Comment on the lottery

ʱ¼ä£º2024.4.8

Comment on ¡°the lottery¡±

Great shock and deep thoughts are irrigated into my mind as soon as I finished reading the novel. I realized the tremendous power of tradition or custom. I believe that everybody shouldn¡¯t follow the traditions without any suspicion. And it¡¯s high time that people possess the ability of critical thinking.

Just as the old saying goes: ¡±Evil is terrible, but what is more terrible is the unawareness of evil¡±. In the novel, the villagers would sentence a person to death by lottery every year. After the result of the lottery, all the villagers would throw stones on the ¡°lucky dog¡± till death. What shocks me greatly is that it has been a illogical tradition for over 70 years but all the villagers just follow it naturally. When they finished the ritual of lottery, they even went back to work immediately, like nothing had ever happened. What is more ironic is that a villager has thought of a way to improve the tradition rather than questioning its rationality. The story reminds me of the novels written by Lu Xun, a famous Chinese writer. He depicted a scene of sackless and typical ¡°spectators¡± Chinese people during the period of the Republic of China. The two novels have similar ideas. Evil traditions can have terrible power that would destroy a civilization if all the people are stupid and just follow the custom without any suspicion.

Therefore, it¡¯s vital that people should learn to think critically. It¡¯s rather significant for today¡¯s people. All the people should possess the ability of critical thinking nowadays. In the Age of Information, we would have access to tons of information every day. However, if we cannot judge and eliminate the bad and irrational ones, or just follow the traditions or what others do without thinking, we would be bound to be harmed greatly at length.

In general, everyone should think twice before acting. And bad tradition can do great harm to us if we don¡¯t have the spirit of suspicion. Only in this way can we avoid this sad story from happening in our real life.


µÚ¶þƪ£ºThe Lottery Preparation


8

9

9

1

g

u

A

4

]

O

L

.

th

a

m

[

1

v

2

1

8

8

9

/

tha

m

:v

i

Xr

a[submittedtotheAnnalsofPureandAppliedLogic]TheLotteryPreparationJoelDavidHamkinsKobeUniversityandTheCityUniversityofNewYorkAbstract.Thelotterypreparation,anewgeneralkindofLaverpreparation,worksuniformlywithsupercompactcardinals,stronglycompactcardinals,strongcardinals,measurablecardinals,orwhathaveyou.AndliketheLaverprepa-ration,thelotterypreparationmakesthesecardinalsindestructiblebyvariouskindsoffurtherforcing.Asupercompactcardinal¦Ê,forexample,becomesfullyindestructibleby<¦Ê-directedclosedforcing;astrongcardinal¦Êbecomesinde-structibleby¡Ü¦Ê-strategicallyclosedforcing;andastronglycompactcardinal¦Êbecomesindestructibleby,amongothers,theforcingtoaddaCohensubsetto¦Ê,theforcingtoshootaclubC?¦ÊavoidingthemeasurablecardinalsandtheforcingtoaddvariouslongPrikrysequences.Thelotterypreparationworksbestwhenperformedafterfastfunctionforcing,whichaddsanewcompletelygeneralkindofLaverfunctionforanylargecardinal,therebyfreeingtheLaverfunctionconceptfromthesupercompactcardinalcontext.TheLaverpreparation[Lav78],whichspectacularlymakesanysupercompactcardi-nal¦Êindestructibleby<¦Ê-directedclosedforcing,haslongbeenanindispensibletoolandrecognizedasanimportantmilestoneinlargecardinalsettheory.Istheresuchapreparationfortheotherlargecardinals?TheLaverpreparationdoesnotseemtoworkwithstronglycompactandothercardinals.Whilestrongcardinalsaresuccessfullytreatedin[GitShl89],thefundamentalliftingtoolscurrentlyavailablefailoutrightlywhenappliedtostronglycompactnon-supercompactcardinals.Thetechnologyhassimplynotbeenavailabletomakestronglycompactcardinalsevenpartlyindestructible.Theextentofourignoranceismadestrikinglyplainbythe

factthatthefollowingquestionhasremainedopen:

2

Question.Cananystronglycompactcardinal¦ÊbemadeindestructiblebytheforcingAdd(¦Ê,1)whichadds,byinitialsegments,aCohensubsetto¦Ê?

InthispaperIprovideanewtechnologytoanswertheabovequestion,andtoansweritthewaythatweallhopeditwouldbeanswered:anystronglycompactcardinal¦ÊcanbemadeindestructiblebyAdd(¦Ê,1)andmore.AndthetechniqueislimitedtoneitherstronglycompactcardinalsnortheparticularposetAdd(¦Ê,1).Speci?cally,Ipresentherethelotterypreparation,anewkindofLaverpreparation,whichworksuniformlywithstronglycompactcardinals,supercompactcardinals,measurablecardinals,strongcardinals,orwhathaveyou,andmakesthemallin-destructiblebyavarietyofforcingnotions.

MainLotteryPreparationTheorem.Thelotterypreparationmakesavarietyoflargecardinalsindestructiblebyvariousforcingnotions.Speci?cally:

1.Thelotterypreparationofasupercompactcardinal¦Êmakesthesupercompact-nessof¦Êindestructiblebyany<¦Ê-directedclosedforcing.

2.Thelotterypreparationofastronglycompactcardinal¦Êmakesthestrongcompactnessof¦Êindestructibleby,amongothers,theforcingAdd(¦Ê,1)whichaddsaCohensubsetto¦Ê,theforcingwhichshootsaclubC?¦ÊavoidingthemeasurablecardinalsandtheforcingwhichaddscertainlongPrikrysequences.

3.Thelotterypreparationofastrongcardinal¦Êsatisfying2¦Ê=¦Ê+makesthestrongnessof¦Êindestructibleby,amongothers,any¡Ü¦Ê-strategicallyclosedforcingandbyAdd(¦Ê,1).

4.Withadashofthegch,level-by-levelresultsholdforpartiallysupercompactandpartiallystrongcardinals.

Theprecisedetailsareinsectionfour.Thelotterypreparation,whichisde?ned

.relativetoafunctionf..¦Ê¡ú¦Ê,worksbestwhenthevaluesofj(f)(¦Ê)canbemade

largeforthedesiredkindoflargecardinalembedding.Sincefastfunctionforcingaddsagenericfunctionfforwhichthevaluesofj(f)(¦Ê)canbealmostarbitrarilyspeci?ed,thelotterypreparationworksespeciallywellwhenperformedafterfastfunctionforcingandde?nedrelativetothisgenericfastfunction.AninterestingrelatedresultisthefactthatfastfunctionforcingaddsanewcompletelygeneralkindofLaverfunction:

3

GeneralizedLaverFunctionTheorem.Afterfastfunctionforcingthereisa.function?..¦Ê¡ú(V[f])¦Êsuchthatforanyembeddingj:V[f]¡úM[j(f)]withcriticalpoint¦Ê(whetherinternalorexternal)andanyzinH(¦Ë+)M[j(f)]where¦Ë=j(f)(¦Ê)thereisanotherembeddingj?:V[f]¡úM[j?(f)]suchthat:

1.j?(?)(¦Ê)=z,

2.M[j?(f)]=M[j(f)],

3.j??V=j?V,and

4.Ifjistheultrapowerbyastandardmeasure¦ÇconcentratingonasetinV,thenj?istheultrapowerbyameasure¦Ç?concentratingonthesamesetandmoreover¦Ç?¡ÉV=¦Ç¡ÉVand[id]¦Ç?=[id]¦Ç.

Thestandardmeasuresinclude,amongmanyothers,allnormalmeasures,allsupercompactnessmeasuresand,uptoisomorphism,allstrongcompactnessmeasures.Therestrictionthatz¡ÊH(¦Ë+)isnotonerousbecausethevalueofj(f)(¦Ê)isamazinglymutable,andcanbealmostarbitrarilyspeci?ed:foranyembeddingj:V[f]¡úM[j(f)]andany¦Á<j(¦Ê)thereisanotherembeddingj?:V[f]¡úM[j?(f)]suchthatj?(f)(¦Ê)=¦Á,j??V=j?VandM[j?(f)]?M[j(f)].Forthesereasons,thegenericLaverfunction?canbee?ectivelyusedwithalmostanykindoflargecardinalembeddingmuchasaLaverfunctionisusedwithasuper-compactnessembedding.Inthisway,fastfunctionforcingfreestheLaverfunctionconceptfromthesupercompactcardinalcontext.

Goingbackatleastto[Men74],whereseveralpreservationtheoremsareproved,settheoristshavewonderedaboutthepossibilityofmakingstronglycompactandothercardinalsindestructiblebyforcing;perhapsthelotterypreparationprovidesananswer.Thelargerquestion,though,ofpreciselyhowindestructiblethesecardi-nalscanbemadeisstillverymuchopen.ProbablythelotterypreparationprovidesmoreindestructibilitythanIwillidentifyinthispaper.Itisnaturaltohopethatanystronglycompactcardinalcanbemadefullyindestructible,perhapsbytheusualsortofreverseEastonpreparation,aniterationofclosedforcing.Thesadfact,however,withwhichIconcludethispaperisthatsuchapreparationissimplyimpossible.

ImpossibilityTheorem.Bypreparatoryforcingwhichadmitsagapbelow¦Ê(suchasanypreparationnaivelyresemblingtheLaverpreparation),ifthemeasur-abilityof¦Êcanbemadeindestructibleby<¦Ê-directedclosedforcing,then¦Êmusthavebeensupercompactinthegroundmodel.

Thedetailsforthistheoremareinsection?ve.

¡ì1FastFunctionForcing4

Letmequicklyexplainthestructureofthispaper.First,IintroduceWoodin¡¯sfastfunctionforcing,showinginsectiononethatitpreservesavarietyoflargecar-dinalsandinsectiontwothatitaddsanewgeneralkindofLaverfunction.Next,Iintroducethelotterypreparation,provinginsectionthreethatitpreservesavarietyoflargecardinalsandinsectionfourthatitmakesthesecardinalsindestructiblebyvariousfurtherforcing.Lastly,insection?veIprovetheImpossibilityTheorem..Throughout,Itrytousestandardnotation,andarguefreelyinZFC.Byp..A¡úB,ImeanthatpisapartialfunctionfromAtoB.AndifpisaconditionintheposetP,thenbyP?pImeanthesub-poset{q¡ÊP|q¡Üp}.Myfocusisalmostalwayson¦Ê,thelargecardinalathand,andsoinvariably,thecriticalpointofwhateverembeddingIamconcernedwithwillbedenotedby¦Ê.

¡ì1FastFunctionForcing

Fastfunctionforcing,inventedbyW.HughWoodin(withaninfantformdueto.RobertSolovay),allowsonetoaddafunctionf..¦Ê¡ú¦Êsuchthatthevalueofj(f)(¦Ê)canbealmostarbitrarilyspeci?edforembeddingsj:V[f]¡úM[j(f)]intheextension.Thesefunctionsbehave,therefore,inacompletelygenerallargecar-dinalcontextmuchlikeLaver¡¯sfunctiondoesinthesupercompactcardinalcontext.Indeed,inthenextsectionIwillprovethatwithafastfunctiononecanobtainacompletelygeneralkindofLaverfunctioninacompletelygenerallargecardinalsetting.AndsincetheexistenceofLaverfunctionsinthesupercompactcardinalcontexthasprovedsoindispensible¡ªthesefunctionsappearindozensifnothun-dredsofarticles¡ªthegeneralizedgenericLaverfunctionsheremay?ndabroadapplication.Solet¡¯sbeginwithfastfunctionforcing.

ThefastfunctionforcingnotionFforthecardinal¦Êconsistsofconditions.p..¦Ê¡ú¦Êsuchthatdom(p)?inacchassizelessthan¦Êandif¦Ã¡Êdom(p)thenp"¦Ã?¦Ãand|p?¦Ã|<¦Ã.Theconditionsareorderedbyinclusion.The(unionof.the)genericforthisforcingisthefastfunctionf..¦Ê¡ú¦Ê,apartialfunctionon¦Ê.Toemphasizetheroleof¦Ê,IwillsometimesdenoteFbyF¦Ê.

ByF¦Ë,¦ÊImeantheversionoffastfunctionforcingconsistingofconditionswithdomainin[¦Ë,¦Ê).Itiseasytosee,bytakingtheunionofconditions,thatF¦Ë,¦Êis¡Ü¦Ë-directedclosed:theonlyapparantdi?cultyisthesupportrequirementthat|p?¦Ã|<¦Ãfor¦Ã¡Êdom(p);butif¦Ã>¦Ëisinaccessible,thenaunionofsize¦Ëofsupportsofsizelessthan¦Ãstillhassizelessthan¦Ã,andsothedi?cultyiseasilyaddressed.

¡ì1FastFunctionForcing5

FastFunctionFactorLemma1.1Belowtheconditionp={?¦Ã,¦Á?}¡ÊF,where¦Ãisinaccessible,¦Áisanordinaland¦Ëisthenextinaccessiblebeyond¦Ãand¦Á,thefastfunctionforcingposetfactorsasF?p?=F¦Ã¡ÁF¦Ë,¦Ê.

Proof:Ifq¡Üpthenq?¦Ã¡ÊF¦Ãanddom(q)isdisjointfrom(¦Ã,¦Ë).Thus,themapq¡ú?q?¦Ã,q?[¦Ë,¦Ê)?providesthedesiredisomorphism.?Lemma

.Thus,iff..¦Ê¡ú¦Êisafastfunctionon¦Êand¦Ã¡Êdom(f),thenf?¦Ãisafast

functionon¦Ã.Moregenerally,thesameargumentshowsthatiffisafastfunctionandf"¦Ã?¦Ã,thenf?¦Ã¡Áf?[¦Ã,¦Ê)isgenericfortheposetF¦Ã¡ÁF¦Ã,¦Ê.Notethatif¦Ãisregular,then|F¦Ã|¡Ü¦Ã.

