单相桥式全控整流电路MATLAB仿真实验报告(上)~4EDA1

时间:2024.4.5

单相桥式全控整流电路MATLAB仿真

一、  单相桥式全控整流电路(电阻性负载)

1.         电路结构与工作原理

(1)           电路结构

如图1-1所示为典型单相桥式全控整流电路,共用了四个晶闸管,两只晶闸管接成共阳极,两只晶闸管接成共阴极,每一只晶闸管是一个桥臂,桥式整流电路的工作方式特点是整流元件必须成对以构成回路,负载为电阻性。

图1-1

(2)           工作原理

1)    在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。因此在0~α区间,4个晶闸管都不导通。假如4个晶闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。

2)    在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。

3)    在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。

4)    在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。

表1-1 各区间晶闸管的导通、负载电压和晶闸管端电压情况

2.          建模

图1-3 单相桥式全控整流电路(电阻性负载

3.          仿真结果分析

1)  α=30º,R=1Ω,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/600,phase delay(secs)2=1/600 +0.01;

图1-4α=30°单相双半波可控整流仿真结果(电阻性负载)

2)  α=30º,R=1Ω,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/300,phase delay(secs)2=1/300 +0.01;

                         

图1-5α=60°单相双半波可控整流仿真结果(电阻性负载)

3)  α=30º,R=1Ω,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/200,phase delay(secs)2=1/200 +0.01;

图1-6α=90°单相双半波可控整流仿真结果(电阻性负载)

4.小结

尽管整流电路的输入电压U2是交变的,但负载上正负两个半波内均有相同的电流流过,输出电压一个周期内脉动两次,由于桥式整流电路在正、负半周均能工作,变压器二次绕组正在正、负半周内均有大小相等、方向相反的电流流过,消除了变压器的电流磁化,提高了变压器的有效利用率。

二、 单相桥式全控整流电路(阻-感性负载)

1.电路结构与工作原理

(1)电路结构

阻-感性负载电路如图1-9所示

图1-9

(2)工作原理

1)在电压u2正半波的(0~α)区间。晶闸管VT1、VT4承受正向电压,但无触发脉冲,VT1、VT4处于关断状态。假设电路已经工作在稳定状态,则在0~α区间由于电感的作用,晶闸管VT2、VT3维持导通。

2)在u2正半波的(α~π)区间。在ωt=α时刻,触发晶闸管VT1、VT4使其导通,负载电流沿a→VT1→L→R→VT4→b→T的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。电压u2反向施加到晶闸管VT2、VT3上,使其承受反向电压而处于关断状态。

3)在电压u2负半波的(π~π+α)区间。当ωt=π时,电源电压自然过零,感应电势是晶闸管VT1、VT4继续导通。在电源电压负半波,晶闸管VT2、VT3承受正向电压,因无触发脉冲,VT2、VT3处于关断状态。

4)u2负半波的(π+α~2π)区间。在ωt=π+α时刻,触发晶闸管VT2、VT3使其导通,负载电流沿b→VT3→L→R→VT2→a→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(ud=-u2)和电流。此时电源电压反向施加到晶闸管VT1、VT4上,使其承受反向电压而关断。晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。

表1-2 各区间晶闸管的导通、负载电压和晶闸管端电压的情况

2.建模

图1-10单相双半波可控整流电路仿真模型(阻-感性负载)

3.仿真结果分析

1)  α=30º,R=1Ω,L=0.1H,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/600,phase delay(secs)2=1/600 +0.01;

图1-11α=30°单相双半波可控整流仿真结果(阻-感性负载时)

2)  α=60º,R=1Ω,L=0.1H,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/300,phase delay(secs)2=1/300 +0.01;

图1-11α=60°单相双半波可控整流仿真结果(阻-感性负载时)

3)  α=90º,R=1Ω,L=0.1H,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/200,phase delay(secs)2=1/200 +0.01;

图1-11α=90°单相双半波可控整流仿真结果(阻-感性负载时)

4.小结

与单相半波整流电路仿真波形相比较,输出的电压和电流波形频率都提高了一倍,而单个晶闸管的工作情况与半波整流电路一样,所以晶闸管的端电压也与半波电路一致。


第二篇:单相桥式全控整流电路MATLAB仿真实验报告(上)


