管容器若有D/d<=10或对两根测压管的容器D/d<=7时,便可使ε<=0.01.


表1   流体静压强测量记录及计算表         单位:cm

注:表中基准面选在  测压管零刻度线ZC=2.9    cm ZD=5.9       cm


表2  油容重测量记录及计算表     单位:cm



* 附录1    实验曲线绘法建议

1.图纸    绘图纸可用普通厘米纸或对数纸,面积不小于12×12cm;

2.坐标确定    若采用厘米纸,取lghf为纵坐标(绘制实验曲线一般以因变量为纵坐标),lgv为横坐标;采用对数纸,纵坐标写hf,横坐标用v,即不写成对数;

3.标注    在坐标轴上,分别标明变量名称、符号、单位以及分度值;

4.绘点    据实验数据绘出实验点;

5.绘曲线    据实验点分布绘制曲线,应使位于曲线两侧的实验点数大致相等,且各点相对曲线的垂直距离总和也不致相等。


第二篇:工程流体力学实验报告


福州大学土木工程学院本科实验教学示范中心

学生实验报告

工程流体力学实验

题目:

实验项目1:毕托管测速实验

实验项目2:管路沿程阻力系数测定实验

实验项目3:管路局部阻力系数测定实验

实验项目4:流体静力学实验

姓名:李威 学号:051001509组别:________

实验指导教师姓名:__________________________

  同组成员:____________________________________

20##年月日


实验一  毕托管测速实验

一、实验目的要求:

1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用测压管测量点流速的技术和使用方法。 
2.通过对毕托管的构造和适用性的了解及其测量精度的检验,进一步明确水力学量测仪器的现实作用。

二、实验成果及要求

                                       实验装置台号No     

表1       记录计算表         校正系数c=        ,k=        cm0.5/s

   

三、实验分析与讨论

1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?

答:若测压管内存有气体,在测量压强时,水柱因含气泡而虚高,使压强测得不准确。排气后的测压管一端通静止的小水箱中(此小水箱可用有透明的机玻璃制作,以便看到箱内的水面),装有玻璃管的另一端抬高到与水箱水面略高些,静止后看液面是否与水箱中的水面齐平,齐平则表示排气已干净。

2.毕托管的压头差Δh和管嘴上、下游水位差ΔH之间的大小关系怎样?为什么?

答:这两个差值分别和动能及势能有关。在势能转换为动能的过程中,由于粘性的存在而有能量损失,所以压头差较小。

3.所测的流速系数说明了什么?


实验二  管路沿程阻力系数测定实验

一、实验目的要求:

1. 掌握沿程阻力的测定方法;

2. 测定流体流过直管时的摩擦阻力,确定摩擦系数λ与的关系;

3测定流体流过直管时的局部阻力,并求出阻力系数ξ;

4学会压差计和流量计的使用。

二、实验成果及要求

1.有关常数。                                   实验装置台号         

圆管直径d=        cm,    量测段长度L=85cm。及计算(见表1)。

2.绘图分析*    绘制lgυ~lghf曲线,并确定指数关系值m的大小。在厘米纸上以lgυ为横坐标,以lghf为纵坐标,点绘所测的lgυ~lghf关系曲线,根据具体情况连成一段或几段直线。求厘米纸上直线的斜率

将从图上求得的m值与已知各流区的m值(即层流m=1,光滑管流区m=1.75,粗糙管紊流区m=2.0,紊流过渡区1.75<m<2.0)进行比较,确定流区。


表1    记录及计算表

常数K=π2gd5/8          L=     cm5/s2


三、实验分析与讨论

1.为什么压差计的水柱差就是沿程水头损失?如实验管道安装成倾斜,是否影响实验成果?

答:在管道中的,水头损失直接反应于水头压力。测力水头两端压差就等于水头损失。

如果管道倾斜安装,不影响实验结果。

但压差计应垂直,如果在特殊情况下无法垂直,可乘以倾斜角度转化值。

2.据实测m值判别本实验的流动型态和流区。

答:曲线的斜率m=1.0~1.8,即成正比,表明流动为层流(m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。

3.本次实验结果与莫迪图吻合与否?试分析其原因。

答:钢管的当量粗糙度一般为0.2mm,常温下,,经济流速,若实用管径D=(20~100)cm,其,相应的=0.0002~0.001,由莫迪图可知,流动均处在过渡区。

若需达到阻力平方区,那么相应的,流速应达到(5~9)m/s。这样高速的有压管流在实际工程中非常少见。

而泄洪洞的当量粗糙度可达(1~9)mm,洞径一般为(2~3)m,过流速往往在(5~10)m/s以上,其大于,故一般均处于阻力平方区。


实验三  管路局部阻力系数测定实验

一、实验目的要求:

二、实验成果及要求

1.记录计算有关常数。                          实验装置台号No         

d1=D1=          cm,        d2=d3= d4= D2=        cm,

d5=d6=D3=          cm,        l1—2=12cm,      l2—3=24cm,

l3—4=12cm,     l4—B=6cm,      lB—5=6cm,       l5—6=6cm,

=                        

=                        

2.整理记录、计算表。

3.将实测值与理论值(突扩)或公认值(突缩)比较。

表1  记录表

表2计算表

三、实验分析与讨论

1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系:

1)不同Re的突扩ξe是否相同?

2)在管径比变化相同的条件下,其突扩ξe是否一定大于突缩ξs

答:由式

表明影响局部阻力损失的因素是。由于有

突扩:

突缩:

则有

当                   

                     

时,突然扩大的水头损失比相应的突然收缩的要大。在本实验最大流量Q下,突然扩大损失较突然缩小损失约大一倍,即

     接近于1时,突然扩大的水流形态接近于逐渐扩大管的流动,因而阻力损失显著减小。

2.结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失?

答:流动演示仪1-7型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等三十多种内、外流的流动图谱。据此对于局部阻力损失的机理分析如下:

从显示的图谱可见,凡流道边界突变处,形成大小不一的漩涡区。漩涡是产生损失的主要根源。由于水质点的无规则运动和激烈的紊动,相互磨擦,便消耗了部分水体的自储能量。另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。这样就造成了局部阻力损失。

从流动仪可见,突扩段的漩涡主要发生在突扩断面以后,而且与扩大系数有关,扩大系数越大,漩涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位在突扩断面的后部。而突缩段的漩涡在收缩断面均有。突缩前仅在死角区有小漩涡,且强度较小,而突缩的后部产生了紊动度较大的漩涡环区。可见产生突缩水头损失的主要部位是在突缩断面后。

从以上分析可知,为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或昼接近流线形,以避免漩涡的形成,或使漩涡区尽可能小。如欲减小管道的局部阻力,就应减小管径比以降低突扩段的漩涡区域;或把突缩进口的直角改为圆角,以消除突缩断面后的漩涡环带,可使突缩局部阻力系数减小到原来的。突然收缩实验管道使用年份长以后,实测阻力系数减小,主要原因也在这里。


实验四  流体静力学实验

一、实验目的要求:.

1.通过本实验加强对静力学概念的理解
2.应用U形压力计测定容器A内液面上的气体压强(即表压和真空度的测定)。
3.测定不同指示液时U形压力计的读数。

二、实验成果及要求

1.记录有关常数。                             实验装置台号No          

各测点的标尺读数为:

B = 1.10cm,▽C= -3.50cm,▽D= -6.50cm, = 9800N/cm3

2.分别求出各次测量时,A、B、C、D点的压强,并选择一基准检验同一静止液体内的任意二点C、D的是否为常数。

3.求出油的容重。

4.测出4#测压重管插入小水杯水中深度。

三、实验分析与讨论

1.同一静止液体内的测压管水头线是根什么线?

答:测压管水头指,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。

2.当pB<0时,试根据记录数据确定水箱内的真空区域。

答:,相应容器的真空区域包括以下三个部分:

(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。

(2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。

3.若再箅一根直尺,试采用另外最简便的方法测定

答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度,由式 ,从而求得

4.如测压管太细,对测压管液面的读数将有何影响?

答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算

式中,为表面张力系数;为液体容量;为测压管的内径;为毛细升高。常温的水,。水与玻璃的浸润角很小,可以认为。于是有

                           (均以计)

一般来说,当玻璃测压管的内径大于10时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角较大,其较普通玻璃管小。

如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。

5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部液体是同一等压面?       答:不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),相对管5和水箱中的液体而言,该水平面不是水平面。

6.用图1.1装置能演示变液位下的恒定流实验吗?

答:关闭各通气阀门,开启底阀,放水片刻,可看到有空气由C进入水箱。这时阀门的出流就是变液位下的恒定水流。因为由观察可知,测压管1的液面始终与C点同高,表明作用于底阀上的总水头不变,故为恒定流动。这是由于液位的降低与空气补充使箱体表面真空度的减小处于平衡状态。医学上的点滴注射就是此原理应用的一例,医学上称这为马利奥特容器的变液位下恒定流。

7.该仪器在加气增压后,水箱液面将下降δ而测压管液面半升高H,实验时,若以p0=0时的水箱液面作为测量基准,试分析加气增压后,实际压强(H+δ)与视压强H的相对误差值.本仪器测压管内径为0.8cm,箱体内径为20cm.