RemarkonGapForcing1.2Foratechnicalreasonwhichwillbemadeclearlater,IwillattimeswanttoprecedetheforcingFwithsomesmallforcing,suchasaddingaCohensubsettotheleastinaccessiblecardinal.Thiskindofforcingisgenerallybenigninthelargecardinalcontext,andIwillregardthissmallforcingasapartoffastfunctionforcingwhenevertheneedarises.TheprimaryreasontodosoisthatforcingoftheformP1?P2,where|P1|<¦ÄandP2is¡Ü¦Ä-strategicallyclosedinVP1issaidin[Ham98]and[Ham¡Þ]toadmitagapat¦Ä.TheGapForcingTheoremof[Ham¡Þ],withaforerunnerin[Ham98],assertsthatafterforcingV[G]whichadmitsagapat¦Ä<¦Ê,anyembeddingj:V[G]¡úM[j(G)]forwhichM[j(G)]isclosedunder¦Ä-sequencesinV[G]¡ªandthisincludesanyultrapowerembeddingonanyset,aswellasmoststrongnessextenderembeddings¡ªisaliftofanembeddingfromthegroundmodel.Thatis,M?Vandj?V:V¡úMisanembeddingwhichisde?nableinV.Additionally,ifM[G]is¦Ë-closedinV[G]forsome¦Ë¡Ý¦Ä,thenMis¦Ë-closedinV,andinparticular,j"¦Ë¡ÊM;andifjisa¦Ë-strongnessembeddinginducedbyanaturalextender,where¦Ëiseitherasuccessorordinalorhasco?nalitymorethan¦Ä,thenV¦Ë?M.Thus,theresultsof[Ham¡Þ]showthatgapforcingcannotcreatenewmeasurablecardinals,strongcardinals,stronglycompactcardinals,supercompactcardinals,andsoon,withlevel-by-levelversionsgenerallyavailable.Inordertoappealtothistheorem,therefore,inthecontextoffastfunctionforcing,IwillintroduceaverylowgapbyprecedingFbysomeverysmallforcingandhereafterregardthissmallforcingasapartoffastfunctionforcing,thoughIwillmentionitonlywhenIwanttoapplytheGapForcingTheorem.?Remark

Woodinde?nedfastfunctionforcinganduseditwithsomethingbelowastrongcardinal(in[CumWdn]heandCummingshadanembeddingj:V¡úMsuchthatM¦Ê?Mandj(¦Ê)>¦Ê++).Hisargument,whichIgivebelow,worksequallywell

¡ì1FastFunctionForcing6

withmeasurableandsupercompactcardinalsand,inamodi?edform,withweaklycompactcardinals.Asigni?cantcontributionofthispaperisthatfastfunctionforcingworksalsowithstronglycompactcardinals.Forpresentationalclarity,Iwillpresentthefastfunctionliftingtechniquesinthelargecardinalorder,ratherthanthetemporalorderinwhichthetheoremswere?rstproved.

FastFunctionTheorem1.3Fastfunctionforcingpreservesallcardinalsandco-?nalitiesanddoesnotdisturbthecontinuumfunction.Consequently,fastfunctionforcingpreservesallinaccessiblecardinals.

Proof:Supposethat¦ÃisregularinVbuthasco?nality¦Ä<¦ÃinV[f].SinceFhassize¦Ê,wemayassumethat¦Ã¡Ü¦Ê.Therearetwocases.First,itmayhappenthatf"¦Ä?¦Ä.Inthiscase,theforcingfactorsasF¦Ä¡ÁF¦Ä,¦Ê.TheinitialforcingF¦Ä,however,istoosmalltocollapsetheco?nalityof¦ÃandthetailforcingF¦Ä,¦Êis¡Ü¦Ä-distributiveandsocannotcollapsetheco?nalityof¦Ãto¦Ä;thiscontradictsourassumption.Second,alternatively,itmayhappenthatf(¦Â)>¦Äforsome¦Â<¦Ä.Inthiscase,theforcingfactorsasF¦Â¡ÁFf(¦Â),¦Ê,andagaintheinitialforcingistoosmalltocollapsetheco?nalityof¦Ãandthetailforcingistoodistributivetocollapseitto¦Ä;soagainwereachacontradiction.Thus,fastfunctionforcingpreservesallcardinalsandco?nalities.

Asimilarargumentshowsthatfastfunctionforcingpreservesthevaluesof2¦Äcalculatedinthegroundmodel.Againwesplitintothetwocases.Iff"¦Ä?¦Ä,thenwemayfactortheforcingasF¦Ä¡ÁF¦Ä,¦Ê.Theinitialforcinghassize¦Äandthetailforcingis¡Ü¦Ä-distributive;soneithercana?ectthevalueof2¦Ä.Alternatively,iff(¦Â)¡Ý¦Äforsome¦Â<¦Ä,thenwemayfactortheforcingasF¦Â¡ÁFf(¦Â),¦Êandmakethesameargument.Sothevalueof2¦Äispreserved,andthetheoremisproved.?TheoremFastFunctionTheorem1.4Fastfunctionforcingpreserveseveryweaklycom-pactcardinal.Indeed,if¦ÊisweaklycompactinV,thenafteraddingafastfunction.f..¦Ê¡ú¦Êthereareweaklycompactembeddingsj:N[f]¡úM[j(f)]suchthatj(f)(¦Ê)isanydesiredordinalupto¦Ê+.

.Proof:Suppose¦ÊisweaklycompactinVandf..¦Ê¡ú¦Êisafastfunction.Since

theprevioustheoremestablishesthat¦ÊremainsinaccessibleinV[f],inordertoprovethat¦Êisweaklycompactthereitsu?cesonlytoverifythat¦Êhasthetree

¨BfforsomenameT¨B.InVproperty.SosupposeTisa¦Ê-treeinV[f].Thus,T=T

letNbeatransitiveelementarysubstructureofH(¦Ê+)ofsize¦ÊwhichcontainsF

¨Bandisclosedunder<¦Ê-sequences.Since¦ÊisweaklycompactinVthereisanandT

embeddingj:N¡úMwithcp(j)=¦Ê.ImayassumethatM={j(h)(¦Ê)|h¡ÊN}

¡ì1FastFunctionForcing7

(byreplacingMwiththeMostowskicollapseofthissetifnecessary).ItfollowsthatM<¦Ê?MinVsinceif?a=?a¦Á|¦Á<¦Â?isasequenceinVofelementsofMforsome¦Â<¦Ê,thenbuildthefunctionH(¦Ä)=?h¦Á(¦Ä)|¦Á<¦Â?,wherea¦Á=j(h¦Á)(¦Ê)andh¦Á¡ÊN.BytheclosureassumptiononNitfollowsthatH¡ÊNandconsequentlyj(H)¡ÊM,so?a=?j(h¦Á)(¦Ê)|¦Á<¦Â?¡ÊM,asdesired.Returningtothemainargument,now,forany¦Á<j(¦Ê)theconditionp={?¦Ê,¦Á?}isinj(F).ThetailforcingF¦Ë,j(¦Ê),where¦ËisthenextinaccessibleofMbeyond¦Êand¦Á,is<¦Ê-closedinM.Sincethereareonly¦ÊmanydensesetsforthisforcinginM,wemaylinethemupintoa¦Ê-sequenceanddiagonalizetomeettheminordertoproduceinVanM-genericftail?F¦Ë,j(¦Ê).Thecombinationj(f)=f¡Èp¡ÈftailisM-genericforj(F)andconsequentlytheembeddingliftstoj:N[f]¡úM[j(f)].

¨BfitfollowsthatT¡ÊN[f].Byconstruction,j(f)(¦Ê)=p(¦Ê)=¦Á.NowsinceT=T

SinceTisa¦Ê-treeitfollowsthatj(T)isaj(¦Ê)-tree.Anyelementonthe¦Êthlevelofj(T)providesa¦Ê-branchthroughT.So¦ÊhasthetreepropertyinV[f],asdesired.Andsincetheorginaljcanbechosensothatj(¦Ê)isaslargebelow¦Ê+asdesired,and¦Ácanbeaslargebelowj(¦Ê)asdesired,thevalueofj(f)(¦Ê)canbeanyordinalupto¦Ê+.

Byemployingfactorargumentsasintheprevioustheorem,itiseasytoseemoregenerallythatallweaklycompactcardinalsarepreserved.?Theorem

FastFunctionTheorem1.5(Woodin)If2¦Ê=¦Ê+,thenfastfunctionforcingwith¦Êpreservesthemeasurabilityof¦Ê.Indeed,everyultrapowerj:V¡úMbyameasureon¦ÊinVliftstoanultrapowerj:V[f]¡úM[j(f)]suchthatj(f)(¦Ê)isanydesiredordinaluptoj(¦Ê).Consequently,theliftedembeddingcanbetheultrapowerbyanormalmeasure,evenwhentheoriginalembeddingwasnot.

.Proof:Supposethat¦Êismeasurableand2¦Ê=¦Ê+inV,thatf..¦Ê¡ú¦Êisafast

functionandthatj:V¡úMistheultrapowerembeddingbyameasure?on¦Êand¦Á<j(¦Ê).Belowtheconditionp={?¦Ê,¦Á?},factortheforcingasF¡ÁFtail,whereFtail=F¦Ë,¦Êforthenextinaccessible¦ËinMbeyond¦Êand¦Á.TheforcingFtailis¡Ü¦Ê-closedinM.Since2¦Ê=¦Ê+,asimplecountingargumentshowsthat|j(¦Ê+)|V=¦Ê+.Consequently,sinceM¦Ê?M,wecanlineupallthedensesetsofMfortheforcingFtailanddiagonalizeagainstthemtoproduceinVanM-genericftail.Thus,inV[f]wemaylifttheembeddingtoj:V[f]¡úM[j(f)]wherej(f)=f¡Èp¡Èftail.So¦Êremainsmeasurablethere,asdesired.Byconstructionj(f)(¦Ê)=p(¦Ê)=¦Á.

Somereadersmaybesurprisedbythe?nalconclusionofthetheorem.Suppose¦Á=[id]?.Bythestandardseedtechniques(e.g.see[Ham97]),itfollowsthat

¡ì1FastFunctionForcing8

M={j(h)(¦Á)|h¡ÊV}.Ifasabovewearrangetheliftj:V[f]¡úM[j(f)]insuchawaythatj(f)(¦Ê)=¦Á,thenitiseasytoseethatM[j(f)]={j(h)(¦Ê)|h¡ÊV[f]},i.e.theseed¦Êgeneratesthewholeembedding.Fromthis,itfollowsthattheliftedembeddingjistheultrapowerbythenormalmeasure¦Í={X|¦Ê¡Êj(X)}inV[f],asdesired.Ielaboratedonthisphenomenonin[Ham94].?Theorem

Thefactorargumentsemployedin1.3easilyextendtoshowthatfastfunctionforcingfor¦Êpreservesallmeasurablecardinalsatwhichthegchholds.Thegeneralphenomenonthatthevalueofj(f)(¦Ê)canbeanyordinaluptoj(¦Ê)isfurtherexplainedintheFastFunctionFlexibilityTheorembelow.

Recallthatacardinal¦Êisstrongwhenforevery¦Ëitis¦Ë-strong,sothatthereisanembeddingj:V¡úMwithcriticalpoint¦ÊsuchthatV¦Ë?M.Ifthereissuchanembedding,thenbyfactoringthroughbythecanonicalextender,thereisonesuchthatM={j(h)(s)|h¡ÊV&s¡ÊV¦Ë};onesimplyreplacesjwith¦Ð?j,where¦ÐistheMostowskicollapseofthisset.Furthermore,if¦Ëiseitherasuccessorordinalorhasco?nalityatleast¦Ê,thenforsuchanembeddingMisclosedunder¦Ê-sequencesinV.

FastFunctionTheorem1.6(Woodin)If2¦Ê=¦Ê+,thenfastfunctionforcingpreservesthestrongnessof¦Ê.

Proof:Theresultiscompletelylocal,sinceIwillshowthatif¦Êis¦Ë-stronginVthenthisispreservedtothefastfunctionextensionV[f].Supposej:V¡úMwitnessesthe¦Ë-strongnessof¦Ê,sothatV¦Ë?M.Let¦Ä=|V¦Ë|.Usingthecanonicalextender,ImayassumethatM={j(h)(s)|h¡ÊV&s¡Ê¦Ä<¦Ø}.Letp={?¦Ê,¦Ä?}betheconditionwhichjumpsupto¦Äat¦Ê.Thus,bytheFactorLemma1.1,belowptheforcingj(F)factorsasF¡ÁFtail,whereFtailis¡Ü¦Ä-closedinM.Nowusethepair?¦Ê,¦Ä?asaseedtoformtheseedhullX={j(h)(¦Ê,¦Ä)|h¡ÊV}?Mandobtainthefactorembedding

V

k-M

wherek:M0¡úMistheinverseofthecollapseofX.Since¦Êand¦ÄareinX,itfollowsthatk(¦Ä0)=¦Äforsome¦Ä0<j0(¦Ê),thatk(p0)=pforp0={?¦Ê,¦Ä0?}¡Êj0(P)

¡ì1FastFunctionForcing9

andthatcp(k)>¦Ê.Theembeddingj0:V¡úM0,beinggeneratedbytheseed?¦Ê,¦Ä0?,issimplyanultrapowerbyameasureon¦Ê.Inparticular,since2¦Ê=¦Ê+,thediagonalizationargumentof1.5providesaliftj0:V[f]¡úM0[j0(f)]belowthe

M0M0conditionp0.Itmustbethatj0(f)=f¡Èp0¡Èftail,whereftailisM0-genericforthe

M0¡Ü¦Ä0-closedforcingFtail.

IclaimthatkliftstoM0[j0(f)].First,sincecp(k)>¦Ê,certainlyweknowthatkliftstok:M0[f]¡úM[f].Inordertoliftktherestofthewayitsu?cestoshow

M0?FtailisM-generic.So,supposeD¡ÊMisopenanddenseinFtail.thatk"ftail?)(s)forsomeSinceM={k(h)(s)|h¡ÊM0&s¡Ê¦Ä<¦Ø},itfollowsthatD=j(D

?=?D¦Ò|¦Ò¡Ê¦Ä<¦Ø?inM0ands¡Ê¦Ä<¦Ø,whereeveryD¦ÒisanopendensesubsetD0M0M0ofFtail.SinceFtailis¡Ü¦Ä0-closedinM0,itfollowsthat

M0M0D)?D.Thus,sinceftailisM0-generic,k"ftail

meetsD,asdesired.Consequently,kliftsfullytok:M0[j0(f)]¡úM[k(j0(f))],wherek(j0(f))isthe?ltergeneratedbyk"j0(f).Thecompositionk?j0providesaliftofjtoj:V[f]¡úM[j(f)].SinceV¦Ë?Mandf¡ÊM[j(f)],itfollowsthat(V[f])¦Ë?M[j(f)],andso¦Êisstill¦Ë-stronginV[f],asdesired.?Theorem

Thenexttheoremprovidesthe?rstnontrivialexampleofthepreservationofanarbitrarystronglycompactcardinalofwhichIamaware.IwillmakeakeyuseofanoldtechniqueofMenas[Men74],usedalsoin[Apt98],inordertoknowthatthecardinalremainsstronglycompactafterforcing(MenasandApterbothneedastronglycompactlimitofsupercompactcardinals).ArthurApterhaspointedoutthatMenas¡¯stechnique,anachronisticallypresentedinthe¡®dark¡¯agesbeforetheLaverpreparation[Lav78],probablyhadmuchunrealizedpotential.Ihopethattheresultsinthispapertendtocon?rmhisview.

