高中物理电磁学相关知识总结

时间:2024.5.14

高中物理电磁学相关知识总结.txt你看得见我打在屏幕上的字,却看不到我掉在键盘上的泪!自己选择45°仰视别人,就休怪他人135°俯视着看你。电磁感应

科技名词定义

中文名称:

电磁感应

英文名称:

electromagnetic induction

定义:

产生感应电压或感应电流的现象。

电磁感应(Electromagnetic induction)现象是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流(感生电流)迈克尔?法拉第是一般被认定为于1831年发现了感应现象的人,虽然Francesco Zantedeschi1829年的工作可能对此有所预见。

目录

定义

发现者

法拉第一个很重要的实验

原理

右手安培定理

感应电流产生的条件

应用

1. 发电机

2. 电动机

3. 变压器

4. 电磁流量计

定义

发现者

法拉第一个很重要的实验

原理

右手安培定理

感应电流产生的条件

应用

1. 发电机

2. 电动机

3. 变压器

4. 电磁流量计

展开

电磁感应

定义

闭合电路的一部分导体在磁场中做切割磁感线运动,导体中就会产生电流。这种现象叫电磁感应现象。产生的电流称为感应电流。

这是初中物理课本为便于学生理解所定义的电磁感应现象,不能全面概括电磁感现象:闭合线圈面积不变,改变磁场强度,磁通量也会改变,也会发生电磁感应现象。所以准确的定义如下:

因磁通量变化产生感应电动势的现象。

发现者

1820年H.C.奥斯特发现电流磁效应后,许多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题,1822年D.F.J.阿喇戈和A.von洪堡在测量地磁强度时,偶然发现金属对附近磁针的振荡有阻尼作用。1824年,阿喇戈根据这个现象做了铜盘实验,发现转动的铜盘会带动上方自由悬挂的磁针旋转,但磁针的旋转与铜盘不同步,稍滞后。电磁阻尼[1]和电磁驱动是最早发现的电磁感应现象,但由于没有直接表现为感应电流,当时未能予以说明。

1831年8月,M.法拉第在软铁环两侧分别绕两个线圈 ,其一为闭合回路,在导线下端附近

迈克尔?法拉第

平行放置一磁针,另一与电池组相连,接开关,形成有电源的闭合回路。实验发现,合上开关,磁针偏转;切断开关,磁针反向偏转,这表明在无电池组的线圈中出现了感应电流。法拉第立即意识到,这是一种非恒定的暂态效应。紧接着他做了几十个实验,把产生感应电流的情形概括为 5 类 :变化的电流 , 变化的磁场,运动的恒定电流,运动的磁铁,在磁场中运动的导体,并把这些现象正式定名为电磁感应。进而,法拉第发现,在相同条件下不同金属导体回路中产生的感应电流与导体的导电能力成正比,他由此认识到,感应电流是由与导体性质无关的感应电动势产生的,即使没有回路没有感应电流,感应电动势依然存在。 后来,给出了确定感应电流方向的楞次定律以及描述电磁感应定量规律的法拉第电磁感应定律。并按产生原因的不同,把感应电动势分为动生电动势和感生电动势两种,前者起源于洛伦兹力,后者起源于变化磁场产生的有旋电场。

编辑本段

法拉第一个很重要的实验

电磁感应

在一个空心纸筒上绕上一组和电流计联接的导体线圈,当磁棒插进线圈的过程中,电流计的指针发生了偏转,而在磁棒从线圈内抽出的过程中,电流计的指针则发生反方向的偏转,磁棒插进或抽出线圈的速度越快,电流计偏转的角度越大.但是当磁棒不动时,电流计的指针不会偏转.

对于线圈来说,运动的磁棒意味着它周围的磁场发生了变化,从而使线圈感生出电流.法拉第终于实现了他多年的梦想--用磁的运动产生电! 奥斯特和法拉第的发现,深刻地揭示了一组极其美妙的物理对称性:运动的电产生磁,运动的磁产生电。

不仅磁棒与线圈的相对运动可以使线圈出现感应电流,一个线圈中的电流发生了变化,也可以使另一个线圈出现感应电流.

例如图中,我们将线圈1通过开关k与电源连接起来,在开关k合上或断开的过程中,线圈2就会出现感应电流. 如果将与线圈1连接的直流电源改成交变电源,即给线圈1提供交变电流,也引起线圈2出现感应电流. 这同样是因为,线圈1的电流变化导致线圈2周围的磁场发生了变化.

原理

电磁感应

电磁感应现象的发现,乃是电磁学领域中最伟大的成就之一。它不仅揭示了电与磁之间的内在联系,而且为电与磁之间的相互转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。

若闭合电路为一个n匝的线圈,则又可表示为:E=nΔΦ/Δt 式中n为线圈匝数,ΔΦ为磁通量变化量,单位Wb ,Δt为发生变化所用时间,单位为s. E 为产生的感应电动势,单位为V

右手安培定理

电磁感应

伸开右手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把右手放入磁场中,让磁感线顺着从手心到指尖,大拇指指向导体运动的方向,那么其余四个手指所指的方向就是感应电流的方向。 计算公式

1.[感应电动势的大小计算公式]

1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

2)E=BLVsinA(切割磁感线运动) E=BLV中的v和L不可以和磁感线平行,但可以不和磁感线垂直,其中sinA为v或L与磁感线的夹角。 {L:有效长度(m)}

3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}

4)E=B(L^2)ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s),(L^2)指的是L的平方}

2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)} 计算公式△Φ=Φ1-Φ2 ,△Φ=B△S=BLV△t

3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

*4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

△特别注意 Φ, △Φ ,△Φ/△t无必然联系,E与电阻无关 E=n△Φ/△t 。 电动势的单位是伏V ,磁通量的单位是韦伯Wb ,时间单位是秒s。

感应电流产生的条件

1.电路是闭合且通的

2.穿过闭合电路的磁通量发生变化

电磁感应

3.电路的一部分在磁场中做切割磁感线运动(切割磁感线运动就是为了保证闭合电路的磁通量发生改变)

此三个条件中,缺少条件1,则不会产生感应电流,但是感应电动势仍然存在(前提是有磁通量的变化);若缺少条件2,则必定不会产生感应电动势,也就无感应电流产生;若缺

少条件3,则要看清状态,若闭合回路的磁通量发生变化而无切割磁感线,如:闭合线圈静止在磁感应强度变化的磁场中,此时仍然有感应电流产生;若闭合回路的磁通量为发生变化而闭合回路在切割磁感线,则此时回路中无感应电流产生。

电磁感应现象中之所以强调闭合电路的"一部分导体",是因为当整个闭合电路切割磁感线时,左右两边产生的感应电流方向分别为逆时针和顺时针,对于整个电路来讲电流抵消了。 电磁感应中的能量关系

电磁感应是一个能量转换过程,例如可以将重力势能,动能等转化为电能,热能等 应用

发电机

电磁感应

法拉第碟片发电机。碟片以角速率ω旋转,在静磁场B中环行地扫过导电的半径。磁洛伦兹力v?B,沿着导电半径到导电边沿驱动着电流,并从那里经由下电刷及支撑碟片的轴完成电路。因此,电流由机械运动所产生。

由法拉第电磁感应定律因电路及磁场的相对运动所造成的电动势,是发电机背后的根本现象。当永久性磁铁相对于一导电体运动时(反之亦然),就会产生电动势。如果电线这时连着电负载的话,电流就会流动,并因此产生电能,把机械运动的能量转变成电能。例如,基于图四的鼓轮发电机。另一种实现这种构想的发电机就是法拉第碟片,简化版本见图八。注意使用图五的分析,或直接用洛伦兹力定律,都能得出使用实心导电碟片运作不变的这一结果。

电磁感应

在法拉第碟片这一例子中,碟片在与碟片垂直的均匀磁场中运动,导致一电流因洛伦兹力流到向外的轴臂里。明白机械运动是如何成为驱动电流的必需品,是很有趣的一件事。当生成的电流通过导电的边沿时,这电流会经由安培环路定理生成出一磁场(图八中标示为"Induced B")。因此边沿成了抵抗转动的电磁铁(楞次定律一例)。在图的右边,经转动中轴臂返回的电流,通过右边沿到达底部的电刷。此一返回电流所感应的磁场会抵抗外加的磁场,它有减少通过电路那边通量的倾向,以此增加旋转带来的通量。因此在图的左边,经转动中轴臂返回的电流,通过左边沿到达底部的电刷。感应磁场会增加电路这边的通量,减少旋转带来的通量。所以,电路两边都生成出抵抗转动的电动势。尽管有反作用力,需要保持碟片转动的能量,正等于所产生的电能(加上由于摩擦、焦耳热及其他消耗所浪费的能量)。所有把机械能转化成电能的发电机都会有这种特性。

虽然法拉第定律经常描述发电机的运作原理,但是运作的机理可以随个案而变。当磁铁绕着静止的导电体旋转时,变化中的磁场生成电场,就像麦克斯韦-法拉第方程描述的那样,而电场就会通过电线推着电荷行进。这个案叫感应电动势。另一方面,当磁铁静止,而导电体运动时,运动中的电荷的受到一股磁力(像洛伦兹力定律所描述的那样),而这磁力会通过电线推着电荷行进。这个案叫运动电动势。(更多有关感应电动势、运动电动势、法拉第定律及洛伦兹力的细节,可见上例或格里夫斯一书。[20])

电动机

电磁感应

发电机可以"反过来"运作,成为电动机。例如,用法拉第碟片这例子,设一直流电流由电压驱动,通过导电轴臂。然后由洛伦兹力定律可知,行进中的电荷受到磁场B的力,而这股力会按佛来明左手定则订下的方向来转动碟片。在没有不可逆效应(如摩擦或焦耳热)的情况下,碟片的转动速率必需使得dΦB/dt等于驱动电流的电压。

