1单相桥式全控整流及有源逆变电路实验实验报告

时间:2024.4.20

实 验 报 告

     

              自动化   学院  电力电子  实验室

二〇〇   年    月     日


广东技术师范学院实验报告

实验 (一)  项目名称:单相桥式全控整流及有源逆变电路实验

1.   实验目的和要求

(1)加深理解单相桥式全控整流及逆变电路的工作原理。

(2)研究单相桥式变流电路整流的全过程。

(3)研究单相桥式变流电路逆变的全过程,掌握实现有源逆变的条件。

(4)掌握产生逆变颠覆的原因及预防方法。

2.   实验原理

图3-8为单相桥式整流带电阻电感性负载,其输出负载R用D42三相可调电阻器,将两个900Ω接成并联形式,电抗Ld用DJK02面板上的700mH,直流电压、电流表均在DJK02面板上。触发电 路采用DJK03-1组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。

图3-9为单相桥式有源逆变原理图,三相电源经三相不控整流,得到一个上负下正的直流电 源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。“三相不控整流” 是DJK10上的一个模块,其“心式变压器”在此做为升压变压器用,从晶闸管逆变出的电压接“心 式变压器”的中压端Am、Bum,返回电网的电压从其高压端A、B输出,为了避免输出的逆变电压过 高而损坏心式变压器,故将变压器接成Y/Y接法。图中的电阻R、电抗Ld和触发电路与整流所用相同。有关实现有源逆变的必要条件等内容可参见电力电子技术教材的有关内容。

3.   主要仪器设备

4.   实验内容及步骤

(1)单相桥式全控整流电路带电阻电感负载。

(2)单相桥式有源逆变电路带电阻电感负载。

(3)有源逆变电路逆变颠覆现象的观察。

实验步骤:

(1)触发电路的调试

将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根导线 将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用示波器观察锯齿波同步触发电路各观察孔的电压波形。 将控制电压Cut调至零(将电位器RP2顺时针旋到底),观察同步电压信号和“6”点U6的波形,调节偏移电压UBS(即调RP3电位器),使α=180°。 将锯齿波触发电路的输出脉冲端分别接至全控桥中相应晶闸管的门极和阴极,注意不要把相序接反了,否则无法进行整流和逆变。将DJKO2上的正桥和反桥触发脉冲开关都打到“断”的 位置,并使Ulf和Ulf悬空,确保晶闸管不被误触发。

图3-8 单相桥式整流实验原理图

图3-9 单相桥式有源逆变电路实验原理图

(2)单相桥式全控整流 按图3-8接线,将电阻器放在最大阻值处,按下“启动”按钮,保持UBS偏移电压不变(即RP3固定),逐渐增加Cut(调节RP2),在α=0°、30°、60°、90°、120°时,用示波器观察、记 录整流电压Due和晶闸管两端电压Ute的波形,并记录电源电压U2和负载电压Due的数值于下表中。

计算公式:Due=O.9U2(1+cosα)/2

(3)单相桥式有源逆变电路实验 按图3-9接线,将电阻器放在最大阻值处,按下“启动”按钮,保持UBS偏移电压不变(即RP3固定),逐渐增加Cut(调节RP2),在β=30°、60°、90°时,观察、记录逆

变电流Id和晶闸管两端电压Ute的波形,并记录负载电压Due的数值于下表中。

调节Cut,使α=150°,观察Due波形。突然关断触发脉冲(可将触发信号拆去),用双踪慢扫 描示波器观察逆变颠覆现象,记录逆变颠覆时的Due波形。

5.   实验数据记录和处理

6.   实验结果与分析

(1)画出α=30°、60°、90°、120°时Ud和UVT的波形。

α=30°Ud的波形

 

α=60°Ud的波形

α=90°Ud的波形

α=120°Ud的波形

         

                    

α=30°Uvt的波形

  