FastFunctionTheorem1.7Fastfunctionforcingpreservesthestrongcompact-nessof¦Ê.Indeed,everystrongcompactnessmeasurefromVextendstoastrongcompactnessmeasureintheextension.

.Proof:Supposethatf..¦Ê¡ú¦ÊisaV-genericfastfunction,that¦Ë¡Ý¦Ê,andthat?0<¦Êisa?nemeasureonP¦Ê¦ËinV.Let¦È¡Ý2¦Ë,andletj:V¡úMbeany¦È-strongly

compactembedding,theultrapowerbya?nemeasure¦ÇonP¦Ê¦ÈinV.Bythecoverpropertyforstronglycompactembeddings,thereisasetY¡ÊMsuchthatj"?0?Yand|Y|M<j(¦Ê).ImayassumethatY?j(?0),andconsequently¡ÉY¡Êj(?0).Anyelements0¡Ê¡ÉYisaseedfor?0inthesensethatX¡Ê?0?s0¡Êj(X)foranyX?P¦Ê¦ËinV.Fixsuchans0.Lets=[id]¦Çand¦Ä=|s|M,andpickany¦Ã¡Ý¦Ä.Thus,since¦Çisa?nemeasureonP¦Ê¦È,wehavej"¦È?s¡Êj(P¦Ê¦È)and¦È¡Ü¦Ä<j(¦Ê).

¡ì1FastFunctionForcing10

Now,inj(F),letpbethecondition{?¦Ê,¦Ã?}.BytheFastFunctionFactorLemma,theforcingj(F)factorsbelowthisconditionasF¡ÁFtail,whereFtailis¡Ü¦Ã-closedinM.ForcetoaddaV[f]-genericftail?Ftail,andletj(f)=f¡Èp¡Èftail.Bythefactorization,thisisM-genericforj(F),andconsequentlytheembeddingliftsinV[f][ftail]toj:V[f]¡úM[j(f)].Byconstruction,j(f)(¦Ê)=p(¦Ê)=¦Ã.SincetheforcingFtailwas¡Ü¦Ã-closedinM,itis¡Ü¦Ã-distributiveinM[f];inparticular,itaddsnonewsubsetsto¦ÄoverM[f].Let??0bethemeasuregerminatedbytheseeds0viatheliftedembedding,sothatX¡Ê??0?s0¡Êj(X)forX¡ÊV[f].Itiseasytoseethat??0measureseverysetinV[f],thatitextends?0,and,sincej"¦Ë?s0,thatis?ne.Itremainsonlyformetoshowthat??0¡ÊV[f].ForthisIwilluseMenas¡¯skeyideain

¨B¦Á|¦Á<¦È?forthesubsetsofP¦Ê¦Ëin[Men74].EnumerateinVthenicenamesu=?X

<¦ÊV[f](asimplecountingargumentshowsthatthereare2¦Ëmanyofthem).Thus,

¨B¦Â|¦Â¡Ês?,j(u)¡ÊMandconsequentlyalsoj(u)?s¡ÊM.Enumeratej(u)?s=?Y

¨B¦Â)j(f)}.¨Bj(¦Á)=j(X¨B¦Á)for¦Á<¦È.Lett={¦Â¡Ês|s0¡Ê(YandobservethatY

Thus,t?sandt¡ÊM[j(f)].Sinceshassize¦ÄandFtailis¡Ü¦Ä-distributiveinM[f],itfollowsthatt¡ÊM[f],andthereforet¡ÊV[f].Nowsimplyobservethat¨B¦Á)f¡Ê???s0¡Êj((X¨B¦Á)f)=j(X¨B¦Á)j(f)=(Y¨Bj(¦Á))j(f)?j(¦Á)¡Êt.So??isde?nable(X00

inV[f]fromtandj?¦È.Thus,??0¡ÊV[f]asdesired.?Theorem

FastFunctionTheorem1.8Fastfunctionforcingpreservesthesupercompact-nessof¦Ê;andeverysupercompactnessmeasurefromthegroundmodelextendstoasupercompactnessmeasureintheextension.

Proof:Toseethatthesupercompactnessof¦Êispreserved,onecansimplytake¦Çtobea¦È-supercompactnessembeddinginthepreviousargumentand?0the¦Ë-supercompactnessmeasuregerminatedviajbytheseeds0=j"¦Ë.Theresultingmeasure??0iseasilyseentobenormaland?ne.So¦ÊremainssupercompactinV[f].

Sonowletmeshowabitmore;namely,thateverysupercompactnessmeasurefromVextendstoasupercompactnessmeasureinV[f].SupposeinVthat?0isa¦Ë-supercompactnessmeasureonP¦Ê¦Ëand¦Ç0isa¦È-strongcompactnessmeasure<¦ÊonP¦Ê¦Èforsome¦È¡Ý2¦Ë.Itisnotdi?culttoargue(seetheargumentprecedingTheorem4.2)that¦Ç=?0¡Á¦Ç0isisomorphictoa¦È-strongcompactnessmeasurewhoseembeddingj:V¡úMisclosedunder¦Ë-sequences.Furthermore,s0=j"¦Ëisaseedfor?0viaj.Thepreviousargumentshowshowtoliftthisembeddingsothatthemeasure??0germinatedbys0viaj:V[f]¡úM[j(f)]liesinV[f].Again,itisnotdi?culttoarguethat??0isnormaland?ne,asdesired.?Theorem

¡ì1FastFunctionForcing11

Thepreviousargumentactuallyestablishesthefollowingtheorem:

LocalVersion1.9If¦Êis2¦Ë-stronglycompactthenfastfunctionforcingpre-servesthe¦Ë-strongcompactnessof¦Ê.Thesameholdsforsupercompactness.In-<¦Êdeed,if¦Êis2¦Ë-stronglycompactand¦Ë-supercompact,thenfastfunctionforcingpreservesthe¦Ë-supercompactnessof¦Ê.

Bypayingaslightgchpenalty,wecanemploythediagonalizationargumenttoobtainacompletelylocalversion:

CompletelyLocalVersion1.10(Woodin)If¦Êis¦Ë-supercompactand2¦Ë=¦Ë+,thenthisispreservedbyfastfunctionforcing.Indeed,every¦Ë-supercompact-nessembeddinginthegroundmodelliftstotheforcingextension.

Proof:Supposej:V¡úMisa¦Ë-supercompactembeddinginV,andthatfisaV-genericfastfunction.Letpbethecondition{?¦Ê,¦Ë?},sothatbelowptheforcingj(F)factorsasF?FtailandFtailis¡Ü¦Ë-closedinM.Sinceasimplecountingargumentshows|j(2¦Ê)|=¦Ë+,thereareatmost¦Ë+manyopendensesubsetsofFtailinM,countedinV.Thus,usingtheclosureofMandtheclosureoftheforcing,ImaylinethemupanddiagonalizeagainstthemtoconstructinVanM-generic?lterftail?Ftail.Consequently,inV[f]theembeddingliftstoj:V[f]¡úM[j(f)]wherej(f)=f¡Èp¡Èftail,anditisnotdi?culttoverifythatthisembeddingisa¦Ë-supercompactembeddinginV[f].?Theorem

Becausetheprevioustheoremsshowthatfastfunctionforcingpreserveslargecardinals,oneexpectsmanyembeddingsj:V[f]¡úM[j(f)]inthefastfunctionex-tension.Whatismore¡ªandthisisthefundamentalfactwhichmakesfastfunctionforcinguseful¡ªthenexttheoremshowsthattheseembeddingsaresoeasilymodi-?edthatthevalueofj(f)(¦Ê)canbealmostarbitrarilyspeci?ed.Letmede?nethatameasure¦ÇinV[f],oranyforcingextension,isstandardwhenthecriticalpoint¦Êoftheinducedembeddingj:V[f]¡úM[j(f)]isde?nableinM[j(f)]froms=[id]?andparametersinran(j?V).Thus,anynormalmeasureon¦Êisstandard,asisanysupercompactnessmeasure(since¦Êistheleastelementnotinj"¦Ë).Also,Lemma

2.7belowshowsthatinthetypeofforcingextensionsofthispaper,every¦È-strongcompactnessmeasureisisomorphictoastandardstrongcompactnessmeasure.<¦Ê<¦Ê

FastFunctionForcing12

.FastFunctionFlexibilityTheorem1.11Supposethatf..¦Ê¡ú¦Êisafast

functionaddedgenericallyoverVandthatj:V[f]¡úM[j(f)]isanembedding(eitherinternalorexternaltoV[f])withcriticalpoint¦Ê.Thenforany¦Á<j(¦Ê)thereisanotherembeddingj?:V[f]¡úM[j(f)]suchthat:

1.j?(f)(¦Ê)=¦Á,

2.j??V=j?V,

3.M[j?(f)]?M[j(f)],and

4.If¦Áisnottoomuchlargerthan¦Ê(seebelow),thenM[j?(f)]=M[j(f)].Inthiscase,ifjistheultrapowerbyastandardmeasure¦ÇconcentratingonasetinV,thenj?istheultrapowerbyastandardmeasure¦Ç?concentratingonthesameset,andmoreover¦Ç¡ÉV=¦Ç?¡ÉVand[id]¦Ç=[id]¦Ç?.

Proof:Fixjand¦Á.Let¦Ê?bethenextinaccessibleaboveboth¦Êand¦Á,andlet¦Ãbethenextelementofdom(j(f))above¦Ê?.Thus,¦Ãisnotalimitofinaccessiblecardinals.BytheFastFunctionFactorLemma,ftail=j(f)?[¦Ã,j(¦Ê))isM-genericforF¦Ã,j(¦Ê).Nowconsidertheembeddingj?V:V¡úM(whichperhapsmaynotbede?nableinV),andtheconditionp={?¦Ê,¦Á?,?¦Ê?,¦Â?}where¦Â<¦Ãislargerthaneveryinaccessiblebelow¦Ã.¡ì1

Belowthiscondition,theforcingj(F)factorsasF¡ÁF¦Ã,j(¦Ê).SincewehaveM-genericsfortheseposets,wecanletj?(f)=f¡Èp¡Èftailandlifttheembeddingtoj?:V[f]¡úM[j?(f)].Byconstructionwehavej?(f)(¦Ê)=p(¦Ê)=¦Áandj??V=j?V.Also,j?(f)iseasilyconstructedfromj(f),soM[j?(f)]?M[j(f)].Finally,inthecasethat¦Ádoesnotexceedthenextinaccessibleclusterpointofdom(j(f))beyond¦Ê,thenitfollowsthatthe¡®missing¡¯partofj(f),namelyj(f)?[¦Ê,¦Ã),issimplyaconditioninj(P),andthereliesinM.InthiscaseM[j(f)]=M[j?(f)].

Finally,supposeinthiscasethatjistheultrapowerbyastandardmeasure¦ÇconcentratingonasetD¡ÊV.Lets=[id]¦Ç.Thisisaseedfor¦ÇinthesensethatX¡Ê¦Ç?s¡Êj(X).SinceD¡Ê¦Çitfollowsthats¡Êj(D)andconsequentlys¡ÊM.Foratechnicalreason,Iwillchoose¦Âinthepreviousargumenttobeanindexoftheconditionj(f)?[¦Ê,¦Ã)¡ÊMwithrespecttoj(?a)where?aisanenumerationofV¦Êin

¡ì1FastFunctionForcing13

Vsuchthatforevery¦Î<¦ÊeveryelementofV¦Îappearsunboundedlyoftenamongthe?rst?¦Îmanyelementsof?a.Let¦Ç?bethemeasuregerminatedbytheseedsviaj?;i.e.X¡Ê¦Ç??s¡Êj?(X).Inordertoarguethatj?istheultrapowerby¦Ç?,itsu?cestoshowthateveryelementofM[j?(f)]hastheformj?(h)(s)forsomeh¡ÊV[f](see[Ham98]foranelementaryintroductiontotheseseedtechniques).LetXbetheseedhullofs,thatis,thesetoftheelementsinM[j?(f)]havingthisform.ItiseasytoverifytheTarski-Vaughtcriterion,andsoX?M[j?(f)].Furthermore,sincethemeasure¦Çwasstandard,itfollowsthat¦Ê¡ÊX(andthisistheonlyreasonforthatassumption).Consequently,¦Â¡ÊXandsobythetechnicalchoiceof¦Âthemissingpartofj(f)alsoliesinX.Thus,fromj?(f)¡ÊXwecanreconstructj(f),andsoj(f)¡ÊX.Now,supposex¡ÊM[j?(f)]=M[j(f)].Sincejistheultrapowerby¦Çweknowthatx=j(h)(s)forsomefunctionh¡ÊV[f].Thisfunctionhasa

¨B¡ÊV.Sox=j(h¨Bf)(s)=j(h¨B)j(f)(s).Sinceallthesetsinthislastexpressionnameh

areinX,itmustbethatx¡ÊXalso;soj?istheultrapowerby¦Ç?.Therestofthetheoremfollowsbecause[id]¦Ç?=s=[id]¦Çandj??V=j?V.?Theorem

Inthecontextofastronglycompactcardinal¦Ê,Menaswasveryconcernedin.[Men74]withthesituationinwhichthereisafunctionf..¦Ê¡ú¦ÊwithwhatIwillcalltheMenasproperty,namely,thatforevery¦Ëthereshouldbea?nemeasure?onP¦Ê¦Ëwithultrapowerembeddingj:V¡úMsuchthatj(f)(¦Ê)¡Ý|[id]?|M.Thesefunctions?guredcruciallyinhispreservationarguments.Menasprovedthateverystronglycompactlimitofstronglycompactcardinalshassuchafunction,butconjecturedthatthiswouldnotbethecaseforeverystronglycompactcardinal.Iwillprovehere,however,thatonecanhavesuchafunctionforanystronglycompactcardinal.

Theorem1.12EveryfastfunctiononastronglycompactcardinalhastheMenasproperty.