变压器

法拉第定律所预测的电动势,同时也是变压器的运作原理。当线圈中的电流转变时,转变中的电流生成一转变中的磁场。在磁场作用范围中的第二条电线,会感受到磁场的转变,于是自身的耦合磁通量也会转变(dΦB/dt)。因此,第二个线圈内会有电动势,这电动势被称为感应电动势或变压器电动势。如果线圈的两端是连接着一个电负载的话,电流就会流动。 电磁流量计

电磁感应

法拉第定律可被用于量度导电液体或浆状物的流动。这样一个仪器被称为电磁流量计。在磁场B中因导电液以速率为v的速度移动,所生成的感应电压ε可由以下公式求出: 其中?为电磁流量计中电极间的距离。

电磁阻尼

电磁阻尼现象源于电磁感应原理。宏观现象即为:当闭合导体与磁极发生相对运动时,两者之间会产生电磁阻力,阻碍相对运动。这一现象可以用楞次定律解释:闭合导体与磁极发生切割磁感线的运动时,由于闭合导体所穿透的磁通量发生变化,闭合导体会产生感生电流,这一电流所产生的磁场会阻碍两者的相对运动。其阻力大小正比于磁体的磁感应强度、相对运动速度等物理量。

电磁阻尼现象广泛应用于需要稳定摩擦力以及制动力的场合,例如电度表、电磁制动机械,甚至磁悬浮列车等。

为了简单可靠地增加系统的稳定性、抑制转子的共振峰值.提出了一种新型的被动式电磁阻尼器.它的结构类似于电磁轴承.但无需闭环控制,采用直流电工作。通过分析发现,电磁阻尼器线圈内由于转子涡动时变化的磁场而产生的波动电流与转子位移间的相位差是产生阻尼的原因,推导了波动电流、阻尼系数的计算公式。实验结果显示该阻尼器提供的阻尼能够有效地抑制共振振幅。

电磁阻尼:

在磁场中转动的线圈,会产生感应电动势。若线圈的外电路闭合,则在线圈中会产生感应电流。磁场对感应电流将产生安培力,形成与原来转动方向相反的力偶矩,对线圈的转动起阻尼作用。下列两种方法,分别演示短路线接上后,对灵敏电流计和电动机的电磁阻尼效果。

方法一

目的 演示灵敏电流计的短路保护。

器材 灵敏电流计,导线等。

操作

(1)将灵敏电流计摇动后,使指针有较大的摆动幅度。停止摇动后,可观察指针要摆动多次,经一定时间才能停止下来。

(2)再次摇动灵敏电流计,使其有较大的摆幅。立即在两个接线柱上接上一根导线(短路线),可发现指针摆幅迅速减小,比不连短路线时摆动的时间短得多。这是由于与指针相连的线圈在磁场中摆动时产生了感应电流,线圈受到安培力形成的阻力矩的作用,使指针摆幅迅速衰减。这样能起到阻尼保护的作用。

(3)再摇动已连上短路线的灵敏电流计,可见指针摆动幅度很小,且迅速停下。理由同操作(2)。

说明

(1)通常JD409或JD409-1型灵敏电流计的阻尼时间小于4S,因为此种灵敏电流计的动圈铝框是闭合的,已有一定的阻尼作用。所以本演示中最好采用老式的灵敏电流计(内部动圈铝框是不闭合的),演示短路阻尼效果更好。

(2)本实验说明灵敏电流计不用时,应在两接线柱上加上短路线,以达到阻尼保护的作用。防止在搬动或运输过程中,电流计受到振动,指针振幅过大而被撞弯或轴尖脱落等情况。 方法二

目的 演示电动机的短路制动方法。

器材 玩具电机,单刀双位开关,干电池,导线等。

操作

(1)将玩具电动机、两节干电池、单刀双位开关用导线连接如图。

(2)将单刀双位开关扳到a,电动机即高速转动。切断电源,可见电动机断电后,仍能较长时间保持转动。记下从切断电源到完全停转的时间。

(3)再次将开关扳到a,电动机高速转动后,即将单刀双位开关扳到b。发现电动机会迅速停止转动。与操作(2)形成明显对比。这是因为已经高速转动的电动机转子,在切断供电后,仍在磁场中高速转动,转子中会产生感应电动势。若这时将外电路闭合(如开关打到b),在电路中会产生感应电流,这时相当于一个发电机。具有感应电流的转子线圈,受到安培力力偶矩的制动作用,会使转动迅速停止下来。故这时电动机外部的短路线起到了对转子的电磁阻尼作用。

楞次定律

英文名称:

Lenz law

定义:

感应电动势趋于产生一个电流,该电流的方向趋于阻止产生此感应电动势的磁通的变化。 所属学科:

电力(一级学科);通论(二级学科)

本内容由全国科学技术名词审定委员会审定公布

百科名片

楞次定律公式

楞次定律(Lenz law)是一条电磁学的定律,从电磁感应得出感应电动势的方向。其可确定由电磁感应而产生之电动势的方向。它是由俄国物理学家海因里希?楞次(Heinrich Friedrich Lenz)在1834年发现的。楞次定律是能量守恒定律在电磁感应现象中的具体体现。楞次定律还可表述为:感应电流的效果总是反抗引起感应电流的原因。

目录

简述

1. 计算公式

2. 表述

楞次定律的表述及特点

楞次定律的实质

学习难点分析

1. 从静到动的一个飞跃

2. 内容、关系的复杂性

3. 学生知识、能力的不足

突破难点的方法

1. 正确理解"楞次定律"及"阻碍"的含义

2. 应用"楞次定律"判定感应电流方向的步骤

3. 弄清最基本的因果关系

4. 正确认识"楞次定律"与能量转化的关系

5. 多角度理解"楞次定律"

6. 与之相关的解题方法

简述

1. 计算公式

2. 表述

楞次定律的表述及特点

楞次定律的实质

学习难点分析

1. 从静到动的一个飞跃

2. 内容、关系的复杂性

3. 学生知识、能力的不足

突破难点的方法

1. 正确理解"楞次定律"及"阻碍"的含义

2. 应用"楞次定律"判定感应电流方向的步骤

3. 弄清最基本的因果关系

4. 正确认识"楞次定律"与能量转化的关系

5. 多角度理解"楞次定律"

6. 与之相关的解题方法

简述

计算公式

其中 E 是感应电势,N 是线圈圈数,Φ 是磁通量[1]。

感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

楞次定律

注意:"阻碍"不是"相反",原磁通量增大时方向相反,原磁通量减小时方向相同;"阻碍"也不是阻止,电路中的磁通量还是变化的。

1833年,楞次 在概括了大量实验事实的基础上,总结出一条判断感应电流方向的规律,称为楞次定律( Lenz law )。

表述

楞次定律可表述为:

闭合回路中感应电流的方向,总是使得它所激发的磁场来阻碍引起感应电流的磁通量的变化。

楞次定律也可简练地表述为:

感应电流的效果,总是阻碍引起感应电流的原因。

楞次定律的表述及特点

楞次定律图解

楞次定律的表述可归结为:"感应电流的效果总是反抗引起它的原因。" 如果回路上的感应电流是由穿过该回路的磁通的变化引起的,那么楞次定律可具休表述为:"感应电流在回路中产生的磁通总是反抗(或阻碍)原磁通的变化。"我们称这个表述为通量表述,这里感应电流的"效果"是在回路中产生了磁通;而产生感应电流的原因则是"原磁通的变化"。可以用四个字来形象记忆"来阻去留"。

如果感应电流是由组成回路的导体作切割磁感线运动而产生的,那么楞次定律可具体表述为:"运动导体上的感应电流受的磁场力(安培力)总是反抗(或阻碍)导体的运动。"我们不妨称这个表述为力表述,这里感应电流的"效果"是受到磁场力;而产生感应电流的"原因"是导体作切割磁感线的运动。

从楞次定律的上述表述可见,楞次定律并没有直接指出感应电流的方向,它只是概括了确定感应电流方向的原则,给出了确定感应电流的程序。要真正掌握它,必须要求对表述的涵义有正确的理解,并熟练掌握电流的磁场及电流在磁场中受力的规律。

以"通量表述"为例,要点是感应电流的磁通反抗引起感应电流的原磁通的变化,而不是反抗原磁通。如果原磁通是增加的,那么感应电流的磁通要反抗原磁通的增加,就一定与原磁通的方向相反;如果原磁通减少,那么感应电流的磁通要反抗原磁通的减少,就一定与原磁通的方向相同。在正确领会定律的上述涵义以后,就可按以下程序应用楞次定律判断感应电流的方向:a.穿过回路的原磁通的方向,以及它是增加还是减少;b.根据楞次定律表述的上述涵义确定回路中感应电流在该回路中产生的磁通的方向;c.根据回路电流在回路内部产生磁场的方向的规律(右手螺旋法则),由感应电流的磁通的方向确定感应电流的方向。 以力表述为例,其要点是感应电流在磁场中受的安培力的方向,总是与导体运动的方向成钝角,从而阻碍导体的运动.因此应用它来确定感应电流的程序是:a.明确磁场B 的方向和导体运动的方向;b.根据楞次定律的上述涵意明确感应电流受安培力的方向;c.根据安培力的规律确定感应电流的方向。