α=60°Uvt的波形

α=90°Uvt的波形

α=120°Uvt的波形

                    

7.   问题与讨论

分析逆变颠覆的原因及逆变颠覆后会产生的后果。

(1)触发电路工作不可靠。如个别相失去脉冲或移相角过范围。

(2)晶闸管本身性能不好。如不能正常导通或阻断。

(3)交流电源故障。如突然断电,缺相或电压过低等。

(4)换相的裕量角过小。主要是对换相重叠角估计不足,使换相时间小于晶闸管的关断时间。


第二篇:实验三、三相桥式全控整流及有源逆变电路实验


实验三、三相桥式全控整流及有源逆变电路实验

一、实验目的

(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。

(3)了解KC系列集成触发器的调整方法和各点的波形。

二、实验线路的构成及原理

(1)DDS02主电路挂箱配置原理

DDS02挂箱包括脉冲和熔断丝指示、晶闸管(I组桥、Ⅱ组桥)电路、电抗器等内容。 脉冲有无指示为方便实验中判断对应晶闸管上门阴极上是否正常,若正常,则指示灯亮,否则则不亮;同样熔断丝指示也是同理。主要分I组桥和Ⅱ组桥分别指示。

晶闸管电路装有12只晶闸管、6只整流二极管。12只晶闸管分两组晶闸管变流桥,其中VTl~VT6为正组桥(I组桥),由KP5-8晶闸管元件构成,一般不可逆、可逆系统的正桥、交-直-交变频器的整流部分均使用正组元件;由VT1ˊ~VT6ˊ组成反组桥(Ⅱ组桥),元件为KP5-12晶闸管,可逆系统的反桥、交-直-交变频器的逆变部分使用反组元件;同时还配置了6只整流二极管VDl~VD6,可构成不可控整流桥作为直流电源,元件的型号为KZ5-10。所有这些功率半导体元件均配置有阻容吸收、熔丝保护,电源侧、直流环节、电机侧均配置有压敏电阻或阻容吸收等过电压保护装置。

电抗器为平波电抗器L,共有4档电感值,分别为50mH、100mH、200mH、700mH,1200 mH可根据实验需要选择电感值。

续流二极管为桥式整流实验时电路续流用,型号为KZ5-10;另外挂箱还配有一组阻容吸收电路。

(2)DDS03控制电路挂箱配置原理

DDS03挂箱包括三相触发电路及功放电路、FBC+FA(电流反馈与过流保护)、G(给定器)等内容。

面板上部为同步变压器,其连线已在内部接好,连接组为△/Y-1.可在“同步电源观察孔”观察同步电源的相位。

三相触发电路(GT)及功放电路(AP)包括有GTF正组(I组)触发脉冲装置和GTR反组(Ⅱ组)触发脉冲装置,分别通过开关连至VF正组晶闸管和VR反组晶闸管的门极、阴极。按钮开关按向“接通”时,晶闸管上接有触发脉冲;开关按向“断开”时,晶闸管上没有触发脉冲。正、反组的脉冲功放电路分别由面板下面的Ublf和Ublr控制,将Ublf、Ublr接地,则相应的脉冲功放级开放,晶闸管上有脉冲;Ublf 、Ublr悬空,则相应的晶闸管无脉冲。开关上方有“单脉冲观察孔”和“双脉冲观察孔”,当“触发电路脉冲指示”为“窄”时,在此两组观察孔中观察到的分别是单脉冲和互差为60°的双脉冲;如“触发电路脉冲指示”为“宽”时,则观察到的是后沿固定、前沿可变的宽脉冲链,这两组观察孔一般只观察正组变流桥的触发脉冲。