Proof:ThisalmostfollowsdirectlyfromtheFlexibilityTheorem,exceptforthedi?cultythatforlarge¦Átheembeddingj?producedintheFlexibilityTheoremmaynotitselfbea¦Ë-strongcompactnessembedding;soanadditionalfactorargumentisneeded.Supposethatj:V[f]¡úM[j(f)]isa¦Ë-stronglycompactembeddingbysomemeasure?inV[f].Let¦Ã=|s|wheres=[id]?.Sinces¡ÊM[j(f)]andshassize¦Ãitfollowsthats¡ÊM[j(f)?¦Ã],andsoithasanames¨B¡ÊMofsize¦Ã.Sincej"¦Ë?sby?neness,wemayusethenames¨Btobuildasets?¡ÊMofsize¦Ãsuchthatj"¦Ë?s?.Furthermore,wemayassume¦Êistheleastelementnotins?,bysimplyremovingitifnecessary.Nowletj?:V[f]¡úM[j?(f)]beanembeddingasintheFlexibilityTheoremsuchthatj?(f)(¦Ê)=¦Áforsome¦Á>¦Ã.Let??be

¡ì1FastFunctionForcing14

themeasuregerminatedbytheseeds?viaj?,sothatX¡Ê???s?¡Êj?(X).Sincej?"¦Ë=j"¦Ë?s?¡Êj?(P¦Ê¦Ë),thismeasureisa?nemeasureonP¦Ê¦Ë,andsinceitwasobtainedbyaseedviaj?,weobtainthefollowingfactordiagram:

V[f]

k-M[j?(f)]

wherej0istheultrapowerby??andkistheinversecollapseoftheseedhullX={j?(h)(?s)|h¡ÊV[f]}?M[j?(f)].Since¦Êistheleastelementnotins?,itfollowsthat¦Ê¡ÊXandhencealso¦Á=j?(f)(¦Ê)¡ÊX.Lets0and¦Á0bethecollapsesofs?and¦Á,respectively,sothatk(s0)=s?andk(¦Á0)=¦Á.Itfollowsthat[id]??=s0andj0(f)(¦Ê)=¦Á0>|s0|,sofhastheMenaspropertywithrespectto??,asdesired.?Theorem

TheMenaspropertyhasanaturalanalogueforsupercompactandstrongcar-.dinals.Speci?cally,Ide?neforasupercompactcardinal¦Êthatf..¦Ê¡ú¦ÊhasthesupercompactMenaspropertywhenforevery¦Ëthereisa¦Ë-supercompactnessembeddingjforwhichj(f)(¦Ê)>¦Ë.Thus,forexample,everyLaverfunctionhastheMenasproperty.Forastrongcardinal¦Ê,Ide?nethatfhasthestrongMenaspropertywhenforevery¦Ëthereisa¦Ë-strongembeddingjforwhichj(f)(¦Ê)>?¦Ë.Suchfunctionsarerelatedtothehigh-jumpingfunctionsof[Ham98].

Theorem1.13Everyfastfunctiononasupercompactcardinalhasthesupercom-pactMenasproperty.

Proof:Thistheoremistruelevel-by-levelforpartiallysupercompactcardinals.Supposethatj:V[f]¡úM[j(f)]isa¦Ë-supercompactnessembeddinginV[f],theultrapowerbyanormal?nemeasure¦ÇonP¦Ê¦Ë.ByRemark1.2,weknowthatM?Vandinfactj:V¡úMisde?nableinVandMis¦Ë-closedthere(thoughitneednotbetheultrapowerbyanormalmeasureonP¦Ê¦Ëthere).Iclaimthatj(f)?[¦Ê,¦Ë)isinM.Ifnot,thenpartofitmustbegenericoverMforsomenontrivial¡Ü¦Ê-closedforcingofsizeatmost¦Ë,namely,F¦Ê,¦Ã,where¦Ãisthe?rstinaccessibleclusterpointofdom(j(f))beyond¦Ê.SincethisposetisthesameinMasinV,withthesamedensesets,the?ltergeneratedbyj(f)?[¦Ê,¦Ã)inF¦Ê,¦ÃmustbeV-generic.Butthisisimpossible,sinceitwasaddedbythe¦Ê-c.c.forcing

¡ì1FastFunctionForcing15

F.Soj(f)?[¦Ê,¦Ë)¡ÊM.Consequently,bytheFlexibilityTheorem,wemaymodifytheembeddingtoj?:V[f]¡úM[j?(f)]sothatj?(f)(¦Ê)=¦Áforsome¦Á>¦ËandM[j?(f)]=M[j(f)].Furthermore,wemayassumethatj?istheultrapowerbyameasure¦Ç?with[id]¦Ç=[id]¦Ç?.Since¦Çisnormaland?ne,itfollowsthat[id]¦Ç=j"¦Ë,so[id]¦Ç?=j"¦Ë=j?"¦Ë,andso¦Ç?isalsoanormal?nemeasureonP¦Ê¦Ë.Finally,sincej?(f)(¦Ê)=¦Á>¦Ë,themeasure¦Ç?exhibitsthatfhastheMenaspropertyfora¦Ë-supercompactnessembedding.?Theorem

Thepreviousproofinfactshowsthatthefunctionh:¦Ê¡ú¦Ê,whereh(¦Ã)isthenextinaccessibleclusterpointofdom(f)beyond¦Ã,isahigh-jumpingfunctionintheterminologoyof[Ham98].Itfollows,byTheorem3.4of[Ham98],thatfastfunctionforcingmustdestroythealmosthugenessof¦Ê.

Theorem1.14EveryfastfunctiononastrongcardinalhasthestrongMenasproperty.

Proof:Thistheoremisalmosttruelevel-by-level.Speci?cally,Iwillshowthatif¦Êis(¦Ë+1)-stronginV[f]thenfhastheMenaspropertywithrespectto(¦Ë+1)-strongembeddingsinV[f].Itfollows,usingtheusualfactorargumentandtheinduced¦Ë-strongextender,thatfhastheMenaspropertywithrespecttoa¦Ë-strongembeddingalso.So,supposej:V[f]¡úM[j(f)]isa(¦Ë+1)-strongembedding,sothatV¦Ë+1[f]?M[j(f)].ByfactoringthroughbythenaturalextenderImayassumethatM[j(f)]isclosedunder¦Ê-sequencesinV[f],andconsequently,byRemark1.2,thatM?VandfurthermoreM¦Ë+1=V¦Ë+1.Iwillargueasintheprevioustheoremthatj(f)?[¦Ê,¦Ë)¡ÊM.Ifthisfails,thentheremustbesome¦Ã¡Ü¦Ëwhichisaninaccessibleclusterpointofdom(j(f)),andj(f)?[¦Ê,¦Ã)isM-genericforforFM¦Ê,¦Ã.SinceF¦Ê,¦ÃisthesamewhethercomputedinVorM,andVandMhavethesamedensesetsforit,itfollowsthatj(f)?[¦Ê,¦Ã)isactuallyV-genericforF¦Ê,¦Ã.Butthisisimpossiblesincej(f)¡ÊV[f],a¦Ê+-c.c.forcingextensionofV,andF¦Ê,¦Ãis¡Ü¦Ê-closed.Soj(f)?[¦Ê,¦Ã)mustjustbeaconditioninj(F)andhenceanelementofM.Now,wecontinueasintheprevioustheorem.BytheFlexibilitytheorem,thereisanotherembeddingj?:V[f]¡úM[j?(f)]suchthatj?(f)(¦Ê)>?¦Ë+1andM[j?(f)]=M[j(f)].Thereisnotroublemakingj?(f)(¦Ê)largerthan?¦Ë+1sincetheproofoftheFlexibilityTheoremshowsthatitcaneasilybepushedupbeyondthenextinaccessibleabove¦Ë.Thus,j?:V[f]¡úM[j?(f)]has(V[f])¦Ë+1?M[j?(f)]andj?(f)(¦Ê)>?¦Ë+1,asdesired.?Theorem

Letmeconcludethissectionwithaquickapplicationoffastfunctionforcing.KunenandParis[KunPar71]werethe?rsttoshowthatameasurablecardinal¦Êcan

¡ì1FastFunctionForcing16

havemanynormalmeasuresinaforcingextension.Thefollowingargumentshowsthatfastfunctionforcingworksnicelytoseethesamefactforavarietyoflargecardinals.

ManyMeasuresTheorem1.15Fastfunctionforcingwith¦Êaddsmanymea-sures.Speci?cally,

1.Every(su?cientlynice)weakcompactness?lteron¦ÊinVextendsto¦Êmanyweakcompactness?ltersinV[f].

2.If2¦Ê=¦Ê+,theneverymeasureon¦ÊinVextendsto22manymeasuresinV[f],themaximumconceivablenumber.Indeed,everymeasureinVextends

¦Êto22manymeasures,eachisomorphicinV[f]toadistinctnormalmeasure.

3.If¦Êis2¦Ë-stronglycompactinVthenthereare¦Ë+manynon-isomorphic¦Ë-strongcompactnessmeasuresinV[f].Thus,ifalso2¦Ê=¦Ê+,thenthereare¦Ê22¡¤¦Ë+many.

4.If=¦Ëthenevery¦Ë-supercompactnessmeasureinVextendsto

many¦Ë-supercompactnessmeasuresinV[f],themaximumconceivablenumber.Proof:Thoughitisabitmoreworktogettheoptimalbounds,thistheoremfollowsinspiritfromtheFlexibilityTheorem;essentially,thefactthatj(f)(¦Ê)canhavemanydi?erentvaluesmeansthattheremustbemanydi?erentmeasures.Thus,1holdsforthenice?ltersImanagedtoliftintheprevioustheorems,becauseforeachweakcompactnessembeddingthereare¦Êmanypossiblevaluesforj(f)(¦Ê).

Letmeprove2.Thesimpleideaoflookingatthepossiblevaluesofj(f)(¦Ê)

¦Êeasilygives2¦Êmanymeasures;inordertoget22manymeasures,Iwillconsider

thepossiblevaluesofj(f).Suppose¦ÊismeasurableinVand?isanymeasureon¦Êwithembeddingj?:V¡úM.FastFunctionTheorem1.5showsthattherearemanyliftsofj?toj:V[f]¡úM[j(f)].Howmanyarethere?Well,theproofproceededbydiagonalizingagainstthedensesetsofM,andtherearediversewaystocarryoutthisdiagonalization.Speci?cally,belowanyconditioninj(F)thereisanantichainofsizej(¦Ê),whichhassize¦Ê+inV.Thuswecanbuildatreeofheight¦Ê+ofdescendingconditonsinFtailsuchthateverynodesplitsintoanantichainofsize¦Ê+onthenextlevel.Furthermore,wecanarrangethateverynodeonthe¦Áthlevelofthistreeisinthe¦ÁthdensesetofM,sothatany¦Ê+-branchthroughthistree+¦ÊwillproduceanM-genericforFtail.Sincethereare¦Ê+¦Ê=22many¦Ê+-branches

¦Êthroughthistree,thereare22manywaystoperformthediagonalization,and

eachoftheresultinggenericsproducesadi?erentj(f),andconsequentlyadi?erentmeasureinV[f].SowehavemanymeasuresinV[f].Now,letmearguethatwe<¦Ê¦Ë2+¦Ë<¦Ê22¦Ê<¦Ê

¡ì1FastFunctionForcing17

canarrangeforalloftheseembeddingstobeultrapowersbynormalmeasuresinV[f].Ifwebuildthetreebelowtheconditionwhichensuresj(f)(¦Ê)=¦Á,where¦Á=[id]?isthecanonicalseedfor?,thenwithrespecttotheliftedembeddingj:V[f]¡úM[j(f)],theseedhullof¦Êgeneratestheoldseed¦ÁandconsequentlyallofM[j(f)](seetheOldSeedLemmaof[Ham97]).Thus,sincetheentireembeddingisintheseedhullof¦Ê,theembeddingisanembeddingbythenormalmeasure¦Çinducedby¦Ê.If¦Íisthemeasuregerminatedbytheseed¦Áwithrespecttoj,then?extendsto¦Ísinceweliftedtheembedding.Butsince¦Êgenerates¦Áandviceversa,themeasures¦Íand¦Çareisomorphic,so2holds.

Statement4holdssimilarly.Supposethat2¦Ë=¦Ë+andj:V¡úMisa¦Ë-supercompactnessembedding.Thediagonalizationtechniqueof1.10showsthatwemaylifttheembeddingtoj:V[f]¡úM[j(f)].Again,wecanbuilda¡Ü¦Ë-closedtreeofheight¦Ë+and¦Ë+branchingateachnodesuchthatanybranchthroughthistreeprovidesadi?erentgenericj(f)withwhichtolifttheembedding.BytheOldSeedLemmaof[Ham97],theseedj"¦Ëstillgeneratesthewholeembedding,andconsequentlyeachoftheseliftsprovidesadi?erent¦Ë-supercompactnessmeasureliftingandextendingtheoriginalmeasure.Thus,thereare(¦Ë=manymeasuresextendingtheoriginalmeasure,asdesired.Byworkingbelowaconditionwhichforcesj(f)(¦Ê)=¦Ë+1,wecanarrangethatallthesemeasureswitnesstheMenaspropertyoff.

Finally,letmeprove3.By1.12,thereare?nemeasures?onP¦Ê¦ËinV[f]witnessingtheMenaspropertyoff,sothatthecorrespondingembeddingj:V[f]¡úM[j(f)]hasj(f)(¦Ê)>|s|wheres=[id]?.Furthermore,wemayassumethat¦Êistheleastelementnotins,bysimplyremovingitifnecessaryandworkingwiththeinducedisomorphicmeasure;sowemayassumethatthemeasure?isstandard.Thus,bystatement4intheFlexibilityTheorem,wemayforany¦Á<¦Ë+?ndanembeddingj?:V[f]¡úM[j?(f)],theultrapowerbyameasure??with

[id]??=s,suchthatj?(f)(¦Ê)=¦Á,j??V=j?VandM[j?(f)]=M[j(f)].Sincej?"¦Ë=j"¦Ë?s¡Êj?(P¦Ê¦Ë),itfollowsthat??isa?nemeasureonP¦Ê¦Ë.Andsincedi?erentchoicesof¦Áprovidedi?erentembeddingsj?,thesemeasuresareallpairwisenon-isomorphic,andsowehave¦Ë+manymeasures.Finally,sincetheargumentbeforeTheorem4.2showsthattheproductofanormalmeasurewithastrongcompactnessmeasureisisomorphictoastrongcompactnessmeasure,by2if

¦Ê2¦Ê=¦Ê+thereareatleast22manystrongcompactnessmeasuresonP¦Ê¦ËinV[f],

andsothetheoremisproved.?Theorem++)¦Ë¦Ë<¦Ê22<¦Ê

¡ì2GeneralizedLaverFunctions18

Previously,itwasnotknownevenhowtoforcetwonon-isomorphic¦Ë-strongcompactnessmeasuresforastronglycompactcardinal.Nevertheless,inthecaseofstrongcompactness,thetheoremisnotthestrongestconceivableresult,sincethefollowingquestionremainsopen.

Question1.16Suppose¦Êisstronglycompact.Isthereaforcingextensioninwhichforevery¦Ëtherearethemaximumconceivablenumberofnon-isomorphic

¦Ë<¦Ê2?nemeasuresonP¦Ê¦Ë,namely2many?