表1   流体静压强测量记录及计算表         单位:cm

注:表中基准面选在 测压管零刻度线   ZC=  -3.50 cm ZD=  -6.50cm


表2  油容重测量记录及计算表     单位:cm




* 附录1    实验曲线绘法建议

1.图纸    绘图纸可用普通厘米纸或对数纸,面积不小于12×12cm;

2.坐标确定    若采用厘米纸,取lghf为纵坐标(绘制实验曲线一般以因变量为纵坐标),lgv为横坐标;采用对数纸,纵坐标写hf,横坐标用v,即不写成对数;

3.标注    在坐标轴上,分别标明变量名称、符号、单位以及分度值;

4.绘点    据实验数据绘出实验点;

5.绘曲线    据实验点分布绘制曲线,应使位于曲线两侧的实验点数大致相等,且各点相对曲线的垂直距离总和也不致相等。

更多相关推荐:
工程流体力学实验报告

中国石油大学华东现代远程教育学生姓名董雯雯学号134xxxxxxxx年级专业层次13秋油气开采技术网络秋高起专学习中心东营直属学习中心提交时间20xx年12月15日

工程流体力学实验报告

福州大学土木工程学院本科实验教学示范中心学生实验报告工程流体力学实验题目实验项目1毕托管测速实验实验项目2管路沿程阻力系数测定实验实验项目3管路局部阻力系数测定实验实验项目4流体静力学实验姓名李威学号05100...

工程流体力学实验报告

工程流体力学实验报告学院交通运输工程学院班级交通设备1206姓名邱瑞玢学号1104120xx7雷诺数测定实验实验目的1观察水的层流和紊流的形态及特征2学习测量和计算流体的雷诺数和临界雷诺数实验原理雷诺数是流体惯...

工程流体力学实验报告

工程流体力学实验报告三毕托管测速实验一实验目的和要求1通过对管嘴淹没出流点流速及点流速系数的测量掌握用毕托管测量点流速的技能2了解普朗特型毕托管的构造和适用性并检验其量测精度进一步明确传统流体力学量测仪器的现实...

工程流体力学实验报告

重庆大学学生实验报告实验课程名称流体力学实验开课实验室流体力学实验室学院年级专业班学生姓名学号开课时间学年第流体力学实验报告开课实验室年月日

10-1工程流体力学实验报告

工程流体力学实验报告班级姓名学号1实验一能量转换实验一实验目的1熟悉流体在流动过程中各种能量和水头的概念及其转换关系加深对伯努利方程的理解2观察流体流速随管径变化的规律二实验原理1总水头的分析总水头为测压管水头...

流体力学综合实验 实验报告

实验报告课程名称:过程工程原理实验指导老师:成绩:_________________实验名称:流体力学综合实验实验类型:_____同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设…

流体静力学实验报告(中国石油大学)

中国石油大学华东工程流体力学实验报告实验日期班级学号姓名教师同组者实验一流体静力学实验一实验目的填空1掌握用液式测压计测量流体静压强的技能2验证不可压缩流体静力学基本方程加深对位置水头压力水头和测压管水头的理解...

工程流体力学实验报告

福州大学土木工程学院本科实验教学示范中心学生实验报告工程流体力学实验题目实验项目1毕托管测速实验实验项目2管路沿程阻力系数测定实验实验项目3管路局部阻力系数测定实验实验项目4流体静力学实验姓名学号组别实验指导教...

石油大学 工程流体力学_流体静力学实验

中国石油大学华东工程流体力学实验报告实验日期成绩班级A学号B姓名C教师D同组者实验一流体静力学实验一实验目的1掌握用液式测压计测量流体静压强的技能2验证不可压缩流体静力学基本方程加深对位置水头压力水头和测压管水...

工程流体力学 沿程阻力实验

中国石油大学华东工程流体力学实验报告实验日期成绩班级学号姓名教师同组者实验七沿程阻力实验一实验目的1掌握测定镀锌铁管管道沿程阻力系数的方法2在双对数坐标纸上绘制Re关系曲线3进一步理解沿程阻力系数随雷诺数的变化...

流体力学流量计实验报告

中国石油大学华东工程流体力学实验报告实验日期20xx0418成绩班级石工1207学号120xx317姓名郑超教师李成华同组者李威昌韦馨林实验三流量计实验一实验目的填空1掌握2测定孔板流量计的流量系数绘制流量计的...

工程流体力学实验报告(24篇)