可见正确掌握楞次定律并能应用,不仅要求准确理解其涵义,还必须掌握好电流的磁场和电流在磁场中受力(安培力)的规律。

在楞次于1834年发表楞次定律时无磁通这一概念(磁通概念是法拉第于1846年才提出来的),因此定律不可能具有现在的表述形式。楞次是在综合法拉第电磁感应原理(发电机原理)和安培力原理的基础上,以"电动机发电机原理"的形式提出这个定律的。其基本思想是:用电动机原理代替发电机原理来确定感应电流的方向,即:导线回路在磁场中运动时,产生感应电流(即发电机的电流)的方向,与通电导体回路在磁场力作用下作相同运动时、应通过的电流(电动机电流)的方向相反.以两个端面互相平行的线圈为例,使A 线圈固定,B 线圈可移动.若令A线圈通以电流,让B线圈向A运动,则B线圈上将产生感应电流。用"电动机发电机原理"判断此感应电流的方向的程序如下:假定B作为电动机线圈,通电后受A线圈电流磁场的作用力而向着A运动(电动机),根据安培力规律(或电动机原理),要求B线圈的电流应与A线圈的电流有相同的绕行方向。于是根据楞次的"电动机发电机原理"所求B线圈上的感应电流的绕行方向与A线圈上电流的绕行方向相反。

楞次本人对定律的叙述似乎直接涉及到感应电流的方向。但要作出判断仍然必须通过"对作相同运动的电动机的电流"方向作出判断之后,才能确定由导线在磁场中运动产生的感应电流的方向,故实际上仍然只是给出了确定感应电流方向的原则,必须在对电动机原理有充分掌握的基础上,按一定的程序确定感应电流的方向。

楞次定律的实质

楞次定律可以有不同的表述方式,但各种表述的实质相同,楞次定律的实质是:产生感应电流的过程必须遵守能量守恒定律,如果感应电流的方向违背楞次定律规定的原则,那么

永动机就是可以制成的。下面分别就三种情况进行说明:

(1)如果感应电流在回路中产生的磁通量加强引起感应电流的原磁通变化,那么,一经出现感应电流

楞次定律

,引起感应电流的磁通变化将得到加强,于是感应电流进一步增加,磁通变化也进一步加强......感应电流在如此循环过程中不断增加直至无限。这样,便可从最初磁通微小的变化中(并在这种变化停止以后)得到无限大的感应电流。这显然是违反能量守恒定律的。楞次定律指出这是不可能的,感应电流的磁通必须反抗引起它的磁通变化,感应电流具有的以及消耗的能量,必须从引起磁通变化的外界获取。要在回路中维持一定的感应电流,外界必须消耗一定的能量。如果磁通的变化是由外磁场的变化引起的,那么,要抵消从无到有地建立感应电流的过程中感应电流在回路中的磁通,以保持回路中有一定的磁通变化率,产生外磁场的励磁电流就必须不断增加与之相应的能量,这只能从外界不断地补充。

(2)如果由组成回路的导体作切割磁感线运动而产生的感应电流在磁场中受的力(安培力)的方向与运动方向相同,那么,感应电流受的磁场力就会加快导体切割磁感线的运动,从而又增大感应电流。如此循环,导体的运动将不断加速,动能不断增大,电流的能量和在电路中损耗的焦耳热都不断增大,却不需外界做功,这显然是违背能量守恒定律的。楞次定律指出这是不可能的,感应电流受的安培力必须阻碍导体的运动,因此要维持导体以一定速度作切割磁感线运动,在回路中产生一定的感应电流,外界必然反抗作用于感应电流的安培力做功。

(3)如果发电机转子绕组上的感应电流的方向,与作同样转动的电动机转子绕组上的电流方向相同,那么发电机转子绕组一经转动,产生的感应电流立即成了电动机电流,绕组将加速转动,结果感应电流进一步加强,转动进一步加速。如此循环,这个机器既是发电机,可输出越来越大的电能,又是电动机,可以对外做功,而不花任何代价(除使转子最初的一动而外),这显然是破坏能量守恒定律的永动机。楞次定律指出这是不可能的,发电机转子上的感应电流的方向应与转子作同样运动的电机电流的方向相反。

综上所述,楞次定律的任何表述,都是与能量守恒定律相一致的。概括各种表述"感应电流的效果总是反抗产生感应电流的原因",其实质就是产生感应电流的过程必须遵守能量守恒定律。

编辑本段

学习难点分析

从静到动的一个飞跃

学习"楞次定律"之前所学的"电场"和"磁场"只是局限于"静态场"考虑,而"楞次定律"所涉及的是变化的磁场与感应电流的磁场之间的相互关系,是一种"动态场",并且"静到动"是一个大的飞跃,所以学生理解起来要困难一些。

内容、关系的复杂性

"楞次定律"涉及的物理量多,关系复杂。产生感应电流的原磁场与感应电流的磁场两者都处于同一线圈中,且感应电流的磁场总要阻碍原磁场的变化,它们之间既相互依赖又相互排斥。如果不明确指出各物理量之间的关系,使学生有一个清晰的思路,势必造成学生思路混乱,影响学生对该定律的理解。

学生知识、能力的不足

要能理解"楞次定律"必须具备一定的思维能力,而大多数学生抽象思维和空间想象能力还不是很强,对物理知识的理解、判断、分析、推理常常表现出一定的主观性、片面性和表面性,所以在某些问题的理解上容易出差错。

突破难点的方法

正确理解"楞次定律"及"阻碍"的含义

(1)"楞次定律"的内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通

楞次定律

量的变化。

(2)对"阻碍"二字的理解:要正确全面地理解"楞次定律"必须从"阻碍"二字上下功夫,这里起阻碍作用的是"感应电流的磁场",它阻碍"原磁通量的变化",不是阻碍原磁场,也不是阻碍原磁通量。不能认为"感应电流的磁场必然与原磁场方向相反"或"感应电流的方向必然和原来电流的流向相反"。所以"楞次定律"可理解为:当穿过闭合回路的磁通量增加时,感应电流的磁场方向总是与原磁场方向相反;当穿过闭合回路的磁通量减小时,感应电流的磁场方向总是与原磁场方向相同。另外"阻碍"不能理解为"阻止",应认识到,原磁场是主动的,感应电流的磁场是被动的,原磁通量仍然要发生变化,阻止不了,而感应电流的磁场只是起阻碍作用而已。感应电流的磁场的存在只是削弱了穿过电路的总磁通量 变化的快慢,而不会改变 的变化特征和方向。例如:当增大感应电流的磁场时, 原磁场也将在原方向上一直增大,只是增大得比没有感应电流的磁场时慢一点而已。如果磁通量变化被阻止,则感应电流就不会继续产生。无感应电流,就更谈不上"阻止"了。

应用"楞次定律"判定感应电流方向的步骤

(1)明确原磁场的方向及磁通量的变化情况(增加或减少)。

(2)确定感应电流的磁场方向,依"增反减同"确定。

(3)用安培定则确定感应电流的方向。

弄清最基本的因果关系

"楞次定律"所揭示的这一因果关系可用上文的第2张图表示。感应磁场与原磁场磁通量变化之间阻碍与被阻碍的关系:原磁场磁通量的变化是因,感应电流的产生是果,原因引起结果,结果又反作用于原因,二者在其发展过程中相互作用,互为因果。

正确认识"楞次定律"与能量转化的关系

"楞次定律"是能量转化和守恒定律在电磁运动中的体现,感应电流的磁场阻碍引起感应电流的原磁场的磁通量的变化,因此,为了维持原磁场磁通量的变化,就必须有动力作用,这种动力克服感应电流的磁场的阻碍作用做功,将其他形式的能转变为感应电流的电能,所以"楞次定律"中的阻碍过程,实质上就是能量转化的过程。

多角度理解"楞次定律"

从反抗效果的角度来理解:感应电流的效果,总是要反抗产生感应电流的原因,这是"楞次定律"的另一种表述。依这一表述,"楞次定律"可推广为:

①阻碍原磁通量的变化。

②阻碍(导体的)相对运动(由导体相对磁场运动引起感应电流的情况)。可以理解为"来者拒,去者留"。

与之相关的解题方法

电流元法:在整个导体上去几段电流元,判断电流元受力情况,从而判断道题受力情况 等效磁体法:将导体等效为一个条形磁铁,进而作出判断

躲闪法:"增反减同"的方法确定。

阻碍相对运动法:产生的感应电流总是阻碍导体相对运动。

感生电动势

induced electromotive force

固定回路中的磁场发生变化,使回路中磁通量变化,而产生的感生电动势[1]。产生感生电动势时,导体或导体回路不动,而磁场变化。因此产生感生电动势的原因不可能是洛仑兹力。变化磁场产生了有旋电场,有旋电场对回路中电荷的作用力是一种非静电力,它引起了感生电动势,即如图式子中E旋是有旋电场的场强,即单位正电荷所受有旋电场的作用力。 应该指出,按照引起磁通量变化原因的不同,把感应电动势区分为动生电动势和感生电动势,从参考系变换的观点看,在一定程度上只具有相对的意义。在某些情形,例如磁棒插入线圈产生电动势,以线圈为参考系,是感生电动势;以磁棒为参考系,是动生电动势。但在一般情形下,不可能通过坐标变换,把感生电动势归结为动生电动势;反之亦然。 动生电动势

组成回路的导体(整体或局部)在恒定磁场中运动,使回路中磁通量发生变化而产生的感应电动势[1]。动生电动势来源于磁场对运动导体中带电粒子的洛伦兹力。由洛伦兹力公式 F=qv?B,当导体中的带电粒子在恒定磁场B中以速度v运动时,F'=ev?B/e,单位正电荷所受洛伦兹力为v?B,此即引起动生电动势的非静电力。根据电动势的定义,非静电力将电子从负极搬到正极做功为E=BvL,在运动的导体回路中的动生电动势为

可以证明,上述积分等于回路在磁场中运动时,磁通量变化率的负值

即与法拉第电磁感应定律一致。

动生电动势的求解可以采用两种方法:一是利用"动生电动势"的公式来计算;二是设法构成一种合理的闭合回路以便于应用"法拉第电磁感应定律"求解。

感应电场

变化磁场激发的电场叫感应电场或涡旋电场.感应电场的电场线是闭合的,没有起点、终点.闭合的电场线包围变化的磁场,属于非保守场.