单相桥式全控整流电路MATLAB仿真

一、  单相桥式全控整流电路(电阻性负载)

1.         电路结构与工作原理

(1)           电路结构

如图1-1所示为典型单相桥式全控整流电路,共用了四个晶闸管,两只晶闸管接成共阳极,两只晶闸管接成共阴极,每一只晶闸管是一个桥臂,桥式整流电路的工作方式特点是整流元件必须成对以构成回路,负载为电阻性。

图1-1

(2)           工作原理

1)    在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。因此在0~α区间,4个晶闸管都不导通。假如4个晶闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。

2)    在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。

3)    在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。

4)    在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。

表1-1 各区间晶闸管的导通、负载电压和晶闸管端电压情况

2.          建模

图1-3 单相桥式全控整流电路(电阻性负载

3.          仿真结果分析

1)  α=30º,R=1Ω,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/600,phase delay(secs)2=1/600 +0.01;

图1-4α=30°单相双半波可控整流仿真结果(电阻性负载)

2)  α=30º,R=1Ω,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/300,phase delay(secs)2=1/300 +0.01;

                         

图1-5α=60°单相双半波可控整流仿真结果(电阻性负载)

3)  α=30º,R=1Ω,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/200,phase delay(secs)2=1/200 +0.01;

图1-6α=90°单相双半波可控整流仿真结果(电阻性负载)

4.小结

尽管整流电路的输入电压U2是交变的,但负载上正负两个半波内均有相同的电流流过,输出电压一个周期内脉动两次,由于桥式整流电路在正、负半周均能工作,变压器二次绕组正在正、负半周内均有大小相等、方向相反的电流流过,消除了变压器的电流磁化,提高了变压器的有效利用率。

二、 单相桥式全控整流电路(阻-感性负载)

1.电路结构与工作原理

(1)电路结构

阻-感性负载电路如图1-9所示

图1-9

(2)工作原理

1)在电压u2正半波的(0~α)区间。晶闸管VT1、VT4承受正向电压,但无触发脉冲,VT1、VT4处于关断状态。假设电路已经工作在稳定状态,则在0~α区间由于电感的作用,晶闸管VT2、VT3维持导通。

2)在u2正半波的(α~π)区间。在ωt=α时刻,触发晶闸管VT1、VT4使其导通,负载电流沿a→VT1→L→R→VT4→b→T的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。电压u2反向施加到晶闸管VT2、VT3上,使其承受反向电压而处于关断状态。

3)在电压u2负半波的(π~π+α)区间。当ωt=π时,电源电压自然过零,感应电势是晶闸管VT1、VT4继续导通。在电源电压负半波,晶闸管VT2、VT3承受正向电压,因无触发脉冲,VT2、VT3处于关断状态。

4)u2负半波的(π+α~2π)区间。在ωt=π+α时刻,触发晶闸管VT2、VT3使其导通,负载电流沿b→VT3→L→R→VT2→a→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(ud=-u2)和电流。此时电源电压反向施加到晶闸管VT1、VT4上,使其承受反向电压而关断。晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。

表1-2 各区间晶闸管的导通、负载电压和晶闸管端电压的情况

2.建模

图1-10单相双半波可控整流电路仿真模型(阻-感性负载)

3.仿真结果分析

1)  α=30º,R=1Ω,L=0.1H,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/600,phase delay(secs)2=1/600 +0.01;

图1-11α=30°单相双半波可控整流仿真结果(阻-感性负载时)

2)  α=60º,R=1Ω,L=0.1H,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/300,phase delay(secs)2=1/300 +0.01;

图1-11α=60°单相双半波可控整流仿真结果(阻-感性负载时)

3)  α=90º,R=1Ω,L=0.1H,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/200,phase delay(secs)2=1/200 +0.01;

图1-11α=90°单相双半波可控整流仿真结果(阻-感性负载时)

4.小结

与单相半波整流电路仿真波形相比较,输出的电压和电流波形频率都提高了一倍,而单个晶闸管的工作情况与半波整流电路一样,所以晶闸管的端电压也与半波电路一致。

更多相关推荐:
单相桥式全控整流电路实验

南昌大学实验报告学生姓名学号专业班级实验类型验证综合设计创新实验日期实验成绩实验五单相桥式全控整流电路实验一实验目的1了解单相桥式全控整流电路的工作原理2研究单相桥式全控整流电路在电阻负载电阻电感性负载及反电势...