¡ì2GeneralizedLaverFunctions

TheexistenceofLaverfunctionsinthesupercompactcardinalcontexthasprovedindispensible;thesefunctionsappearindozensifnothundredsofarticles.Becauseofthis,wewouldreallyliketohaveLaverfunctionsforotherkindsoflargecardi-nals.Iampleased,therefore,toproveherethatfastfunctionforcingaddsanewcompletelygeneralkindofLaverfunctiontoanylargecardinal,therebyfreeingthenotionofLaverfunctionfromthesupercompactcardinalcontext.

V¦ÊisageneralizedLaverfunctionunderSpeci?cally,Ide?nein

.Mwithcriticalpoint¦Êthefunctionf..¦Ê¡ú¦Êwhenforanyembeddingj:

andanyz¡ÊH(¦Ë+)V¡ú

M)suchthatj?(?)(¦Ê)=zandj??ord=j?ord.Thisde?nitionis

perfectlysensiblewhether¦Êismeasurable,strong,stronglycompact,supercompact,orhuge,andsoon.Ofcourse,Imakethisde?nitiononlyinthenontrivialcasethatj(f)(¦Ê)>0ispossible;naturallythefunction?wouldbethemostusefulwhenthefunctionf,likeafastfunction,hasthepropertythat¦Ë=j(f)(¦Ê)canbeverylarge.Often,thefunctionfwillinfactbeafastfunctionoratleasthavetheMenasproperty.Inthiscase,everygeneralizedLaverfunctiononasupercompactcardinalisaLaverfunctioninLaver¡¯soriginalsense.Buttheconverseneednothold;indeed,theremaybenogeneralizedLaverfunctionsatall:

Observation2.1IfV=hodand¦Êisatleastmeasurable,thenthereisnogeneralizedLaverfunctionfor¦Ê.Inparticular,thereisnogeneralizedLaverfunctioninL[?]orinthecoremodels.

Proof:SupposeV=hodand¦Êismeasurable.Letj:V¡úMbeanyembeddingwithcriticalpoint¦Ê.Ifj?:V¡úMisanembeddingsuchthatj?ord=j??ordthensinceeverysetishereditarilyordinalde?nable,itfollowsthatj=j?.Consequently,thereisnofreedomtochoosej?(?)(¦Ê);itmustbeequaltoj(?)(¦Ê).SothereisnogeneralizedLaverfunction.?Observation

¡ì2GeneralizedLaverFunctions19

GeneralizedLaverFunctionTheorem2.2Fastfunctionforcingaddsageneral-izedLaverfunction.Speci?cally,afterfastfunctionforcingV[f],thereisafunction.?..¦Ê¡ú(V[f])¦Êwiththepropertythatforanyembeddingj:V[f]¡úM[j(f)]withcriticalpoint¦Ê(whetherinternalorexternal)andforanyz¡ÊH(¦Ë+)M[j(f)],where¦Ë=j(f)(¦Ê),thereisanotherembeddingj?:V[f]¡úM[j(f)]suchthat:

1.j?(?)(¦Ê)=z,

2.M[j?(f)]=M[j(f)],

3.j??V=j?V,and

4.Ifjistheultrapowerbyastandardmeasure¦ÇconcentratingonasetinV,thenj?istheultrapowerbyastandardmeasure¦Ç?concentratingonthesamesetandmoreover¦Ç?¡ÉV=¦Ç¡ÉVand[id]¦Ç?=[id]¦Ç.

Proof:Theideaisquitesimple,giventheFlexibilityTheoremforfastfunctionforcing.InVenumerateV¦Êas?a=?a¦Á|¦Á<¦Ê?withthepropertythatforevery¦Î<¦ÊeveryelementofV¦Îappearsunboundedlyoftenamongthe?rst?¦Îmanyelementsoftheenumeration.InV[f]let?(¦Ã)=(af(¦Ã))f?¦Ã,providedthatthismakessense,i.e.,that¦Ã¡Êdom(f)andaf(¦Ã)isanF¦Ã-name.Supposej:V[f]¡úM[j(f)]isgivenandz¡ÊH(¦Ë+)M[j(f)]where¦Ë=j(f)(¦Ê).Bytheclosureofthetailforcing,z¡ÊM[f]andsoz=z¨Bfforsomenamez¨B¡ÊM.Thenamez¨Bmustbej(?a)(¦Á)forsomeindex¦Á,andbytheassumptionon?asuchan¦Ácanbefoundbelowthenextinaccessiblebeyond¦Ëand¦Ê.Therefore,bytheFlexibilityTheorem,thereisanotherembeddingj?:V[f]¡úM[j?(f)]=M[j(f)]satisfyingtheconclusionsoftheFlexibilityTheorem,withj?(f)(¦Ê)=¦Á.Inparticular,statements2,3and4hold.Itfollows,bythede?nitionof?,thatj?(?)(¦Ê)=z¨Bf=z,asdesiredforstatement1.Sothetheoremisproved.?Theorem

NoticethattherestrictionthatzisinH(¦Ë+)isnotonerous,becausebytheFlex-ibilityTheoremthevalueof¦Ë=j(f)(¦Ê)ishighlymutableandcanbemadetobeanydesiredordinaluptoj(¦Ê).Certainly,anyzinH(¦Ä)M[j(f)]canbeaccomodatedwithoutmodi?cationforany¦Äuptothenextinaccessibleclusterpointofdom(j(f))beyond¦Ê.Andtheargumentsof1.13and1.14showthatfor¦Ë-supercompactor(¦Ë+1)-strongembeddings,thisisalwaysatleast¦Ë.Moregenerally,though,anyele-mentofMj(¦Ê)[f]isapossiblevalueofj?(?)(¦Ê),becausegivenanyj:V[f]¡úM[j(f)]onecan?rstapplytheFlexibilityTheoremtogetj?:V[f]¡úM[j?(f)]?M[j(f)]suchthatj?(f)(¦Ê)islarge,andthenapplytheGeneralizedLaverFunctionTheoremtomakej?(?)(¦Ê)whateverelementofMj(¦Ê)[f]wasdesired.

Fortheremainderofthissection,letmesimplyspellouttheparticularcon-

¡ì2GeneralizedLaverFunctions20

sequencesoftheprevioustheoremforvariouslargecardinals.Henceforthinthissection,therefore,let?bethegeneralizedLaverfunctionoftheprevioustheoremcomputedinthefastfunctionextensionV[f]relativetothe?xedenumeration?aofV¦Ê.

Theorem2.3SupposeinVthat¦Êismeasurableand2¦Ê=¦Ê+.Thenforanyultrapowerembeddingj:V¡úMbyameasureon¦Êandanyz¡ÊH(¦Ê+)V[f]thereisaliftj:V[f]¡úM[j(f)]suchthatj(?)(¦Ê)=z.Furthermore,theliftcanbearrangedtobeanormalultrapower.

Proof:Thisiswhatfallsoutofthepreviousarguments.Beginningwithanyultrapowerj:V¡úMbythemeasure?andanyz¡ÊH(¦Ê+)V[f]itfollowsthatz¡ÊM[f]andsowecanlifttheembeddingtoj:V[f]¡úM[j(f)]insuchawaythatj(f)(¦Ê)picksouttheordinalindexofanameforz,sothatj(?)(¦Ê)=z.Byusinganame,say,whichalsocodestheordinal¦Á=[id]?,itfollowsthatforsomefunctiong¡ÊV[f]wehave¦Á=j(g)(¦Ê).SinceeveryelementofMhastheformj(g¡ä)(¦Á)whereg¡äisafunctioninV,itfollowsfromthisthateveryelementofM[j(f)]hastheformj(h)(¦Ê)forsomefunctionh¡ÊV[f],andconsequentlytheliftedembeddingisanormalultrapower.?Theorem

Essentiallythesameargumentworksforweaklycompactcardinals:

Theorem2.4SupposeinVthat¦Êisweaklycompact.Thenforanysetz¡ÊH(¦Ê+)inV[f]thereisaweaklycompactembeddingj:N[f]¡úM[j(f)]suchthatj(?)(¦Ê)=z.Inparticular,?¦Êholds.

Proof:Sincez¡ÊV[f]thereisanamez¨B¡ÊVofhereditarysize¦Ê.Pickatransitive

¨Ba¡ÊNandNisclosedunder<¦Ê-N?H(¦Ê+)ofsize¦ÊinVsuchthatz,¨BF,?,?

sequences.Since¦ÊisweaklycompactinVthereisanembeddingj:N¡úMwithcriticalpoint¦Ê.Asin1.4,wecanassumethatMisalsoclosedunder<¦Ê-sequences.TheusualargumentshowsP(¦Ê)N?Mandsoz¨B¡ÊM.Bythediagonalizationargument,becausethereareonly¦ÊmanydensesubsetsofFinN,wecanlifttheembeddingtoj:N[f]¡úM[j(f)],andfurthermore,wecandosoinsuchawaythatj(f)(¦Ê)=¦Áwhere¦Áistheindexofz¨Bwithrespecttoj(?a).Consequently,j(?)(¦Ê)=z¨Bf=z,asdesired.Itiseasynowtodeducethatfisapowerfulkindof?sequence.?Theorem

Letmenowgraduallymoveupwardsthroughthelargecardinalhierarchy.

Theorem2.5Ifj:V[f]¡úM[j(f)]isa¦Ë-strongembedding(withthenaturalextender)andz¡Ê(V[f])¦Ëthenthereisanother¦Ë-strongembeddingj?:V[f]¡úM[j?(f)]suchthatj?(?)(¦Ê)=z,j??V=j?VandM[j?(f)]=M[j(f)].

¡ì2GeneralizedLaverFunctions21

Proof:Supposethatj:V[f]¡úM[j(f)]isa¦Ë-strongembeddinggeneratedbythenaturalextender,sothatM[j(f)]={j(h)(s)|h¡ÊV[f]&s¡Ê(V[f])¦Ë},andthatz¡Ê(V[f])¦Ë.If¦Ëisasuccessorordinalthentheargumentof1.12showsthatj(f)?[¦Ê,¦Ë)¡ÊM,andsoz=z¨Bfforsomez¨B¡ÊM.Alternatively,if¦Ëisalimitordinal,thenz¡Ê(V[f])¦Âforsomemuchsmaller¦Â,andconsequentlytheargumentof1.14appliedtotheinducedfactorembeddingshowsj(f)?[¦Ê,¦Â)¡ÊM.Thus,z=z¨Bfforsomez¨B¡ÊM¦Ë.Ineithercase,thenamez¨Bhas,belowthenextinaccessible,someindex¦Áwithrespecttoj(?a),andsobytheFlexibilityTheorem,thereisanotherembeddingj?:V[f]¡úM[j?(f)]suchthatj?(f)(¦Ê)=¦Á,j??V=j?VandM[j?(f)]=M[j(f)].Bythechoiceof¦Áitfollowsthatj?(?)(¦Ê)=z,andsothetheoremisproved.?Theorem

Asbefore,thetheoremcanbemodi?edtoallowforzwhichappearhigherinthehierarchyifwearewillingtogiveuptheequalityofM[j?(f)]andM[j(f)].Speci?cally,ifz¡ÊMj(¦Ê)[f],thentherewillbeanembeddingj?:V[f]¡úM[j(f)]suchthatj?(?)(¦Ê)=z,j??V=j?VandM[j?(f)?M[j(f)].Theembeddingj?willstillbea¦Ë-strongembeddingbecause(M[j(f)])¦Ë=(M[f])¦Ëbytheargumentshowingj(f)?[¦Ê,¦Â)¡ÊM.Thenextinaccessibleclusterpointofdom(j(f))beyond¦Êmustbeatleast¦Ë.

Next,Itreatthecaseofstronglycompactcardinals.

Theorem2.6Iftheembeddingjof2.2isa¦È-strongcompactnessembedding,where¦È<¦Ê=¦È,thentheembeddingj?mayalsobechosentobea¦È-strongcom-pactnessembedding.

Sinceevery¦È-stronglycompactmeasureisinfactisomorphictoa¦È<¦Ê-stronglycompactmeasure,weseebysimplyreplacing¦Èwith¦È<¦Êthattheassumptionthat¦È<¦Ê=¦Èishardlyarestrictionatall.Andbecauseameasure?isa¦È-strongcompactnessmeasureexactlywhens=[id]?isacoverofj?"¦Èwithasubsetofj?(¦È)ofsizelessthanj?(¦Ê),thetheoremfollowsbystatement4of2.2andthefollowinglemma.De?nethataforcingextensionV[G]ismildifeverysetofhereditarysizelessthan¦ÊinV[G]isaddedbyaposetofsizelessthan¦ÊinV.Certainlyfastfunctionforcingismild,becauseallthetailforcingsF¦Ë,¦Êare¡Ü¦Ë-closed.

Lemma2.7Every¦È-strongcompactnessmeasureinamildforcingextensionV[G],where¦È<¦Ê=¦È,isisomorphictoastandard¦È-strongcompactnessmeasurewhichconcentrateson(P¦Ê¦È)V.

Proof:Supposethatj:V[G]¡úM[j(G)]istheultrapowerbya?nemeasure¦ÇonP¦Ê¦ÈinV[G].Sincemeasuresareisomorphicexactlywhentheyinducethe

¡ì2GeneralizedLaverFunctions22

sameembedding(see[Ham97]),itsu?cestoshowthatjistheultrapowerbyastandard?nemeasureconcentratingon(P¦Ê¦È)V.Lets=[id]¦Ç.Thus,j"¦È?sand

?forforcingof?]forsomegenericG??P|s|M[j(G)]<j(¦Ê).Thus,bymildness,s¡ÊM[G

somesize¦Ãsuchthat|s|¡Ü¦Ã<j(¦Ê).Thus,shasanames¨B¡ÊMofsize¦Ã.Usingthis

|snameitispossibletoconstructasets?¡ÊMofsize¦Ãsuchthatj"¦È?s?and¦Ê¡Ê?.