电磁感应现象说明,电荷能激发电场,磁场变化也能激发电场.磁场变化导致通过闭合导体回路的磁通量发生变化,回路中便产生感应电流,也产生了电荷定向移动的电场.实验表明,导体不存在,磁场变化,也能激发电场.

电场

科技名词定义

中文名称:

电场

英文名称:

electric field

定义:

自然界中的基本场之一,是电磁场的一个组成部分,以电场强度E与电通密度D来表征,具体表现为对每单位试验电荷的电动力。

所属学科:

电力(一级学科);通论(二级学科)

本内容由全国科学技术名词审定委员会审定公布

百科名片

电场是电荷及变化磁场周围空间里存在的一种特殊物质。电场这种物质与通常的实物不同,它不是由分子原子所组成,但它是客观存在的。电场具有通常物质所具有的力和能量等客观属性。电场的力的性质表现为:电场对放入其中的电荷有作用力,这种力称为电场力。电场的能的性质表现为:当电荷在电场中移动时,电场力对电荷作功(这说明电场具有能量)。

目录

电场

一、静电场

二、感应电场

1. 电场强度

2. 电场线

3. 电场力

三、摩擦起电

四、电荷量

五、元电荷

如何研究电场

电场

一、静电场

二、感应电场

1. 电场强度

2. 电场线

3. 电场力

三、摩擦起电

四、电荷量

五、元电荷

如何研究电场

电场

di?nchǎng [electric field]

点电荷电场线

静止电荷在其周围空间产生的电场,称为静电场;随时间变化的磁场在其周围空间激发的电场称为有旋电场[1](也称感应电场或涡旋电场)。静电场是有源无旋场,电荷是场源;有旋电场是无源有旋场。普遍意义的电场则是静电场和有旋电场两者之和。

电场是一个矢量场,其方向为正电荷所受电场力的方向。电场的力的性质用电场强度来描述。

一、静电场

静电场是由静止电荷激发的电场。静电场的电场线起始于正电荷或无穷远,终止于无穷远或负电荷。其电场力移动电荷做功具有与路径无关的特点。用电势差描述电场的能的性质,或用等势面形象地说明电场的电势的分布。

二、感应电场

变化磁场激发的电场叫感应电场或涡旋电场。感涡旋电场

磁场变化时线圈产生的感生电动势与导体的种类、形状、性质和构成均无关,是由磁场本身的变化引起的。因此麦克斯韦提出了"变化的磁场会在其周围的空间激发一种电场,正式这种电场使得闭合回路中产生了感生电动势和感生电流"的理论,并将这种电场称为涡旋电场。

应电场的电场线是闭合的,没有起点、终点。闭合的电场线包围变化的磁场。 电场强度

描述某点电场特性的物理量,符号是E,E是矢量。电场强度简称场强,定义为放入电场

中某点的电荷所受的电场力F跟它的电荷量q的比值,场强的方向与正检验电荷的受力方向相同。场强的定义是根据电场对电荷有作用力的特点得出的。对电荷激发的静电场和变化磁场激发的涡旋电场都适用。场强的单位是牛/库或伏/米,两个单位名称不同大小一样。场强数值上等于单位电荷在该点受的电场力,场强的方向与正电荷受力方向相同。

电场的特性是对电荷有作用力,电场力,正电荷受力方向与方向相同,负电荷受力方向与方向相反。电场是一种物质,具有能量,场强大处电场的能量大。

已知电场强度可判定电场对电荷的作用力,电介质(绝缘体)的电击穿与场强大小有关。 点电荷的电场强度由点电荷决定,与试探电荷无关.

真空中点电荷场强公式:E=k*Q/r^2

匀强电场场强公式:E=U/d

任何电场中都适用的定义式:E=F/q

介质中点电荷的场强:kQ/(r^2)

注:匀强电场。在匀强电场中,场强大小相等,方向相同,匀强电场的电场线是一组疏密相同的平行线.

在匀强电场中,有E=U/d(只适用于匀强电场),U为电势差,单位:伏特/米。电荷在此电场中受到的力为恒力,带电粒子在匀强电场中作匀变速运动。而此电场的等势面与电场线相垂直。

电场线

为形象地描述场强的分布,在电场中人为地画出一些有方向的曲线,曲线上一点的切线方向表示该点场强的方向。电场线的疏密程度与该处场强大小成正比。

电场是一种物质,电场线是我们人为画出的便于形象描述电场分布的辅助工具,并不是客观存在的。

在没有电荷的空间,电场线具有不相交、不中断的特点。静电场的电场线还具有下列特性:

1、电场线不闭合,始于正电荷终止于负电荷;

2、电场线垂直于导体表面;

3、电场线与等势面垂直。

感应电场的电场线具有下述特性:

1、电场线是闭合的;

2、闭合的电场线包围磁感线。

知道一个电场的电场线,就可判定场强的方向和大小,就可画出等势面,能判定电势高低(沿电场线方向电势降低)。

应该注意,电场线不是电荷的运动轨迹。根据电场线方向能确定电荷的受力方向和加速度方向,不能确定电荷的速度方向、运动的轨迹。电场线是直线时,电荷运动速度与电场线平行,电荷运动轨迹与电场线重合。

电场力

电场力:

一,定义:电荷之间的相互作用是通过电场发生的.只要有电荷存在,电荷的周围就存在着电场,电场的基本性质是它对放入其中的电荷有力的作用,这种力就叫做电场力。 二方向:正电荷沿电场线的切线方向,负电荷沿电场线的切线方向的反方向。

三计算:电场力的计算公式是F=qE,其中q为点电荷的带电量,E为场强。或由W=Fd,也可以根据电场力做功与在电场力方向上运动的距离来求。电磁学中另一个重要公式W=qU(其中U为两点间电势差)就是由此公式推导得出。

----------

电场力的功能:

由于电场力的作用广泛,它应用到粒子加速器,航天事业中导航修正.对新物质的加工。对物质排列改变.在未来可能是主要动力之一等等。

电场力的研究方向:

在未来有电场力的存在航空航天事业会得到长足发展,例如利用电场保护层(可以让飞行器更轻);以及让飞行器依赖电场飞行(而取代现有的发动机);电场在核物质的衰变起作用(让我们能更好的利用能源)。

----------

三、摩擦起电

(electrification by friction)

用摩擦的方法使物体带电的过程,叫做摩擦起电(或两种不同的物体相互摩擦后,一种物体带正电,另一种物体带负电的现象)。

摩擦起电的原因,是因为摩擦可以使物体得到多余的电子或失去原有的电子。得到多余电子的物体带负电,失去原有电子的物体带正电。

四、电荷量

通常,正电荷的电荷量用正数表示,负电荷的电荷量用负数表示。 任何带电体所带电量总是等于某一个最小电量的整数倍,这个最小电量叫做基元电荷,也称元电荷,用e表示,1e=1.60217733?10^-19C ,在计算中可取e=1.6?10^-19C。它等于一个电子所带电量的多少,也等于一个质子所带电量的多少 。 国际单位制中电量的基本单位是库仑,量纲为I*T ,1库仑=1安培?秒 。 库仑是电量的单位,符号为C。它是为纪念法国物理学家库仑而命名的。若导线中载有1安培的稳恒电流,则在1秒内通过导线横截面积的电量为1库仑。 库仑不是国际标准单位,而是国际标准导出单位。一个电子所带负电荷量库仑(元电荷),也就是说1库仑相当于6.24146?10^18个电子所带的电荷总量。 电荷量的公式: Q=It(其中I是电流,单位A ;t是时间,单位s)

五、元电荷

(elementary charge)

带电体的电荷量都等于最小电荷量e的整倍数。最小电荷量e就叫做元电荷 e=1.6021892*10^-19

------------------------------------------------------------------------ 到现在为止,也许人们都这么认为:分子之间什么都没有。其实大多数情况分子是由原子组成的。如果我们把它转为"原子之间有什么"的话也许会让这个问题更科学。

什么是电场?也许很多人都把它忽略了,觉得它只是物理学的一个很小的领域。但我觉得电场是一个非常了不起的东西。他是世界上一切力量之源。他是一切物理、工业、化学、能源、电子、信息、生物等学科研究的本质对象。为什么呢?让我们详细分析一下:

1、摩擦力,弹力主要由电场力贡献的;

2、分子之间的力由电场力组成;

3、生化反应的动力源泉是电场;

4、电流,电压由电场力引起;

5、光、电磁波由电场引起;

6、信息技术也是研究电场的特性。

保守场

保守场,电场做功与路径无关,只与始末位置有关。

涡旋电场

磁场变化时线圈产生的感生电动势与导体的种类、形状、性质和构成均无关,是由磁场

本身的变化引起的。因此麦克斯韦提出了"变化的磁场会在其周围的空间激发一种电场,正式这种电场使得闭合回路中产生了感生电动势和感生电流"的理论,并将这种电场称为涡旋电场。

如何研究电场

电场的基本性质是对放入其中的电荷有作用力,因此可以通过这一性质来研究电场。放入电场中试探电场性质的电荷称为试探电荷。试探电荷的电荷量应足够小,使得它被放入电场后不会影响原有电场的分布:另外,它的线度也应足够小,这样才能方便地研究电场中各点的情况。

电场强度

科技名词定义

中文名称:

电场强度

英文名称:

electric field intensity,electric field strength

定义:

作用于静止带电粒子上的力F与粒子电荷Q之比。矢量,符号"E"。

简介

电场

电场强度[1] 是描述电场的性质的基本物理量,是个矢量。简称场强。规定其方向与正电荷在该点受的电场力方向相同。按照这个规定,负电荷在该点受的电场力方向与电场强度方向相反。电场的基本特征是能使其中的电荷受到电场力。

在电场中某观察点的电场强度E,等于置于该点的静止电荷q'所受的力F与电量q'的比。试验电荷q'的数值应足够小,不改变它所在处的电场。这样,电场强度就等于每单位正电荷所受的力。

编辑本段

相关知识

电场强度的单位应是牛(顿)每库(伦)在国际单位制中,符号为N/C。如果1C的电荷在电场中的某点受到的静电力是1N,这点的电场强度就是1N/C。电场强度的另一单位是伏(特)每米,符号是V/m,它与牛每库相等,即1V/m=1N/C。

电场强度的定义是放入电场中某点的电荷所受静电力F跟它的电荷量比值,定义式E=F/q ,适用于一切电场;其中F为电场对试探电荷的作用力,q为试探电荷的电荷量。单位N/C。

电场强度的方向:电场中某点的场强方向规定为放在该点的正电荷受到的静电力方向。 对于真空中静止点电荷q所建立的电场,可以由库仑定律得出 。

式中r是电荷q 至观察点(或q')的距离;r是由q 指向该观察点的单位矢量,它标明了E的

电场

方向;是真空介电常数。

静电场或库仑电场是无旋场,可以引入标量电位φ,而电场强度矢量与电位标量间的关系为负梯度关系

E=-Δγφ

时变磁场产生的电场称为感应电场,是有旋场。引入矢量磁位A并选择适当规范,可得电场强度与矢量磁位间的关系为时间变化率的负数关系,即

感应电场与库仑电场的合成电场是有源有旋场

电场强度的大小,关系到电工设备中各处绝缘材料的承受能力、导电材料中出现的电流密度、端钮上的电压,以及是否产生电晕、闪络现象等问题,是设计中需考虑的重要物理量之一。

电场中某一点的电场强度在数值上等于单位电荷在那一点所受的电场力.试验电荷的电量、体积均应充分小,以便忽略它对电场分布的影响并精确描述各点的电场。场强是矢量,其方向为正的试验电荷受力的方向,其大小等于单位试验电荷所受的力。场强的单位是伏/米,1伏/米=1牛/库。场强的空间分布可以用电力线形象地图示。电场强度遵从场强叠加原理,即空间总的场强等于各电场单独存在时场强的矢量和,即场强叠加原理是实验规律,它表明各个电场都在独立地起作用,并不因存在其他电场而有所影响。以上叙述既适用于静电场也适用于有旋电场或由两者构成的普遍电场。

电场强度的叠加遵循矢量合成的平行四边形定则。

地球表面附近的电场强度约为100V/m。

高中物理中的电场强度概念

①定义:放入电场中某点的电荷所受静电力F跟它的电荷量比值,叫做该点的电场强度。 ②定义式:E=F/q ,F为电场对试探电荷的作用力,q为放入电场中某点的受力电荷(试探电荷)的电荷量。

③电场强度的方向:规定为放在该点的正电荷受到的静电力方向。与正电荷受力方向相同,与负电荷受力方向相反。

④物理意义:描述电场强弱的物理量,描述电场的力的性质的物理量。电场强度的大小取决与电场本身,或者说取决于激发电场的电荷,与电场中的受力电荷无关。

⑤适用条件:适用于一切电场。

⑥电场强度是矢量。

⑦电场的决定式:=kQ/r^2(只适用于点电荷)。其中E是电场强度,k是静电力常量,Q是源电荷的电量,r是源电荷与试探电荷的距离。

⑧电场力:F=E*q

电磁场

各类场强公式

真空中点电荷场强公式:E=k*Q/r^2

匀强电场场强公式:E=U/d

任何电场中都适用的定义式:E=F/q

平行板电容器间的场强E=U/d=εS/4πkd

介质中点电荷的场强:E=kQ/(r^2)

库仑定律

科技名词定义

中文名称:

库仑定律

英文名称:

Coulomb law

定义:

表示两个带电粒子间力的定律,关系式为:式中:是带电荷粒子施加在带电荷粒子上的力,k是正的常数,是带电荷粒子到带电荷粒子的矢量,是粒子间的距离,而是单位矢量r21/r。

库仑定律

库仑定律:是电磁场理论的基本定律之一。真空中两个静止的点电荷之间的作用力与这两个电荷所带电量的乘积成正比,和它们距离的平方成反比,作用力的方向沿着这两个点电荷的连线,同名电荷相斥,异名电荷相吸。公式:F=k*(q1*q2)/r^2 。

目录

库仑定律简介

库仑定律的验证

库仑定律公式

库仑定律的物理意义

学习和应用库仑定律的注意事项

库仑定律的发现

1. 科学家对电力的早期研究

2. 库仑定律的建立

3. 库仑定律的验证和影响

库仑定律简介

库仑定律的验证

库仑定律公式

库仑定律的物理意义

学习和应用库仑定律的注意事项

库仑定律的发现

1. 科学家对电力的早期研究

2. 库仑定律的建立

3. 库仑定律的验证和影响

库仑定律简介

库仑定律成立的条件:1.真空中 2.静止 3.点电荷

(静止是在观测者的参考系中静止,中学计算一般不做要求)

库仑定律的验证

库仑定律是1784--1785年间库仑通过扭秤实验总结出

库仑扭秤

来的。纽秤的结构如下:在细金属丝下悬挂一根秤杆,它的一端有一小球A,另一端有平衡体P,在A旁还置有另一与它一样大小的固定小球B。为了研究带电体之间的作用力,先使A、B各带一定的电荷,这时秤杆会因A端受力而偏转。转动悬丝上端的悬钮,使小球回到原来位置。这时悬丝的扭力矩等于施于小球A上电力的力矩。如果悬丝的扭力矩与扭转角度之间的关系已事先校准、标定,则由旋钮上指针转过的角度读数和已知的秤杆长度,可以得知在此距离下A、B之间的作用力。

如何比较力的大小【通过悬丝扭转的角度可以比较力的大小】

库仑定律公式

COULOMB'S LAW

库仑定律--描述静止点电荷之间的相互作用力的规律

库仑定律

真空中,点电荷 q1 对 q2的作用力为

F=k*(q1*q2)/r^2 (可结合万有引力公式F=Gm1m2 /r^2来考虑)

其中:

r --两者之间的距离

r --从 q1到 q2方向的矢径

k --库仑常数

上式表示:若 q1 与 q2 同号, F 12y沿 r 方向--斥力;

若两者异号, 则 F 12 沿 - r 方向--吸力.

显然 q2 对 q1 的作用力

F21 = -F12 (1-2)

在MKSA单位制中

力 F 的单位: 牛顿(N)=千克? 米/秒2(kg?m/S2)(量纲 :M LT - 2) 电量 q 的单位: 库仑(C)

定义:当流过某曲面的电流1 安培时,每秒钟所通过

的电量定义为 1 库仑,即

1 库仑(C)= 1 安培 ?秒(A ? S) (量纲:IT)

比例常数 k = 1/4pe0 (1-3)=9.0x10^9牛 ?米2/库2

e0 = 8.854 187 818(71)?10 -12 库2/ 牛 ?米2 ( 通常表示为法拉/米 ) 是真空介电常数 英文名称:permittivity of vacuum

说明:又称绝对介电常数。符号为εo。等于8.854187817?10-12法/米。它是导自真空磁导率和光在真空中速度的一个无误差常量。

库仑定律的物理意义

(1)描述点电荷之间的作用力,仅当带电体的尺度远小于两者的平均距离,才可看成点电荷

(2)描述静止电荷之间的作用力,当电荷存在相对运动时,库仑力需要修正为Lorentz力.但实践表明,只要电荷的相对运动速度远小于光速 c,库仑定律给出的结果与实际情形很接近。

[例1-1] 比较氢原子中质子与电子的库仑力和万有引力(均为距离平方反比力) 据经典理论,基态氢原子中电子的"轨道"半径 r ≈ 5.29?10 -11 米

核子的线度 ≤ 10-15 米 ,电子的线度≤10-18米,故两者可看成 "点电荷".

两者的电量 e ≈ ± 1. 60?10-19 库仑 质量 mp ≈ 1.67?10-27 千克 me ≈ 9.11?10-31千克

万有引力常数 G ≈ 6.67 ?10-11 牛 ?米2 /千克2

电子所受库仑力 Fe =- e2r / 4pe0r3 电子所受引力 Fg= -Gmpmer /r3

两者之比: Fe /Fg = e2 / 4pe0Gmpme ≈2.27 ?10 39 (1-6)

由此可见,电磁力在原子、分子结构中起决定性作用,这种作用力远大于万有引力引起的作用力,即可表述为质量对物体间的影响力远小于电磁力的作用,并且有:电荷之间的作用力随着电荷量的增大而增大,随着距离的增大而减小。

学习和应用库仑定律的注意事项

(1) 库仑定律只适用于计算两个点电荷间的相互作用力,非点电荷间的相互作用力,库仑定律不适用。。(不能根据直接认为当r无限小时F就无限大,因为当r无限小时两电荷已经失去了作为点电荷的前提。)

(2) 应用库仑定律求点电荷间相互作用力时,不用把表示正,负电荷的"+","-"符号代入公式中计算过程中可用绝对值计算,其结果可根据电荷的正,负确定作用力为引力或斥力以及作用力的方向。

(3)库仑力一样遵守牛顿第三定律,不要认为电荷量大的对电荷量小的电荷作用力大。(两电荷之间是作用力和反作用力)