注意:三相触发脉冲要加到两组晶闸管上,必须用扁平线把DK01C和DK01D连接一起。

(3)电流反馈与过流保护

电流反馈与过流保护(FBC+FA)有两种功能,一是检测电流反馈信号;二是发出过流信号,其原理图如图3-1所示。

(a)电流变换器(FBC)的输入端TAl、TA2、T A3来自电流互感器的输出端,反映负载电流大小的电压信号经三相桥式整流电路整流后加至RP1、RP2及R1、R2、VD7组成的3条支路上,其中:

① R2与VD7并联后再与R1串联,在其中点取零电流检测信号;

② 将RP1的可动触点输出作为电流反馈信号,反馈强度由RP1进行调节;

③ 将RP2可动触点与过流保护电路相连,输出过流信号,RP2可调节过流动作电流的大小。 (b)当主电路电流超过某一数值后,由RP2上取得的过流信号电压超过稳压管VSTl的稳压值,使三极管VTl导通,从而使继电器K动作,关闭主电路电源开关,并使发光二极管发亮,提醒操作者实验装置己过流跳闸,调节RP2的动触点,可得到不同数值的过电流倍数。

过流时,VT2由导通变为截止,在集电极输出一个高电平至电流调节器(ACR)的输入端,作为推β信号。

DDS01上的复位按钮可以解除告警自锁记忆的,当过流动作后,如过流故障已经排除,则须按下复位按钮以解除记忆,恢复正常工作。

(4) 给定器(G)的原理

给定器(G)的原理如图3-2所示。电压给定器由两个电位器RP1、RP2及两个钮子开关SAl 、SA2组成,SAl为正负极性转换开关,输出正负电压的大小分别由RP1、RP2来调节,其最大输出电压为土12V,SA2为输出控制开关,输出显示采用数字仪表显示。

元件RP1、RP2、SAl和SA2均安装在组件挂箱的面板上。

(5)实验线路原理

实验三三相桥式全控整流及有源逆变电路实验

实验三三相桥式全控整流及有源逆变电路实验

实验线路如图4-6所示。主电路由三相全控整流电路及作为逆变直流电源的三相不控整流电路组成,触发电路为DDS03中的集成触发电路,由KC04、KC41、KC42等集成芯片组成,可输出经高频调制后的双窄脉冲链。

集成触发电路的原理可参考有关内容(电路图见附录),三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。

三、实验内容

(1)三相桥式全控整流电路带大电感负载;

(2)三相桥式有源逆变电路;

(3)观察整流或有源逆变状态下,模拟电路故障现象时的各电压波形。

四、实验设备

(1)主控制屏DDS01;

(2)DDS02组件挂箱;

(3)DDS03组件挂箱;

(4)电阻箱DT20;

(5)双踪示波器;

(6)数字式万用表。

五、预习要求

(1)阅读电力电子技术教材中有关三相桥式全控整流电路的有关内容,弄清三相桥式全控整流电路带大电感负载时的工作原理;

(2)阅读教材中有关有源逆变电路的有关内容,掌握实现有源逆变的基本条件;

(3)学习有关集成触发电路的内容,掌握该触发电路的工作原理。

六、思考题

实验三三相桥式全控整流及有源逆变电路实验

(1)如何解决主电路和触发电路的同步问题?在本实验中,主电路三相电源的相序能任意确定吗?

采用宽脉冲触发或双脉冲触发发式,不能任意确定。

(2)在本实验中,在整流向逆变切换时对α角有什么要求?为什么?

α>90°,因为要实现逆变,需要一反向的直流电势源,只有α大于90°时,cosα<0,Ud才会是负的。

七、实验方法

(1)挂箱DDS02和DDS03的调试

a、 将挂箱DDS02和DDS03接到主屏DDS01上,打开DDS03开关,并将触发电路脉

冲指示:"窄"

b、 将示波器探头接至"双脉冲观察孔"和"锯齿波观察孔",观察6个触发脉冲,应使其间

隔均匀,相互间隔60°。

c、 将给定器G的输出端Ug接至移相控制电压Uct端,调节偏移电压电位器RP,使Uct=0

时(可直接接地,以保证输入为零),α=150°,此时的触发脉冲波形如图4-7所示(a 相锯齿波与Ug1脉冲的相位关系)。

实验三三相桥式全控整流及有源逆变电路实验

d、将DDS03面板上的Ublf(当三相桥式全控变流电路使用DDS02中I组晶闸管VT1~VT6时)接地,将I组桥触发脉冲的6个开关按到“接通”,用示波器观察晶闸管的门极与阴极的触发脉冲是否正常。注意要用专用连接线将DDS02和DDS03连接起来。