Since¦È<¦Ê=¦È,themeasure¦Çisisomorphictoa¦Ê-completemeasureon¦È.Theremustthereforebeanordinal¦Ä<j(¦È)suchthatM[j(G)]={j(h)(¦Ä)|h¡ÊV[G]}.Wemayassume,bysimplyaddingsuchapointifnecessary,thatthelargestelementofs?hastheform?¦Â,¦Ä?,usingasuitablede?nablepairingfunction,forsomeordinal¦Â<j(¦È).Let¦Ç?bethemeasuregerminatedbys?viaj.Sinces?isasubsetofj(¦È)ofsize¦Ã<j(¦Ê)andj"¦È?s?,itfollowsthat¦Ç?isa?nemeasureonP¦Ê¦ÈinV[G].Furthermore,sinces?¡ÊM,itconcentratesontheP¦Ê¦ÈofthegroundmodelV.Iclaimthat¦Çisisomorphicto¦Ç?.Toprovethis,itsu?cesbytheseedtheoryof[Ham97]toshowthattheseedhullofs?,namelyX={j(h)(?s)|h¡ÊV[G]}?M[j(G)],isallofM[j(G)].Bytheassumptiononthelargestelementofs?,weknow¦Ä¡ÊXandsincealsoran(j)?X,itfollowsthatM[j(G)]?X,asdesired.Themeasure¦Ç?isstandardbecause¦Êistheleastelementnotins?=[id]¦Ç?.SoIhaveprovedthatevery¦È-strongcompactnessmeasure¦ÇinV[G]isisomorphictoastandard¦È-strongcompactnessmeasure¦Ç?inV[G]concentratingontheP¦Ê¦Èofthegroundmodel.?Lemma

SoTheorem2.6isproved.Asusual,bygivinguptheequalityofM[j?(f)]andM[j(f)]itispossibletoaccomodatelargerzthanstatedinthetheorem,asIwill

Mhasthe¦È-strongcompactnessprovenext.De?nethatanembeddingj:

Mcoverpropertywhenthereisasets¡Ê<j(¦Ê).Thus,

scanbeusedtogerminateviaja?nemeasureonPk¦È.Intheeventthatjisanultrapowerbyameasureonsomeset,itfollowsbyaneasyargumentthatevery

Mofsize|s|subsetof

¡ì3TheLotteryPreparation23

s¡ÊMsuchthatj"¦È?sand|s|M<j(¦Ê).Thissetalsoworksasacover,therefore,inM[j?(f)].?Theorem

Theorem2.9Iftheembeddingjof2.2isa¦È-supercompactnessembedding,thentheembeddingj?mayalsobechosentobea¦È-supercompactnessembedding.Proof:Thisisimmediatebyproperty4of2.2andRemark1.2,sincetheremarkshowsthatj"¦È¡ÊM,andthisis[id]¦Ç.Thatis,supercompactnessmeasuresinV[f]arealwaysstandard,andtheyalwaysconcentrateontheP¦Ê¦ÈofthegroundmodelV.?Theorem

Thenexttheoremimprovesonthis;evenwhen¦Ë=j(f)(¦Ê)issmallitispossiblefor¦È-supercompactnessembeddingstohavej?(?)(¦Ê)=zforanyz¡ÊH(¦È+).

Theorem2.10Ifj:V[f]¡úM[j(f)]isa¦È-supercompactnessembeddinginV[f]andz¡ÊH(¦È+)V[f]thenthereisanother¦È-supercompactnessembeddingj?:V[f]¡úM[j?(f)]suchthatj?(?)(¦Ê)=z,j??V=j?VandM[j?(f)]=M[j(f)].

Proof:Thisfollowsbythesameideaasin1.13;thepointisthatj(f)?[¦Ê,¦È)mustbeaconditioninM,andsothevalueofj(f)(¦Ê)canbefreelychangedsoastopickouttheindexofthenameofanyelementinH(¦È+)M[j(f)].?Theorem

Theprevioustheoremistruelevel-by-levelinthesensethatitistrueevenwhen¦Êisonlypartiallysupercompact;forexample,¦Êmaybeonlymeasurable.What¡¯smore,itisasbeforepossibleforthefunction?tocapturemorezthanjustthoseinH(¦È+).Speci?cally,ifj:V[f]¡úM[j(f)]isa¦È-supercompactembeddingandz¡ÊMj(¦Ê)[f]thenthereisanembeddingj?:V[f]¡úM[j?(f)]suchthatj?(?)(¦Ê)=z,j??V=j?VandM[j?(f)]?M[j(f)].Inthiscase,however,theembeddingj?maynotbea¦È-supercompactnessembedding,thoughbyRemark1.2itwillhavej?"¦È=j"¦È¡ÊM.

¡ì3TheLotteryPreparation

Iaimheretopresentthelotterypreparation,anewgeneralkindofLaverprepa-ration,whichworksuniformlywithavarietyoflargecardinals¡ªsuchasweaklycompactcardinals,measurablecardinals,strongcardinals,stronglycompactcardi-nalsandsupercompactcardinals¡ªandmakesthemindestructiblebyvariousfurtherforcing,dependingonthestrengthofthecardinal.

Letmebeginbyde?ningmyterms.ThebasicbuildingblockiswhatIcallalotterysum.Speci?cally,thelotterysumofacollectionAofforcingnotionsis

¡ì3TheLotteryPreparation24

theforcingnotion?A={?Q,p?|Q¡ÊA&p¡ÊQ}¡È{1l},orderedwith1laboveeverythingand?Q,p?¡Ü?Q¡ä,q?whenQ=Q¡äandp¡ÜQq.BecausecompatibleconditionsmusthavethesameQ,theforcinge?ectivelyholdsalotteryamongalltheposetsinA,alotteryinwhichthegeneric?lterselectsa¡®winning¡¯posetQandthenforceswithit.

Notethatthelotterysumoftheemptysetisthetrivialposet{1l}.Iwillde?ne.thelotterypreparationof¦Êrelativetoa?xedfunctionf..¦Ê¡ú¦Ê.Thoughthede?nitionworks?newithanyfunction,theforcingworksbestwhenusedwithafunctionhavingtheMenasproperty,suchasafastfunction.

Thelotterypreparationof¦Êwillbea¦Ê-iterationwhichatmanystages¦Ã<¦Êwillperformthelotterysumofthecollectionofposetswhichareallowedatstage¦Ã.Thus,atstage¦Ã,thegeneric?lterwille?ectivelyselectaparticularsuchposetasthewinnerofthelotteryandthenforcewithit.Generically,awidevarietyofposetswillbechoseninthelotteriesbelow¦Ê,therebyre?ectingthepossibilitiesatstage¦Êonthej-side.TheessentialideaisthatratherthanconsultingaLaverfunctionaboutwhichparticularforcingistobedoneatstage¦Ã,thelotterypreparationinsteadusesthelotterysumofallposetswhichwemightliketoseeatstage¦Ã,andletsthegeneric?lterdecidegenericallyamongstthem.

O?cially,letmesaythataposetQisallowedatstage¦Ãwhenforevery¦Ä<¦ÃtheposetQis<¦Ä-strategicallyclosed(thatis,thesecondplayerhasastrategyenablinghertoplayadescending¦Ä-sequencefromtheposet,wheretheplayersalternatelyplayelementsdescendingthroughtheposet,andthesecondplayerplaysatlimitstages).Thisrequirement,whilebroadlyinclusive,isenoughtoensurethatthetailforcingisdistributive.

Letmenowgivethede?nition.Thelotterypreparationof¦Êrelativetothe.functionf..¦Ê¡ú¦ÊisthereverseEastonsupport*¦Ê-iterationwhichhasnontrivialforcingatstage¦Ãonlywhen¦Ã¡Êdom(f)andf"¦Ã?¦Ã.Atsuchstages,theforcing

¡ì3TheLotteryPreparation25

Q¦ÃisthelotterysuminVP¦ÃofallposetsinH(f(¦Ã)+)whichareallowedatstage¦Ã.Otherwise,theforcingatstage¦Ãistrivial.

WhileIhaveprovedintheprevioussectionthatfastfunctionforcingaddsageneralizedLaverfunction,pleaseobservethatIamnotusingthisgeneralizedLaverfunctiontode?nethelotterypreparation.CertainlyonecouldusethegeneralizedLaverfunctionstode?neakindofgeneralizedLaverpreparation,andsuchaprepa-rationwouldhavemanyofthesamefeatures(byessentiallythesamearguments)thatIidentifyhereforthelotterypreparation.Butitseemsconceptuallysimplertome,andmoretothepoint,touselotterysumsinordertoallowthegeneric?ltertodecidewhichforcingistobedoneateachstage.Doingsoavoidstheneedtocarefullycon?guretheembeddingsothatj(?)(¦Ê)isasrequired;withalottery,onesimplyworksbelowtheconditionwhichoptsforthedesiredforcingatstage¦Ê.Indeed,thisabilitytoselectarbitrarilythewinnerofthestage¦ÊlotteryiswhatallowsustogetbywithoutanyLaverfunction.InasensethelotterypreparationshowsthatwhatwastrulyimportantaboutLaver¡¯sfunctionwasnotthatj(?)(¦Ê)couldbearrangedtobeanydesiredset¡ªsincealotterysumcangenericallypickoutanydesiredsetatstage¦Ê¡ªbutratherthattheLaverfunctioncouldbearrangedsothatthenextelementofthedomainofj(?)beyond¦Êwasaslargeasyoulike.Thisiswhatsupportsthecrucialtailforcingarguments;aslongasonehasawayofreachinguphigh(e.g.bytheMenasproperty),onecanusealotterysumtoallowthegeneric?ltertoselectanydesiredsetorposet,andthetailforcingwillbesu?cientlyclosed.Thus,thelotterypreparationde?nedrelativetoafastfunctionworkse?ectivelywithawidevarietyoflargecardinals.

LotteryFactorLemma3.1Forany¦Ã<¦Êwhichisclosedunderf,thelotterypreparationP¦ÊfactorsasP¦Ã?P¦Ã,¦ÊwhereP¦Ãisthelotterypreparationde?nedusingf?¦ÃandP¦Ã,¦Êisthelotterypreparationde?nedinVP¦Ãusingf?[¦Ã,¦Ê).

Proof:Thisfollowsbytheusualiteratedforcingfactorarguments.ThepointisthattheP¦Ã+¦Á-namesappearinginthestage¦Ã+¦Álotterycanbeiterativelytransformed,byrecursionon¦Á,intoP¦Ã?P¦Ã,¦Ã+¦Á-names.Thereisnoproblemwiththesupportsbecausewetookaninverselimitatallbuttheinaccessiblestages.?LemmaLemma3.2Ifinthelotterypreparationthereisnonontrivialforcinguntilbeyondstage¦Ã,thenthepreparationis¡Ü¦Ã-strategicallyclosed.

Proof:Sincetheforcingateachstage¦Á>¦Ãis¦Á-allowed,itis¡Ü¦Ã-strategicallyclosed,witha(nameofa)strategy¦Ò¦Á.Givenapartialplay,adescendingsequenceofconditions?p¦Â|¦Â<¦Ã¡ä?forsome¦Ã¡ä<¦Ã,wherep¦Â=?p¨B¦Â¦Á|¦Ã<¦Á<¦Ê?,oneapplies

¡ì3TheLotteryPreparation26

thestrategies¦Ò¦Ácoordinate-wisetoobtain¦Ò(?p¦Â|¦Â<¦Ã¡ä?)=?q¨B¦Á|¦Ã<¦Á<¦Ê?,whereq¨B¦Áisthenamefortheconditionobtainedbyapplyingthestrategy¦Ò¦Áto

¡ä?p¨B¦Â¦Á|¦Â<¦Ã?.Recursively,sinceeachofthestrategies¦Ò¦Ácansuccessfullynegotiateallthelimitsupto¦Ã,sodoesthisstrategy¦Ò,andsothelemmaisproved.?Lemma

TheconsequenceofthislemmaisthatwhenonefactorsthelotterypreparationasP¦Ã?P¦Ã,¦Ê,thenP¦Ã,¦Êis<¦Ã-strategicallyclosedinVP¦Ã.Thetwolemmastogethershowthatifwearetryingtoliftanembeddingj:V¡úMandQissomeforcingwhichwhichisallowedinthestage¦Êlotteryofj(P),thenbysimplyworkingbelowaconditionpwhichoptsforQinthestage¦Êlotterywemayfactortheforcingasj(P)?p?=P?Q?Ptail,wherePtailhastrivialstagesuntilbeyondj(f)(¦Ê).Throughthissimplelotterytechnique,weobtainthecrucialfactorizationthatoneordinarilyneedsaLaverfunctiontoobtain,andwehavedonesoinacompletelygenerallargecardinalcontext,withnosupercompactnessassumptions.Thisistheideawhichwillsupporttheindestructibilityresultsofthenextsection.

Letmenowprovethatthelotterypreparationpreservesavarietyoflargecar-dinals,beginningatthebottomandmovingupwards.Inthetheoremsbelow,ifnoassumptionisexplicitymadeconcerningf,thenthetheoremholdsforthelotterypreparationde?nedusinganyfunctionf.Toavoidthetrivialityofsmallforcing,letmeassumethatthedomainoffisunboundedin¦Ê.

LotteryPreparationTheorem3.3Thelotterypreparationofaninaccessiblecardinal¦Êpreservestheinaccessibilityof¦Ê.

Proof:Supposethat¦ÊbecomessingularinV[G].Let¦Ã¡Êdom(f)beaclosurepointofflargerthan¦Ä=cof(¦Ê)V[f]andfactortheforcingatstage¦ÃasP¦Ã?P¦Ã,¦Ê.TheforcingP¦Ãhassizelessthan¦Êandsocannothavecollapsedtheco?nalityof¦Ê.TherestoftheforcingP¦Ã,¦Êis¡Ü¦Ä-strategicallyclosedinVP¦Ã,andsoalsocannothavecollapsedtheco?nalityof¦Êto¦Ä,acontradiction.Thus,¦ÊmustberegularinV[G].Similarly,theforcingP¦Ã,sinceithassizelessthen¦Ê,cannotforce2¦Ä¡Ý¦Êforany¦Ä<¦Ê,andthetailforcingP¦Ã,¦Êaddsnofurthersubsetsto¦Äif¦Ä<¦Ã.So¦ÊremainsinaccessibleinV[G].?Theorem

LotteryPreparationTheorem3.4Thelotterypreparationofaweaklycompactcardinal¦Êpreservestheweakcompactnessof¦Ê.

Proof:Sincetheprevioustheoremshowsthat¦Êremainsinaccessible,itsu?cestoshowthat¦ÊhasthetreepropertyinV[G].So,supposeTisa¦Ê-treeinV[G].