库仑定律的发现

库仑定律可以说是一个实验定律,也可以说是牛顿引力定律在电学和磁学中的"推论"。假如说它是一个实验定律,库仑扭称实验起到了重要作用,而电摆实验则起了决定作用;即便是这样,库仑仍然借鉴了引力理论,模拟万有引力的大小与两物体的质量成正比的关系,认为两电荷之间的作用力与两电荷的电量也成正比关系。假如说它是牛顿万有引力定律的推论,那么普利斯特利和卡文迪许等人也做了大量工作。因此,从各个角度考察库仑定律,重新准确的对它进行熟悉,确实是非常必要的。

科学家对电力的早期研究

人类对电现象的熟悉、研究,经历了很长的时间。直到16世纪人们才对电的现象有了深入的熟悉。吉尔伯特比较系统地研究了静电现象,第一个提出了比较系统原始理论,并引人了"电吸引"这个概念。但是吉尔伯特的工作仍停留在定性的阶段,进展不大。18世纪中叶,人们借助于万有引力定律,对电和磁做了种种猜测。18世纪后期,科学家开始了电荷相互作用的研究。

富兰克林最早观察到电荷只分布在导体表面。普利斯特利重复了富兰克林的实验,在《电学的历史和现状》一书中他根据牛顿的《自然哲学的数学原理》最先预言电荷之间的作用力只能与距离平方成反比。虽然这个思想很重要,但是普利斯特利的结论在当时并没有得到科学界的重视。

在库仑定律提出前有两个人曾作过定量的实验研究,并得到明确的结论。可惜,都没有及时发表而未对科学的发展起到应有的推动作用。一位是英国爱丁堡大学的罗宾逊,认为电力服从平方反比律,并且得到指数n=2.06,从而电学的研究也就开始进行精确研究。不过,他的这项工作直到1801年才发表。另一位是英国的卡文迪许。1772~1773年间,他做了双层同心球实验,第一次精确测量出电作用力与距离的关系。发现带电导体的电荷全部分布在表面而内部不带电。卡文迪许进一步分析,得到n=20.02。他的这个同心球实验结果在当时的条件下是相当精确的。但可惜的是他一直没有公开发表这一结果。

库仑定律的建立

库仑是法国工程师和物理学家。1785年,库仑用扭称实验测量两电荷之间的作用力与两电荷之间距离的关系。他通过实验得出:"两个带有同种类型电荷的小球之间的排斥力与这两球中心之间的距离平方成反比。"同年,他在《电力定律》的论文中介绍了他的实验装置,测试经过和实验结果。

库仑的扭秤巧妙的利用了对称性原理按实验的需要对电量进行了改变。库仑让这个可移动球和固定的球带上同量的同种电荷,并改变它们之间的距离。通过实验数据可知,斥力的大小与距离的平方成反比。但是对于异种电荷之间的引力,用扭称来测量就碰到了麻烦。经过反复的思考,库仑借鉴动力学实验加以解决。库仑设想:假如异种电荷之间的引力也是与它们之间的距离平方成反比,那么只要设计出一种电摆就可进行实验。

库仑定律的发现者库仑

通过电摆实验,库仑认为:"异性电流体之间的作用力,与同性电流体的相互作用一样,都与距离的平方成反比。"库仑利用与单摆相类似的方法测定了异种电荷之间的引力也与它们的距

离的平方成反比,不是通过扭力与静电力的平衡得到的。可见库仑在确定电荷之间相互作用力与距离的关系时使用了两种方法,对于同性电荷,使用的是静电力学的方法;对于异性电荷使用的是动力学的方法。

库仑注重修正实验中的误差,最后得到:"在进行刚才我所说的必要的修正后,我总是发现磁流体的作用不管是吸引还是排斥都是按距离平方倒数规律变化的。"但是应当指出的是,库仑只是精确的测定了距离平方的反比关系,并把静电力和静磁力从形式归纳于万有引力的范畴,我们这里要强调的是库仑并没有验证静电力与电量之积成正比。"库仑仅仅认为应该是这样。也就是说库仑验证了电力与距离平方成反比,但仅仅是推测电力与电量的乘积成正比。"

库仑定律的验证和影响

库仑定律是平方反比定律,自发现以来,科学家不断检验指数2的精度。19xx年威廉等人的实验表明库仑定律中指数2的偏差不超过10-16,因此假定为2。事实上,指数为2和光子静止质量为零是可以互推的。其实假如mz不为零,即使这个值很小,也会动摇物理学大厦的重要基石,因为现有理论都是以mz等于零为前提。到目前为止,理论和实验表明点电荷作用力的平方反比定律是相当精确的。200多年来,电力平方反比律的精度提高了十几个数量级,使它成为当今物理学中最精确的实验定律之一。回顾库仑定律的建立过程,库仑并不是第一个做这类实验的人,而且他的实验结果也不是最精确的。我们之所以把平方反比定律称为库仑定律是因为库仑结束了电学发展的第一个时期。库仑的工作使静电学趋于高度完善。电量的单位也是为了纪念库仑而以他的名字命名的。

库仑定律不仅是电磁学的基本定律,也是物理学的基本定律之一。库仑定律阐明了带电体相互作用的规律,决定了静电场的性质,也为整个电磁学奠定了基础。库仑从1777年起就致力于把超距作用引入磁学和电学。他认为静电力和静磁力都来自远处的带电体和荷磁体,并不存在什么电流体和涡旋流体对带电物质和磁体的冲击;这些力都符合牛顿的万有引力定律所确定的关系。库仑提供了精密的测量,排除了关于电本性的一切思辩。库仑的工作对法国物理学家的影响还可以从稍后的拉普拉斯的物理学简略纲领得到证实。这个物理学简略纲领最基本的出发点是把一切物理现象都简化为粒子间吸引力和排斥力的现象,电或磁的运动是荷电粒子或荷磁粒子之间的吸引力和排斥力产生的效应。这种简化便于把分析数学的方法运用于物理学。

安培定则

百科名片

安培定则

安培定则,也叫右手螺旋定则,是表示电流和电流激发磁场的磁感线方向间关系的定则。通电直导线中的安培定则(安培定则一):用右手握住通电直导线,让大拇指指向电流的方向,那么四指的指向就是磁感线的环绕方向;通电螺线管中的安培定则(安培定则二):用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端是通电螺线管的N极。

安培定则图示

性质

直线电流的安培定则对一小段直线电流也适用。环形电流可看成多段小直线电流组成,对每一小段直线电流用直线电流的安培定则判定出环形电流中心轴线上磁感强度的方向。叠加起来就得到环形电流中心轴线上磁感线的方向。直线电流的安培定则是基本的,环形电流的安培定则可由直线电流的安培定则导出,直线电流的安培定则对电荷作直线运动产生的磁场也适用,这时电流方向与正电荷运动方向相同,与负电荷运动方向相反。

在H.C.奥斯特电流磁效应实验及其他一系列实验的启发下 ,A.-M.安培认识到磁现象的本质是电流 ,把涉及电流 、磁体的各种相互作用归结为电流之间的相互作用,提出了寻找电流元相互作用规律的基本问题。为了克服孤立电流元无法直接测量的困难 ,安培精心设计了4个示零实验并伴以缜密的理论分析,得出了结果。但由于安培对电磁作用持超距作用观念,曾在理论分析中强加了两电流元之间作用力沿连线的假设,期望遵守牛顿第三定律,使结论有误。上述公式是抛弃错误的作用力沿连线的假设,经修正后的结果。应按近距作用观点理解为,电流元产生磁场,磁场对其中的另一电流元施以作用力。

安培定律与库仑定律相当,是磁作用的基本实验定律 ,它决定了磁场的性质,提供了计算电流相互作用的途径。

安培力公式

电流元I1dι 对相距γ12的另一电流元I2dι 的作用力df12为:

μ0 I1I2dι2 ? (dι1 ? γ12)

df12 = ── ───────────

4π γ123

式中dι1、dι2的方向都是电流的方向;γ12是从I1dι 指向I2dι 的径矢。安培定律可分为两部分。其一是电流元Idι(即上述I1dι )在γ(即上述γ12)处产生的磁场为 μ0 Idι ? γ

dB = ── ─────

4π γ3

这是毕-萨-拉定律。其二是电流元Idl(即上述I2dι2)在磁场B中受到的作用力df(即上述df12)为:

df = Idι ? B

安培定律公式:

公式中的积分为围道积分,等号右侧的电流为流入闭合面内的电流的代数和。μ0为常数,μ0 = 4π*10^7。

天文之"右手螺旋定则"

我们通常通过以下三种方法辨别地球的南北极:

1.立木棒垂直于地面,白天时阴影的指向即为北极;但这只限于北回归线以北北极圈以南的人们,所以此种方法不可行;

2.指南针;但地理北极和地磁北极有区别,故也不可行;

3.借助星体;北极星和南十字星座;这种方法在夜里可行。

更深层的问题,出现在把我们关于北的概念,推广到宇宙中其他部分的某个星球上时;因为如果"北"这个词有什么普遍的含义,那么任何别的星球也应有北极和南极。那么它的北极究竟是哪一个呢?显然现在,北极星就没有用了,因为所有的星球看起来都将完全不同。 天文学家们对此有一个简单的规则,他们称之为"右手螺旋定则"。偶尔地,天文学家们也需要解决这样的问题。圣父基督说不定就是其中之一,至少按照《新科学家》(New Scientist)的一期圣诞特刊的说法是这样。在一篇文章中,当问到我们的太阳系中的某个其他星球或月亮的北极,是否能为圣诞老人提供比地球更好的居所时,贾斯廷?马林斯简洁地描述了这一规则:

"使你的右手握拳成拇指向上的形状。如果行星的运转方向与你手指的弯曲方向相符,你大拇指所指的就是北极。试着用它比划一下地球的旋转方式(地球的旋转式自西向东,这也是为什么太阳看起来是从东到西运行的原因)。"

这意味着,例如,相对于地球来说,金星的北极是位于其底部的,因为在我们的太阳系的行星中,金星是唯一在反方向上旋转的。

左手定则

定义

左手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。

把左手放入磁场中,让磁感线垂直穿入手心,四指指向电流方向,则大拇指的方向就是导体运动方向。

编辑本段

延伸

左手定则仍然可用于发电机的场景,因闭合电路中部分导体作切割磁感线运动,产生感应电流,所以在判断感应电流方向时,左手平展,手心对准N极,大拇指与并在一起的四指垂直 ,则四指为切割磁感线方向,而大拇指为产生的感应电流方向了(拿题试试吧)。 编辑本段

研究方法

恒定的磁场只能施力于运动的电荷.