电力电子技术报告(2),实验二 单相桥式全控整流电路实验

实验二单相桥式全控整流电路实验一实验目的1了解单相桥式全控整流电路的工作原理2研究单相桥式全控整流电路在电阻负载电阻电感性负载及反电势负载时的工作3熟悉NMCL05E组件二实验线路及原理参见图21三实验设备及仪...

单相桥式全控整流电路实验

实验二单相桥式全控整流电路实验一实验目的1加深理解单相桥式全控整流电路的工作原理2了解KC系列集成触发器的调整方法和各电的波形二实验设备1主控制屏DJK012DJK03触发电路组件挂箱3双臂滑线电阻器4DJK0...

实验二 单相桥式全控整流电路实验 电力电子技术实验

一实验目的1了解单相桥式全控整流电路的工作原理2研究单相桥式全控整流电路在电阻负载电阻电感性负载及反电势负载时的工作3熟悉NMCL05E组件或NMCL36组件二实验线路及原理参见图13三实验内容1单相桥式全控整...

1单相桥式全控整流及有源逆变电路实验实验报告

实验报告课程名称现代电力电子技术实验项目单相桥式全控整流及有源逆变电路实验实验时间20xx1019实验班级总份数指导教师二年月日朱鹰屏广东技术师范学院实验报告学院自动化学院姓名电气工程及其自专业班级动化学号组别...

单相桥式全控整流电路实验

单相桥式全控整流电路实验一实验目的1了解单相桥式全控整流电路的工作原理2研究相桥式全控整流电路在电阻负载电感性负载的工作二实验线路及工作原理图1单相全控桥式整流器图和工作波形电阻性负载2单相全控桥式整流器图和工...

实验三 单相桥式全控整流电路实验

实验三单相桥式全控整流电路实验一实验目的1加深理解单相桥式全控整流2研究单相桥式变流电路整流的全过程二实验所需挂件及附件图33为单相桥式整流带电阻电感性负载其输出负载R用D42三相可调电阻器将两个900接成并联...

实验一 单相桥式半控整流电路实验

实验一单相桥式半控整流电路实验一实验目的1加深对单相桥式半控整流电路带电阻性电阻电感性负载时各工作情况的理解2了解续流二极管在单相桥式半控整流电路中的作用学会对实验中出现的问题加以分析和解决二实验主要仪器与设备...

单相桥式全控整流电路MATLAB仿真实验报告(上)

单相桥式全控整流电路MATLAB仿真一单相桥式全控整流电路电阻性负载1电路结构与工作原理1电路结构如图11所示为典型单相桥式全控整流电路共用了四个晶闸管两只晶闸管接成共阳极两只晶闸管接成共阴极每一只晶闸管是一个...

实验三 单相桥式全控整流电路实验

实验三单相桥式全控整流电路实验1实验目的1加深理解单相桥式全控整流电路的工作原理2研究单相桥式整流电路整流的全过程2预习要求1阅读教材中有关单相桥式全控整流电路的相关内容3实验器材1DJDK1型电力电子技术及电...

实验五 单相桥式全控整流电路实验

实验五单相桥式全控整流电路实验一实验目的1了解单相桥式全控整流电路的工作原理2研究单相桥式全控整流电路在电阻负载电阻电感性负载及反电势负载时的工作3熟悉MCL05锯齿波触发电路的工作二实验线路及原理参见图47三...

单相桥式整流电路课程设计报告

电力电子课程设计报告目录一设计任务说明3二设计方案的比较4三单元电路的设计和主要元器件说明6四主电路的原理分析9五各主要元器件的选择12六驱动电路设计14七保护电路16八元器件清单21九设计总结22十参考文献2...

单相桥式全控整流电路实验报告(32篇)