¨B¡ÊVsothatT¨BG=T.InVpickatransitiveN?H(¦Ê+)ChooseanameT

¨B,P¡ÊNandN<¦Ê?N.Since¦ÊisweaklycompactinVofsize¦Êsothat¦Ê,T

¡ì3TheLotteryPreparation27

thereisanembeddingj:N¡úMwithcriticalpoint¦Ê.ImayassumethatM={j(h)(¦Ê)|h¡ÊN},byreplacingMwiththecollapseofthissetifnecessary.Itfollows,asin1.4,thatM<¦Ê?M.InM,theforcingj(P)factorsasP?Ptail,wherePtailisthelotterypreparationusingj(f)?[¦Ê,j(¦Ê));thisis<¦Ê-strategicallyclosedinM[G].Furthermore,itisnotdi?culttoestablishthat(M[G])<¦Ê?M[G].Thus,sinceM[G]hassize¦ÊwemaybydiagonalizationconstructinVanM[G]-genericGtail?Ptail,andtherebylifttheembeddingtoj:N[G]¡úM[j(G)]where

¨BG=TweknowT¡ÊN[G].Thus,j(T)isaj(¦Ê)-treej(G)=G?Gtail.SinceT

inM[j(G)].Anyelementonthe¦Êthlevelofj(T)providesa¦Ê-branchthroughTinM[j(G)],andhenceinV[G].So¦ÊhasthetreepropertyinV[G]andthereforeremainsweaklycompact.?Theorem

LotteryPreparationTheorem3.5Thelotterypreparationofameasurablecardinal¦Êsatisfying2¦Ê=¦Ê+preservesthemeasurabilityof¦Ê.

Proof:Thisargumentissimilarto1.5.Suppose¦Êismeasurableand2¦Ê=¦Ê+inV,andthatGisV-genericforthelotterypreparationof¦Êde?nedrelativetosomefunctionf.Iwillshowthateveryultrapowerembeddingj:V¡úMbyameasureon¦ÊinVliftstoanembeddinginV[G].Givensuchanembedding,factortheforcingj(P)asP?Ptail,wherePtailisthelotterypreparationde?nedinM[G]usingj(f)?[¦Ê,j(¦Ê)).Belowaconditionwhichoptsfortrivialforcinginthestage¦Êlottery,theforcingPtailis¡Ü¦Ê-strategicallyclosedinM[G].Furthermore,standardargumentsestablishthatM[G]¦Ê?M[G]inV[G]andacountingargumentestablishesthat|j(¦Ê+)|V=¦Ê+.Thus,bydiagonalization,wecaninV[G]constructanM[G]-genericGtail?Ptail;onesimplylinesupallthedensesetsintoa¦Ê+-sequenceandmeetsthemone-by-one,followingthestrategyinordertogetthroughthelimitstages.Thus,inV[G]theembeddingliftstoj:V[G]¡úM[j(G)]wherej(G)=G?Gtail,asdesired.?Theorem

LotteryPreparationTheorem3.6Thelotterypreparationofastrongcardinal¦Êsatisfying2¦Ê=¦Ê+,de?nedrelativetoafunctionwiththestrongMenasproperty,preservesthestrongnessof¦Ê.

Proof:Whatismore,theresultiscompletelylocal;following1.6,Iwillshowthatif¦Êis¦Ë-stronginVthenthisispreservedtothelotterypreparationV[G].Supposej:V¡úMwitnessesthe¦Ë-strongnessof¦ÊandtheMenaspropertyoff,sothatV¦Ë?Mand¦Ä=|V¦Ë|<j(f)(¦Ê).Byusingtheinducedcanonicalextenderifnecessary,ImayassumethatM={j(h)(s)|h¡ÊV&s¡Ê¦Ä<¦Ø}.Since¦Ä<j(f)(¦Ê),belowtheconditionp¡Êj(P)whichoptsfortrivialforcinginthestage

¡ì3TheLotteryPreparation28

¦ÊlotterytheforcingfactorsasP?Ptail,wherePtailis¡Ü¦Ä-strategicallyclosed.LetX={j(h)(¦Ê,¦Ä)|h¡ÊV}?Mbetheseedhullof?¦Ê,¦Ä?,andfactortheembeddingas

V

k-M

wherek:M0¡úMistheinverseofthecollapseofX.Since¦ÊisinX,itfollowsthatp¡ÊX,andsok(p0)=pforsomep0¡Êj0(P).Similarly,since¦ÄisinX,weknowthatk(¦Ä0)=¦Äforsome¦Ä0<j0(¦Ê).Also,since¦ÊisinXweknowthatcp(k)>¦Ê.Theembeddingj0:V¡úM0,beinggeneratedbytheseed?¦Ê,¦Ä0?,issimplyanultrapowerbyameasureon¦Ê,andthereforeliftsbythediagonalizationargumentof1.5toanembeddingj0:V[G]¡úM0[j0(G)]belowtheconditionp0.

M0M0?P0isM0[G]-genericforItmustbethatj0(G)factorsasG?GM,whereGtailtailtail

¡Ü¦Ä0-strategicallyclosedforcing.

ItremainstolifttheembeddingktoM0[j0(G)].Sincecp(k)>¦Ê,certainlyk

0?Ptailisliftstok:M0[G]¡úM[G].Fortherestitsu?cestoshowthatk"GMtail?)(s)M[G]-generic.ButeveryopendensesetD¡ÊM[G]forPtailhastheformk(D

?=?D¦Ò|¦Ò¡Ê¦Ä<¦Ø?inM0[G]ands¡Ê¦Ä<¦Ø,whereeachD¦ÒisanopenforsomeD0M0M0densesubsetofPtail.SincePtailis¡Ü¦Ä0-distributiveinM0[G],theintersection

D)?D.Thus,since

M00GMtailisM0[G]-generic,k"GtailmeetsD,asdesired.Consequently,kliftsfullyto

k:M0[j0(G)]¡úM[k(j0(G))],wherek(j0(G))isthe?ltergeneratedbyk"j0(G).Thecompositionk?j0providesaliftofjtoj:V[G]¡úM[j(G)].SinceV¦Ë?MandG¡ÊM[j(G)],itfollowsthat(V[G])¦Ë?M[j(G)],andso¦Êisstill¦Ë-stronginV[G].?Theorem

LotteryPreparationTheorem3.7Thelotterypreparationofastronglycom-pactcardinal¦Ê,de?nedrelativetoafunctionwiththeMenasproperty,preservesthestrongcompactnessof¦Ê.

Proof:Whatismore,following1.7Iwillshowthateverystrongcompactnessmeasureinthegroundmodelextendstoameasureintheforcingextension.SupposethatfhastheMenaspropertyinV(e.g.perhapsfwasaddedbyfastfunctionforcingoverasmallermodel),thatG?PisV-genericforthelotterypreparation

¡ì3TheLotteryPreparation29

<¦Êrelativetof,that¦Ë¡Ý¦Êandthat?0isa?nemeasureonP¦Ê¦ËinV.Let¦È¡Ý2¦Ë,

andpickj:V¡úMa¦È-stronglycompactembedding,theultrapowerbya?nemeasure¦ÇonP¦Ê¦ÈinVwitnessingtheMenaspropertyonf.Asin1.7,?xaseeds0for?0,sothatX¡Ê?0?s0¡Êj(X)forX?P¦Ê¦ËinV.Inparticular,j"¦Ë?sby?neness.Lets=[id]¦Ç,and¦Ä=|s|M.Thus,j"¦È?s¡Êj(P¦Ê¦È)and¦È¡Ü¦Ä<j(¦Ê).Now,inj(P),letpbetheconditionwhichoptsinthestage¦Êlotteryforatrivialposet.BytheMenaspropertyweknowj(f)(¦Ê)>¦Ä,andsothenextnontrivialstageofforcingliesbeyond¦Ä.Inparticular,belowtheconditionptheforcingfactorsasP?Ptail,wherePtailis¡Ü¦Ä-strategicallyclosedinM[G].ForcebelowptoaddGtail?PtailgenericallyoverV[G],andinV[G][Gtail]lifttheembeddingtoj:V[G]¡úM[j(G)],wherej(G)=G?Gtail.Let??0bethemeasuregerminatedbytheseeds0viatheliftedembedding,sothatX¡Ê??0?s0¡Êj(X)forX¡ÊV[G].Itiseasytoseethat??0measureseverysetinV[G],thatitextends?0,and,sincej"¦Ë?s0,thatis?ne.Itremainsonlyformetoshowthat??0¡ÊV[G].<¦ÊAsin1.7thereareagainonly2¦ËmanynicenamesinVforsubsetsofP¦Ê¦Ëin

¨B¦Á|¦Á<¦È?.Thus,j(u)¡ÊM,andV[G],andwemayenumeratethemu=?X

¨B¦Â|¦Â¡Ês?¡ÊM,withY¨Bj(¦Á)=j(X¨B¦Á)for¦Á<¦È.Letconsequentlyalsoj(u)?s=?Y

¨B¦Â)j(G)}.Thus,t?sandt¡ÊM[j(G)].Sinceshassize¦ÄandPtailt={¦Â¡Ês|s0¡Ê(Y

is¡Ü¦Ä-strategicallyclosedinM[G],itfollowsthatt¡ÊM[G],andthereforet¡ÊV[G].

¨B¦Á)G)=j(X¨B¦Á)j(G)=(Y¨Bj(¦Á))j(G)?j(¦Á)¡Êt,itfollows¨B¦Á)G¡Ê???s0¡Êj((XSince(X0

?that??0isde?nableinV[G]fromtandj?¦È,andso?0¡ÊV[G]asdesired.?Theorem

Theorem3.8Thelotterypreparationofasupercompactcardinal¦Ê,de?nedrel-ativetoafunctionwiththeMenasproperty,preservesthesupercompactnessof¦Ê.

Proof:Ifinthepreviousargumentonetakesjtobea¦È-supercompactembeddingands0=j"¦Ë,thenitiseasytoseethattheresultingmeasure??0isnormaland?neonP¦Ê¦Ë,andso¦Êis¦Ë-supercompactinV[G],asdesired.?Theorem

Theprevioustwotheoremsareglobalinthesensethattheyassume¦Êisfullystronglycompactorfullysupercompactinthegroundmodelandconcludethat¦Êremainsfullystronglycompactorsupercompactafterthelotterypreparation.Butitiseasytoextractfromtheproofsthefollowingmorelocalfacts,whereweassumethelotterypreparationismaderelativetoafunctionwiththeappropriateamountoftheMenasproperty:

¡ì3

<¦ÊTheLotteryPreparation30LocalVersion3.9If¦Êis2¦Ë-stronglycompactinV,thenafterthelottery

<¦Êpreparation¦Êremains¦Ë-stronglycompact.If¦Êis2¦Ë-supercompactinV,then,

<¦Êafterthelotterypreparation¦Êremains¦Ë-supercompact.Indeed,if¦Êis2¦Ë-strongly

compactand¦Ë-supercompactinV,thenafterthelotterypreparation¦Êremains¦Ë-supercompact.

Acompletelylocalresult,inwhichtheverysamelargecardinalassumptionmadeinVispreservedtoV[G],ispossibleifoneiswillingtopayaslightgchpenalty:

CompletelyLocalVersion3.10Thelotterypreparationofa¦Ë-supercompact<¦Êcardinal¦Êwith2¦Ë=¦Ë+,de?nedrelativetoafunctionwiththeMenasproperty,preservesthe¦Ë-supercompactnessof¦Ê.

Proof:Thisargumentfollowsthediagonalizationtechniqueusedin1.10.Supposethatj:V¡úMisa¦Ë-supercompactembeddinginVsuchthatj(f)(¦Ê)>¦ËandthatV[G]isthelotterypreparationof¦Ê.Byoptingfortrivialforcinginthestage¦Êlottery,wemayfactortheforcingj(P)asP?PtailwherePtail=P¦Ë,j(¦Ê)is¡Ü¦Ë-strategicallyclosedinM[G].StandardargumentsestablishthatM[G]isclosedunder¦Ë-sequencesinV[G],andasimplecountingargumentshowsthatthereare

<¦Êatmost2¦Ë=¦Ë+manysubsetsofPtailinM[G],countedinV[G].Thus,ImaylineuptheopendensesubsetsofPtailinM[G]intoa¦Ë+-sequence,andconstructbydiagonalizationadescending¦Ë+-sequenceofconditions,accordingtothestrategy,whichmeetseveryopendensesetonthelist.EveryinitialsegmentofthesequenceisinM[G],andsothestrategyensuresthattheconstructioncanproceedthroughanylimitstage.Thus,inV[G]IconstructanM[G]-genericGtail?Ptailandtherebylifttheembeddingtoj:V[G]¡úM[j(G)].So¦Êremains¦Ë-supercompactinV[G],asdesired.?Theorem

ThemeasureswhichexistafterthelotterypreparationV[G]enjoyaspecialrelationshipwiththemeasuresfromthegroundmodel.Namely,Ihaveshownthatundersuitablehypothesiseverysupercompactnessorstrongcompactnessmeasureinthegroundmodelextendstoameasureintheforcingextension;amazingly,theconversealsoholds.

Forthefollowingtheorem,assumethatthe?rstelementofthedomainofthefunctionfusedtode?netheiterationisverysmall,say,belowtheleastweaklycompactlimitofweaklycompactcardinals,andthatf(¦Â)¡Ý¦Â.

¡ì3TheLotteryPreparation31

Theorem3.11Belowacondition,thelotterypreparationcreatesnonewmeasur-able,strong,Woodin,stronglycompact,orsupercompactcardinals.Inaddition,itdoesnotincreasethedegreeofstrongcompactnessorsupercompactnessofanycardinal.Andexceptpossiblyforcertainlimitordinalsofsmallco?nality,itdoesnotincreasethedegreeofstrongnessofanycardinal.Thereasonforeachofthesefactsisthateverymeasureintheforcingextensionwhichconcentratesonasetinthegroundmodelextendsameasurefromthegroundmodel.

Proof:SupposethatGisgenericforthelotterypreparationbelowtheconditionwhichopts,inthevery?rstlotteryatstage¦Â,toaddaCohensubsetto¦Â.If¦Ãisthenextelementofthedomainbeyondf(¦Â),thentheforcingfactorsasAdd(¦Â,1)?P¦Ã,¦Ê,whereP¦Ã,¦Êistheremainderofthepreparation.Thus,thisisforcingofsize¦Âfollowedbyforcingwhichis¡Ü¦Â+-strategicallyclosed.Suchforcingissaidin[Ham98]toadmitagapat¦Ã=¦Â+.AsIexplainedinRemark1.2,TheGapForcingCorollaryof[Ham¡Þ]assertsthataftersuchforcingeveryembeddingj:V[G]¡úM[j(G)]withthepropertythatM[j(G)]isclosedunder¦Ã-sequences¡ªandthisincludesanyultrapowerembeddingwithcriticalpoint¦Êbyameasureonanyset,becausesuchembeddingsarealwaysclosedunder¦Ê-sequences¡ªliftsanembeddingfromthegroundmodel.Thatis,M?Vandj?V:V¡úMisde?nableinV.Ifjwastheultrapowerbysomemeasure?concentratingonasetD¡ÊV,thens=[id]?¡Êj(D)¡ÊMisaseedfor?inthesensethatX¡Ê??s¡Êj(X).Consequently,?¡ÉVisde?nableinVfromj?V.If?ismeasureon¦Ê,orastrongorsupercompactnessmeasureinV[G],thenitisnotdi?culttoseethat?¡ÉVisthecorrespondingkindofmeasureinV.Iftheoriginalembeddingjwasanatural¦Ë-strongnessextenderembeddingfor¦Ëeitherasuccessorordinaloralimitordinalofco?nalityabove¦Ã,then[Ham¡Þ]showsthattherestrictedembeddingj?Vwitnessesthe¦Ë-strongnessof¦ÊinV.ItfollowsthatWoodincardinalsalsocannotbecreated.Sothetheoremisproved.?Theorem

Thus,thelotterypreparationisagentleone;measuresinthelotterypreparationextensionarecloselyrelatedtomeasuresinthegroundmodel.AndRemark1.2showsthatthesameistrueoffastfunctionforcing,providedthatitisprefacedbysomesmallforcing.