这是因为一个磁场可能有运动的电荷产生,故可能施力于运动电荷,而磁场不可能有静止电荷产生,因而也不可能施力于静止电荷.

而这个力一直垂直于粒子的运动方向,所以不可能改变粒子的运动速度的大小.所以恒定的磁场也不可能把能量传输给运动的电荷.

磁场可以改变电荷的运动方向, 电场可以改变电荷的运动速度.

当你把磁铁的磁感线和电流的磁感线都画出来的时候,两种磁感线交织在一起,按照向量加法,磁铁和电流的磁感线方向相同的地方,磁感线变得密集;方向相反的地方,磁感线变得稀疏。磁感线有一个特性就是,每一条同向的磁感线互相排斥!磁感线密集的地方"压力大",磁感线稀疏的地方"压力小"。于是电流两侧的压力不同,把电流压向一边。拇指的方向就是这个压力的方向。区分与右手定则。(即磁场产生磁感线,磁感线产生压力) 适用情况

电流方向与磁场方向垂直.

(计算法)

如下```

电流元I1dι 对相距γ12的另一电流元I2dι 的作用力df12为:

μ0 I1I2dι2 ? (dι1 ? γ12)

df12 = ── ───────────

4π γ123

式中dι1、dι2的方向都是电流的方向;γ12是从I1dι 指向I2dι 的径矢。安培定律可分为两部分。其一是电流元Idι(即上述I1dι )在γ(即上述γ12)处产生的磁场为 μ0 Idι ? γ

dB = ── ─────

4π γ3

这是毕-萨-拉定律。其二是电流元Idl(即上述I2dι2)在磁场B中受到的作用力df(即上述df12)为:

df = Idι ? B

(左手定则不是左手螺旋定则,关于左、右手定则有:左手定则、右手定则、右手螺旋定则,没有左手螺旋定则!)

左手定则与右手定则其实本质上是相同的 ,它们的不同在于规定手指、手心代表的方向不同而已 , 只是高中阶段为了简单引用了右手定则的概念。 大学阶段 ,凡是涉及到两个向量的叉乘一律用左手定则 。

磁场

科技名词定义

中文名称:

磁场

英文名称:

magnetic field

定义:

自然界中的基本场之一,是电磁场的一个组成部分,用磁场强度H和磁感应强度B表征。 所属学科:

电力(一级学科);通论(二级学科)

本内容由全国科学技术名词审定委员会审定公布

百科名片

磁场是一种看不见,而又摸不着的特殊物质,它具有波粒的辐射特性。磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或电场的变化而产生的。

目录

磁场概述

术语介绍

磁场方向

磁感线

磁场类型

形成原因

电磁场

地磁场

模拟地球磁场

相关资料

磁场概述

术语介绍

磁场方向

磁感线

磁场类型

形成原因

电磁场

地磁场

* 模拟地球磁场

* 相关资料

磁场概述

磁场英文:magnetic field

简易定义:对放入其中的小磁针有磁力的作用的物质叫做磁场。

磁场的基本特征是能对其中的运动电荷施加作用力,即通电导体在磁场中受到磁场的作用力。磁场对电流、对磁体的作用力或力距皆源于此。而现代理论则说明,磁力是电场力的相对论效应。

与电场相仿,磁场是在一定空间区域内连续分布的矢量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁感线形象地图示。然而,作为一个矢量场,磁场的性质与电场颇为

磁场示意图

不同。运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线族,不中断,不交叉。换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。

电磁场是电磁作用的媒递物,是统一的整体,电场和磁场是它紧密联系、相互依存的两个侧面,变化的电场产生磁场,变化的磁场产生电场,变化的电磁场以波动形式在空间传播。电磁波以有限的速度传播,具有可交换的能量和动量,电磁波与实物的相互作用,电磁波与粒子的相互转化等等,都证明电磁场是客观存在的物质,它的"特殊"只在于没有静质量。 磁现象是最早被人类认识的物理现象之一,指南针是中国古代一大发明。磁场是广泛存在的,地球,恒星(如太阳),星系(如银河系),行星、卫星,以及星际空间和星系际空间,都存在着磁场。为了认识和解释其中的许多物理现象和过程,必须考虑磁场这一重要因素。在现代科学技术和人类生活中,处处可遇到磁场,发电机、电动机、变压器、电报、电话、收音机以至加速器、热核聚变装置、电磁测量仪表等无不与磁现象有关。甚至在人体内,伴随着生命活动,一些组织和器官内也会产生微弱的磁场。地球的磁级与地理的两极相反。 术语介绍

磁感应强度:与磁力线方向垂直的单位面积上所通过的磁力线数目,又叫磁力线的密度,也叫磁通密度,用B表示,单位为特(斯拉)T。

磁通量:磁通量是通过某一截面积的磁力线总数,用Φ表示,单位为韦伯(Weber),符号是Wb。 通过一线圈的磁通的表达式为:Φ=B?S(其中B为磁感应强度,S为该线圈的面积。) 1Wb=1T?m2

安培力:(左手定则)F=BIL*Sinθ

洛伦兹力:(左手定则)【微观上】F=qvBSinθ

磁场方向

规定小磁针的北极在磁场中某点所受磁场力的方向为该电磁场的方向 。从北极出发到南极的方向,在磁体内部是由南极到北极,在外可表现为磁感线的切线方向或放入磁场的小磁针在静止时北极所指的方向!磁场的南北极与地理的南北极正好相反,且一端的两种极之间存在一个偏角,称为磁偏角!磁偏角不断地发生缓慢变化!掌握磁偏角的变化对于应用指南针指向具有重要

三维磁场图

意义!

磁感线

在磁场中画一些曲线,使曲线上任何一点的切线方向都跟这一点的磁场方向相同,这些曲线叫磁力线。磁力线是闭合曲线。规定小磁针的北极所指的方向为磁力线的方向。磁铁周围的磁力线都是从N极出来进入S极,在磁体内部磁力线从S极到N极。

磁场类型

1.恒定磁场 磁场强度和方向保持不变的磁场称为恒定磁场或恒磁场,如铁磁片和通以直流电的电磁铁所产生的磁场。

2.交变磁场 磁场强度和方向在规律变化的磁场,如工频磁疗机和异极旋转磁疗器产生的磁场。

3.脉动磁场 磁场强度有规律变化而磁场方向不发生变化的磁场,如同极旋转磁疗器、通过脉动直流电磁铁产生的磁场。

计算机模拟演示地球的磁场

4.脉冲磁场 用间歇振荡器产生间歇脉冲电流,将这种电流通入电磁铁的线圈即可产生各种形状的脉冲磁场。脉冲磁场的特点是间歇式出现磁场,磁场的变化频率、波形和峰值可根据需要进行调节。

恒磁场又称为静磁场,而交变磁场,脉动磁场和脉冲磁场属于动磁场。磁场的空间各处的磁场强度相等或大致相等的称为均匀磁场,否则就称为非均匀磁场。离开磁极表面越远,磁场越弱,磁场强度呈梯度变化。

形成原因

假想有一根直立的金属棒,上下两端加上电位差使得电子朝向正电位端加速,而另一端由于缺少电子而带正电。这样的电流会在四周空间形成磁场。

电磁场

电磁场(electromagnetic field)是有内在联系、相互依存的电场和磁场的统一体和总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。 地磁场

地磁场(geomagnetic field)是从地心至磁层顶的空间范围内的磁场。地磁学的主要研究对象。人类对于地磁场存在的早期认识,来源于天然磁石和磁针的指极性。地磁的北磁极在地理的南极附近;地磁的南磁极在地理的北极附近。磁针的指极性是由于地球的北磁极(磁性为S极)吸引着磁针的N极,地球的南磁极(磁性为N极)吸引着磁针的S极。这个解释最初是英国W.吉伯于1600年提出的

地球磁场示意图

。吉伯所作出的地磁场来源于地球本体的假定是正确的。这已为1839年德国数学家C.F.高斯首次运用球谐函数分析法所证实。

地磁的磁感线和地理的经线是不平行的,它们之间的夹角叫做磁偏角。中国古代的著名科学家沈括是第一个注意到磁偏角现象的科学家。

地磁场是一个向量场。描述空间某一点地磁场的强度和方向,需要3个独立的地磁要素。常用的地磁要素有7个,即地磁场总强度F,水平强度H,垂直强度Z,X和Y分别为H的北向和东向分量,D和I分别为磁偏角和磁倾角。其中以磁偏角的观测历史为最早。在现代的地磁场观测中,地磁台一般只记录H,D,Z或X,Y,Z。

近地空间的地磁场,像一个均匀磁化球体的磁场,其强度在地面两极附近还不到1高斯,所以地磁场是非常弱的磁场。地磁场强度的单位过去通常采用伽马(γ),即1纳特斯拉。19xx年决定采用特斯拉作为国际测磁单位,1高斯=10^(-4)特斯拉(T),1伽马=10^(-9)特斯拉=1纳特斯拉(nT),简称纳特。地磁场虽然很弱,但却延伸到很远的空间,保护着地球上的