实验三三相桥式全控整流及有源逆变电路实验

2)三相桥式全控整流电路

a、按图4-6接线,将开关“S”拨向左边的短接线端,给定器上的“正给定”输出为零(逆时针旋到底);合上主电路开关,调节给定电位器,增加移相电压,使α角在30°~90°范围内调节(α角度可由晶闸管两端电压UT的波形来确定),同时,根据需要不断调整负载电阻Rd,使得负载电流Id保持在0.3~0.4A(注意Id不得超过0.4A)。用示波器观察并记录α=30°,60°,90°时的整流电压ud和晶闸管两端电压uT的波形,并记录相应的U

实验三三相桥式全控整流及有源逆变电路实验

、U数值于下表中。

实验三三相桥式全控整流及有源逆变电路实验

实验三三相桥式全控整流及有源逆变电路实验

计算公式:Ud=2.34U2cosa。 b、模拟故障现象

当α=60°时,将示波器所观察的晶闸管的触发脉冲按钮开关按向“断开”位置,模拟晶闸管失去触发脉冲的故障,观察并记录这时的ud、uT的变化情况。

α=60°时正常

α=60°时 1号故障

(3)三相桥式有源逆变电路

断开主电源开关后,将开关"S"拨向右边的不控整流桥端。调节给定电位器逆时针到底,即使给定器输出为零;合上电源开关,观察并记录α=90°、120°、150°时电路中ud、uT波形,并记录相应的Ud、Uct数值于上表中。 八、实验报告

(1)画出电路的移相特性Ud=f (α);

(2)画出触发电路的传输特性α=f(Uct);

(3)画出α=30°、60°、90°、120°、150°时的整流电压ud和晶闸管两端电压uT的波

形;

实验三三相桥式全控整流及有源逆变电路实验

实验三三相桥式全控整流及有源逆变电路实验

实验三三相桥式全控整流及有源逆变电路实验

实验三三相桥式全控整流及有源逆变电路实验

(4)简单分析模拟故障现象。

当1号出故障的时候,也就是脉冲丢失,导致晶闸管不能正常换向,保持继续导通,直到下半个周期,是电源瞬时电压和电动机电动势顺向串接,造成短路

九、注意事项

(1)双踪示波器两个探头的地线端应接在电路的同电位点,以防通过两探头的地线造成被

测量电路短路事故。示波器探头地线与外壳相连,使用时应注意安全。

(2)为了防止过流,能顺利地完成从整流到逆变的过程,应先将α角调节到大于90°、接近

120°的位置,然后将负载电阻Rd调至最大值位置;

(3)三相不控整流桥的输入端可加接三相自耦调压器,以降低逆变用直流电源的电压值。

十、实验心得:

由于此实验的实验设备问题,导致操作的不便,不过通过此实验,我们观察到三相桥式整流的波形和有源逆变的波形,了解到有源逆变的条件为α角要大于90°,90°之前为整流,90°之后为三相有源逆变,分析了在60°时,出故障的波形

更多相关推荐:
单相桥式全控整流电路实验

南昌大学实验报告学生姓名学号专业班级实验类型验证综合设计创新实验日期实验成绩实验五单相桥式全控整流电路实验一实验目的1了解单相桥式全控整流电路的工作原理2研究单相桥式全控整流电路在电阻负载电阻电感性负载及反电势...