生物和人类,使之免受宇宙辐射的侵害。

地磁场包括基本磁场和变化磁场两个部分,它们在成因上完全不同。基本磁场是地磁场的主要部分,起源于地球内部,比较稳定,变化非常缓慢。变化磁场包括地磁场的各种短期变化,主要起源于地球外部,并且很微弱。

地球的基本磁场可分为偶极子磁场、非偶极子磁场和地磁异常几个组成部分。偶极子磁场是地磁场的基本成

地球核心的流体部分对地球磁场的影响

分,其强度约占地磁场总强度的90%,产生于地球液态外核内的电磁流体力学过程,即自激发电机效应。非偶极子磁场主要分布在亚洲东部、非洲西部、南大西洋和南印度洋等几个地域,平均强度约占地磁场的10%。地磁异常又分为区域异常和局部异常,与岩石和矿体的分布有关。

地球变化磁场可分为平静变化和干扰变化两大类型。平静变化主要是以一个太阳日为周期的太阳静日变化,其场源分布在电离层中。干扰变化包括磁暴、地磁亚暴、太阳扰日变化和地磁脉动等,场源是太阳粒子辐射同地磁场相互作用在磁层和电离层中产生的各种短暂的电流体系。磁暴是全球同时发生的强烈磁扰,持续时间约为1~3天,幅度可达10纳特。其他几种干扰变化主要分布在地球的极光区内。除外源场外,变化磁场还有内源场。内源场是由外源场在地球内部感应出来的电流所产生的。将高斯球谐分析用于变化磁场,可将这种内、外场区分开。根据变化磁场的内、外场相互关系,可以得出地球内部电导率的分布。这已成为地磁学的一个重要领域,叫做地球电磁感应。

地球变化磁场既和磁层、电离层的电磁过程相联系,又和地壳上地幔的电性结构有关,所以在空间物理学和固体地球物理学的研究中都具有重要意义。

模拟地球磁场

电脑模拟系统破解地球磁场南北颠倒之谜

美国《国家地理杂志》发表文章解释了地球磁场"南北颠倒"的原因。1845年德国数学家卡尔?高斯开始记录地球磁场数据,与那时相比,今天的磁场强度减弱了近10%左右。而且这种势头还将继续。

电脑模拟系统"助阵"科学家说,这种现象并不罕见。在过去的数十亿年中,地球磁场曾多次发生翻转,这可以在地球岩石中找到大量证据。而他们在最近几十年中发展的电脑模拟系统,可以很好地演示这个翻转过程。美国加州大学的地球科学和磁场专家加里?格拉兹迈尔说:"我们可以在岩石上看到翻转的情形,可是岩石不会告诉我们为什么。电脑模拟系统能说明这一切。"这一系统就是格拉兹迈尔和他的同事保尔?罗伯兹共同研发的。从地质记录来看,地球磁场平均大约每20万年翻转一次,不过时间也可能相差很大,并不固定,上一次磁场翻转是在78万年前。

专家认为,地球磁场来自地球深处的地心部分。固体的地心四周是处在熔解状的铁和镍液体

近日地空间的地球磁层图

。地心在金属液中的运动,产生了电流,形成了地球磁场。而该磁场屏蔽了宇宙射线,主要是太阳风暴对地球的袭击,保护了地球生命的延续。科学家发现,火山岩浆凝固时,其中的铁总是按磁场方向排列。专家把这一现象称为地球动力学,地球磁场是由地球动力支配的,他们根据这一理论发展的电脑模拟系统发现,地心周围的液体物质,总是处在不稳定状态,以非常缓慢的速度转动,一般大约每年移动一度。然而在受到某种干扰时,这个速度会变得越来越快,使原有的磁场偏离极地越来越远,最后发生南北极互换的现象。

美国约翰?霍普金斯大学的地球物理学家皮特?奥森正在严密关注地球磁场的变化。他说,随着时间的推移,我们能够追踪到它的轨迹。就像飓风预报一样,我们会知道翻转现象什么时候发生。加里?格拉兹迈尔安慰大家说:"这个现象曾发生过多次了,生命不会因此灭绝的。"新闻背景磁场颠倒将危及生物磁场颠倒将危及到生物。首先,许多依靠鉴别地球南北极而迁徙的动物将会"乱了方寸"。

几万年来,蜜蜂、鸽子、鲸鱼、鲑鱼、红龟、津巴布韦鼹鼠等动物一直依赖先天性的本能在磁场的指引下秋移春返,一旦磁场消失,它们的命运很难预测。而对于人类来说,最致命的打击莫过于直接暴露在强烈的紫外线辐射之下。届时,皮肤癌等各种灾难都将降临。[1] 相关资料

地球磁极变换不会造成灾难

大家都知道地球磁极要随着时间流逝而变换,南极变北极,北极变南极。而且两次变换之间的时间间隔不等,平均为2

活动太阳的磁场

5万年。

科学家发现,此前的一次变换发生在75万年前,因此他们预料,不久还会发生新的两极变换。这样就产生了一个问题:地球磁极变换会不会使地球磁场短时间消失,从而失去了防止宇宙带电粒子到达地球的能力,引起一些科幻电影所描述的严重自然灾害呢?

德国慕尼黑大学的赫拉德?勒施等人的研究发现,不会发生这样的灾难,而其中的拯救英雄就是太阳风。 赫拉德?勒施等人发现,由带电粒子组成的太阳风,将在瞬间建立起一个新磁场。

另外,由于太阳风和地球等离子层运动速度相差很大,太阳风将很快在距离地面350公里的高度建立起一个磁保护伞,这个磁保护伞的磁场强度大致与目前的低磁磁场强度一样。它们可以将宇宙中的带电粒子挡在地球大气层外,地球上的生物依然可以高枕无忧。

更多相关推荐:
高中物理分章知识点:电学综合

电学综合知识要点1基础知识对于电学综合问题状态分析往往是解题的第一步如对带电粒子在电场磁场中的运动和导线切割磁感线运动应分析其受力状态和运动状态对于直流电路的计算应首先分析其电路的连接状态对于电磁振荡通常需要分...

高中物理电学知识点总结

高中物理电学知识点总结作者钱耀辉高中物理甘肃天水物理一班评论数浏览数73833发表日期20xx0731163103一电场1两种电荷电荷守恒定律元电荷2库仑定律FkQ1Q2r2在真空中3电场强度EFq定义式计算式...

高中物理电学知识总结

物理电学知识总结1电路1电流的形成电荷的定向移动形成电流任何电荷的定向移动都会形成电流2电流的方向从电源正极流向负极3电源能提供持续电流或电压的装置4电源是把其他形式的能转化为电能如干电池是把化学能转化为电能发...

高中物理电学知识总结

高中物理电学知识总结第一单元库仑定律电场强度一电荷库仑定律1自然界存在两种电荷和2元电荷电荷量为161019C电荷叫3电荷守恒定律电荷既不能被它只能从一个物体转移到另一个物体或者从物体的一部分转移到另一部分4库...

高中物理电学知识点总结

高中物理电学知识点总结一.电场1.两种电荷、电荷守恒定律、元电荷:2.库仑定律:F=kQ1Q2/r(在真空中)3.电场强度:E=F/q(定义式、计算式)4.真空点(源)电荷形成的电场E=kQ/r5.匀强电场的场…

高中物理电学知识点总结

一电场基本规律2库仑定律1定律内容真空中两个静止点电荷之间的相互作用力与它们的电荷量的乘积成正比与它们的距离的平方成反比作用力的方向在它们的连线上2表达式k90109Nm2C2静电力常量3适用条件真空中静止的点...

高中物理电学知识总结

物理电学知识总结1电路1电流的形成电荷的定向移动形成电流任何电荷的定向移动都会形成电流2电流的方向从电源正极流向负极3电源能提供持续电流或电压的装置4电源是把其他形式的能转化为电能如干电池是把化学能转化为电能发...

高中物理电学知识点

电学包括电场稳恒电流磁场电磁感应和电磁波一重要概念电场强度E电场力F电势差U电势电容C电流强度I电动势E路端电压U电功W电功率P超导体R0分子电流假说磁感应强度B磁通量安培力F电磁感应现象感应电动势麦克斯韦电磁...

初中物理电学知识点汇总

一电荷1带了电荷摩擦过的物体有了吸引物体的轻小物体的性质我们就说物体带了电轻小物体指碎纸屑头发通草球灰尘轻质球等2使物体带电的方法定义用摩擦的方法使物体带电原因不同物质原子核束缚电子的本领不同摩擦起电实质电荷从...

高中物理基础知识 总结22 电学实验专题

高考物理知识点总结22电学实验专题测电动势和内阻1直接法外电路断开时用电压表测得的电压U为电动势EUE2通用方法AV法测要考虑表本身的电阻有内外接法单一组数据计算误差较大应该测出多组uI值最后算出平均值作图法处...

高中物理选修3-3知识点总结

第1课时分子动理论一要点分析1命题趋势本部分主要知识有分子热运动及内能在09年高考说明中本课时一共有五个考点分别是1物质是由大量分子组成的阿伏加德罗常数2用油膜法估测分子的大小实验探究3分子热运动布朗运动4分子...

初中物理光学知识点归纳

初中物理光学知识点归纳光的反射1光源能够发光的物体叫光源光源分类天然光源和人造光源太阳是最大的自然光源恒星可以发光是光源月亮和行星不是光源只是月亮反射太阳光而不是自身发光太阳恒星闪电照明的白炽灯霓虹灯发光二极管...

高中物理电学知识点总结(34篇)