电力电子技术报告(2),实验二 单相桥式全控整流电路实验

实验二单相桥式全控整流电路实验一实验目的1了解单相桥式全控整流电路的工作原理2研究单相桥式全控整流电路在电阻负载电阻电感性负载及反电势负载时的工作3熟悉NMCL05E组件二实验线路及原理参见图21三实验设备及仪...

单相桥式全控整流电路实验

实验二单相桥式全控整流电路实验一实验目的1加深理解单相桥式全控整流电路的工作原理2了解KC系列集成触发器的调整方法和各电的波形二实验设备1主控制屏DJK012DJK03触发电路组件挂箱3双臂滑线电阻器4DJK0...

实验二 单相桥式全控整流电路实验 电力电子技术实验

一实验目的1了解单相桥式全控整流电路的工作原理2研究单相桥式全控整流电路在电阻负载电阻电感性负载及反电势负载时的工作3熟悉NMCL05E组件或NMCL36组件二实验线路及原理参见图13三实验内容1单相桥式全控整...

单相桥式全控整流电路实验

单相桥式全控整流电路实验一实验目的1了解单相桥式全控整流电路的工作原理2研究相桥式全控整流电路在电阻负载电感性负载的工作二实验线路及工作原理图1单相全控桥式整流器图和工作波形电阻性负载2单相全控桥式整流器图和工...

实验三 单相桥式全控整流电路实验

实验三单相桥式全控整流电路实验一实验目的1加深理解单相桥式全控整流2研究单相桥式变流电路整流的全过程二实验所需挂件及附件图33为单相桥式整流带电阻电感性负载其输出负载R用D42三相可调电阻器将两个900接成并联...

作业-单相桥式全控整流电路实验-电力电子技术-深圳大学-自动化

深圳大学实验报告课程名称电力电子技术实验项目名称单相桥式全控整流电路学院机电学院专业自动化指导教师费跃农报告人学号班级实验时间实验报告提交时间教务部制一实验目的验证用matlab的simulink仿真的模拟电路...

实验六 单相桥式全控整流及有源逆变电路实验V2.1版

实验六单相桥式全控整流及有源逆变电路实验一实验目的1加深理解单相桥式全控整流及逆变电路的工作原理2研究单相桥式变流电路整流的全过程3研究单相桥式变流电路逆变的全过程掌握实现有源逆变的条件4掌握产生逆变颠覆的原因...

单相桥式全控整流电路实验 冷

南昌大学实验报告学生姓名学号专业班级实验类型验证综合设计创新实验日期实验成绩实验五单相桥式全控整流电路实验一实验目的1了解单相桥式全控整流电路的工作原理2研究单相桥式全控整流电路在电阻负载电阻电感性负载及反电势...

晶体管触发电路及单相桥式全控整流电路实验报告

锯齿波同步移相触发实验一实验目的1加深理解锯齿波同步移相触发电路的工作原理及各元件的作用2掌握锯齿波同步触发电路的调试方法二实验内容1锯齿波同步触发电路的调试2锯齿波同步触发电路各点波形观察分析三实验线路及原理...

电力电子技术报告(4) ,实验四 三相桥式全控整流及有源逆变电路实验

实验四三相桥式全控整流及有源逆变电路实验三相桥式全控整流因仪器设备损坏未做一实验目的1熟悉NMCL33组件2熟悉三相桥式全控整流及有源逆变电路的接线及工作原理二实验线路及原理主电路由三相全控变流电路及作为逆变直...

实验三、三相桥式全控整流及有源逆变电路实验

实验三三相桥式全控整流及有源逆变电路实验一实验目的1加深理解三相桥式全控整流及有源逆变电路的工作原理3了解KC系列集成触发器的调整方法和各点的波形二实验线路的构成及原理1DDS02主电路挂箱配置原理DDS02挂...

单相桥式全控整流电路实验报告(32篇)