¡ì4IndestructibilityAftertheLotteryPreparation32

¡ì4IndestructibilityAftertheLotteryPreparation

NowIcometothemaincontributionofthispaper,namely,thatthelotteryprepara-tionmakeslargecardinalsindestructible.Laver¡¯s[Lav78]originalpreparation¡ªmyinspiration,ofcourse¡ªshowedspectacularlythatanysupercompactcardinalcanbemadehighlyindestructible.GitikandShelah[GitShl89]extendedtheanalysistostrongcardinals.Here,thelotterypreparationuni?esandgeneralizestheseresultsbyprovidingauniformpreparationwhichworkswithanylargecardinal,whetheritissupercompact,stronglycompact,strong,partiallysupercompact,par-tiallystronglycompact,ormerelymeasurable,andsoon.Ineachofthesecases,thelotterypreparationmakesthecardinalindestructiblebyavarietyofforcingnotions,dependingonthestrengthofthecardinalinthegroundmodel.

Ofcourse,thelotterypreparationwillmakeasupercompactcardinal¦Êfullyindestructibleby<¦Ê-directedclosedforcing,andastrongcardinal¦Ê(suchthat2¦Ê=¦Ê+)indestructibleby¡Ü¦Ê-distributiveforcing,andmore.Thesearguments,givenbelow,essentiallyfollowthecorrespondingresultsin[Lav78]and[GitShl89].Thelevel-by-levelresult,lackingintheLaverpreparationbecauseLaverfunctionsarenotavailablelevel-by-level,isneverthelesspossiblewiththelotterypreparation,whichrequiresnoLaverfunction.Thus,withabitofthegch,evenpartiallysupercompactcardinalscanbemadeindestructible.

Themostsigni?cantcontributionofthispaper,however,concernsthestronglycompactcardinals.BecausetheliftingargumentsinvolvedinLaver¡¯stheoremsim-plyfailwhenusedwithastronglycompactembedding,ithasbeenanopenquestionforsometimetodeterminethedegreetowhichastronglycompactcardinalcanbepreservedbyforcing.Indeed,Menas[Men74]seemsveryconcernedwiththisquestion.Apterconcludeshispaper[Apt97]withquestionsaskinghowmuchinde-structibilityispossiblewithastronglycompactnon-supercompactcardinal.Untilnow,therehavebeennonontrivialinstancesofanarbitrarystronglycompactcar-dinalbeingpreservedbyforcing.Progresshadbeenmadeinthespecialcaseofastronglycompactlimitofsupercompactcardinals(forwhichaMenasfunctionalwaysexists):Apter[Apt96],usingMenas¡¯stechnique,showedhowtomakesuchcardinals¦ÊindestructiblebyAdd(¦Ê,1);Menas[Men74]himselfalsoseemsalsoveryclosetoprovingthis.Apter[Apt97]showshowtomakeanystronglycompactlimitofsupercompactcardinalsindestructiblebyany<¦Ê-directedclosedforcingwhichdoesnotaddasubsetto¦Ê.Recently,ApterandGitik[AptGit97]proved,impressively,thatanysupercompactcardinalcanbemadeintostronglycompactcardinalwhichis

¡ì4IndestructibilityAftertheLotteryPreparation33

simultaneouslytheleastmeasurablecardinalandfullyindestructibleby<¦Ê-directedclosedforcing.Here,Iaspiretoeliminatesuchsupercompactnessassumptionsandworkwithanarbitrarystronglycompactcardinal.Howmuchindestructibilityispossible?

Fortheremainderofthissection,assumethatV[G]isthelotterypreparationof¦ÊrelativetoafunctionfwiththesuitableMenaspropertyinV.Forexample,perhapsfwaspreviouslyaddedbyfastfunctionforcing.Occasionally,forafewofthetheorems,Iwillmaketheadditionalassumptionthatinfactfwasaddedinthisway.

IndestructibilityTheorem4.1Afterthelotterypreparation,astronglycompactcardinal¦ÊbecomesindestructiblebyCohenforcingAdd(¦Ê,1).

Proof:SupposethatV[G]isthelotterypreparationof¦ÊrelativetothefunctionfwiththestronglycompactMenasproperty,andthatg?¦ÊisV[G]-genericforAdd(¦Ê,1)V[G].Iwillshowthatevery?nemeasure?0onP¦Ê¦ËinVextendstoa

<¦ÊmeasureinV[G][g].Let¦È¡Ý2¦Ë,andsupposej:V¡úMwitnessestheMenas

propertyoff,sothatitistheultrapowerbya?nemeasure¦ÇonP¦Ê¦ÈinVandj(f)(¦Ê)>¦Ä=|s|wheres=[id]¦Ç.Belowtheconditionpwhichoptsinthestage¦ÊlotteryforAdd(¦Ê,1)M[G]=Add(¦Ê,1)V[G],theforcingj(P)factorsasP?Add(¦Ê,1)?Ptail,wheretheforcingPtailis¡Ü¦Ä-strategicallyclosedinM[G][g].ForcetoaddGtail?PtailoverV[G][g],andlifttheembeddingtoj:V[G]¡úM[j(G)],wherej(G)=G?g?Gtail.Nowconsidertheforcingj(Add(¦Ê,1)V[G])=Add(j(¦Ê),1)M[j(G)].Thesetg?¦Êisaconditioninthisposet,soIcanforcebelowittoaddagenericg??j(¦Ê).Sinceg?pullsbacktogviaj,thatistosay,sincegisamastercondition,theembeddingliftsinV[G][g][Gtail][?g]toj:V[G][g]¡úM[j(G)][j(g)]wherej(g)=g?.Selectaseeds0for?0asinTheorem1.7,andlet??0betheV[G][g]-measuregerminatedbys0viatheliftedembedding,sothatX¡Ê??0?s0¡Êj(X).Iwantto

¨Bshowthat??0isinV[G][g].Enumerateu=?X¦Á|¦Á<¦È?thenamesforsubsets

¨B¦Â)j(G)?j(g),ofP¦Ê¦ËinV[G][g].Again,lettbethesetofall¦Â¡Êssuchthats0¡Ê(Y

¨B¦Â|¦Â¡Ês?.Sincet?sandthetailforcingis¡Ü¦Ä-strategicallywherej(u)?s=?Y

closed,itfollowsthatt¡ÊM[G][g],andconsequentlyt¡ÊV[G][g].Usingtandj?¦ÈasinTheorem3.7,Iconcludethat??0isinV[G][g],asdesired.?Theorem

Letmeintroducenowanotherkindofforcingforwhichstronglycompactcar-dinalswillbecomeindestructible.ForanysetSwhichisinanormalmeasureon¦Ê,theclubforcingQSwilladdaclubC?¦ÊsuchthatC¡Éinacc?S;conditionsareclosedboundedsetsc?¦Êsuchthatc¡Éinacc?S,orderedbyend-extension.

¡ì4IndestructibilityAftertheLotteryPreparation34

Forevery¦Â<¦Ê,thesetofsuchcwhichmentionanelementabove¦Âisa¡Ü¦Â-closedopendenseset,sinceonecansimplytaketheunionofa¦Â-chainofsuchcondi-tionsandaddthesupremumtoobtainastrongercondition;thesupremumcannotbeinaccessiblesinceitisabove¦Âbutwasreachedbythe¦Â-sequence.ThusQS?S,ispreservesallcardinalsandco?nalities.Avariant,thecoherentclubforcingQmeantdirectlytofollowalotterypreparationorotheriteration,andimposestheadditionalrequirementthatwhenever¦ÄisaninaccessibleclusterpointofC,thentheprecedingiterationaddedtheclubC¦Ä=C¡É¦ÄbyforcingwithQS¡É¦Äatstage¦Ä.Thisforcingaddsacoherentsystemofclubswhichre?ectattheirinaccessibleclusterpoints.

InthenexttheoremIwillneedthesimplefact(provedalsoin[Men74])thatif?isanormal?nemeasureonP¦Ê¦Ëand¦Çisa?nemeasureonP¦Ê¦Èforsome¦È¡Ý¦Ëofco?nalityatleast¦Ê,thentheproductmeasure?¡Á¦Çisisomorphictoa?nemeasureonP¦Ê¦È,andtheresulting¦È-stronglycompactembeddingj:V¡úMisclosedunder¦Ë-sequences;inparticular,j"¦Ë¡ÊM.Toseewhythisistrue,considerthecommutativediagramcorrespondingtotheproductmeasure?¡Á¦Ç:

V

k-M

wherekistheultrapowerofM?byj?(¦Ç).EveryelementofM?hastheformj?(h)(j?"¦Ë)forsomeh¡ÊV,andeveryelementofMhastheformk(F)(s),whereF¡ÊM?ands=[id]j?(¦Ç).Thus,sincek(j?"¦Ë)=j"¦Ë,everyelementofMhastheformj(h)((j"¦Ë),s).Lettbetheelementofj(P¦Ê¦È)whichisobtainedinMbysimplyplacingacopyofj"¦Ëatthetopofs,separatedbyabriefgap.Fromtonecanrecoverbothsandj"¦Ë,soeveryelementofMhastheformj(h)(t)forsomefunctionh¡ÊV.Intheseedterminologyof[Ham97],theseedtgeneratesallofM.Itfollowsthatjistheultrapowerbythecorrespondingmeasure¦Ç?,de?nedbyX¡Ê¦Ç??t¡Êj(X),andconsequentlythat¦Ç?isisomorphicto?¡Á¦Ç.Sincej"¦È?s?t,itfollowsthat¦Ç?isa?nemeasureonP¦Ê¦È.Thus,jisa¦È-stronglycompactembedding,asdesired.Sincej"¦Ë¡ÊM,itfollowsthatMisclosedunder¦Ë-sequences,sinceany¦Ë-sequence?j(f¦Á)(t)|¦Á<¦Ë?isequaltoj(F)(t,j"¦Ë)where

¡ì4IndestructibilityAftertheLotteryPreparation35

F(¦Ò,¦Ó)=?f¦Á(¦Ò)|¦Á¡Ê¦Ó?,andisthereforeinM.SoIhaveprovedthefactthatIneed.Theargumentalsoworkstoshowthatif?ismerelya?nemeasureonP¦Ê¦Ë,thenstill?¡Á¦Çisisomorphictoa?nemeasureonP¦Ê¦È.

Forthepurposesofthenexttheorem,letmesaythatasubsetSofthestronglycompactcardinal¦Êisspecialwhenforarbitrarilylarge¦Èitisintheinducednormalmeasureofa¦È-strongcompactnessembeddingwitnessingtheMenaspropertyoff.If2¦Ê=¦Ê+andthefunctionfwasaddedbyfastfunctionforcing,thenthespecialsetsincludeanysetinanormalmeasureon¦Êintheoriginalgroundmodel.Tosee

V[f]isthewhythisisso,supposethatSisinanormalmeasureon¦Êin

fastfunctionextension.By1.5weknowthatSisinanormalmeasureinV,andinVwecantakeaproductofthismeasurewithany¦È-strongcompactnessmeasuretogeta¦È-strongcompactnessmeasurewith¦Ê¡Êj(S).Then,bytheFlexibilityTheorem

1.11,wecanmodifyj(f)andfactortheembeddinginthemannerofTheorem1.12toensurethatj(f)(¦Ê)islargeenoughtowitnesstheMenasproperty;sinceS¡Ê

C=C¡È{¦Ê}isavailableasaconditionin

?S,observesimilarlyj(QS).Inthecoherentclubcontext,inwhichCisgenericforQ

thatC¡É¦Ê=C,andthisisthegenericwhichwasusedatstage¦Êinj(G).Ineithercontext,letj(C)beV[G][C][Gtail]-genericbelow

¡ì4IndestructibilityAftertheLotteryPreparation36

Forany?nemeasure?0onP¦Ê¦ËinV,wecan?ndbythecoverpropertyforjanelements0suchthatX¡Ê?0?s0¡Êj(X)forX?P¦Ê¦ËinV.Usethissameseedtogerminateameasurewithrespecttotheliftedembeddingjaccordingtotherule

?X¡Ê??0?s0¡Êj(X)forX?P¦Ê¦ËinV[G][C].Itisclearthat?0extends?0,and

theargumentofTheorem3.7,usingtheenumerationuofthenamesforsubsetsofP¦Ê¦Ë,showsthat??0isinV[G][C],asdesired.?Theorem

IwouldlikenowtoamusethereaderbyapplyingtheideaoftheprevioustheoremwiththesetSofnon-measurablecardinals.

Corollary4.3Assumethatthegchholds.Then,whilepreservingthestrongcompactnessofanystronglycompactcardinal¦Ê,onecanaddaclubC?¦Êwhichcontainsnomeasurablecardinals.Furthermore,thiscanbedonewhilepreservingallcardinalsandco?nalities,andwhileneithercreatingnordestroyinganymeasurablecardinals.

.Proof:We?rstaddafastfunctionf..¦Ê¡ú¦ÊoverV.Thispreservesallcardinalsand

co?nalitiesandneithercreatesnordestroysanymeasurablecardinals.Next,wewillforceoverthemodi?edlotterypreparationP,inwhichforcingisallowedinthestage¦Ãlotteryonlywhen,inadditiontotheearlierrequirementthatitisinH(f(¦Ã)+)andforevery¦Â<¦Ãitis<¦Â-strategicallyclosed,butalsothatitpreservesallcardinalsandco?nalitiesanddoesnotdestroyanymeasurablecardinals.SupposethatG?PisV[f]-genericforthismodi?edpreparation.Sincewecanarrangethepreparationtoadmitaverylowgap,byRemark1.2theforcingdoesnotcreateanymeasurablecardinals.Bytheremarksprecedingtheprevioustheorem,thesetSofnon-measurablecardinalsinVisspecialinV[f],andconsequently,sincethemodi?cationstothelotterypreparationheredonotcreateanydi?cultiesintheliftingargumentoftheprevioustheorem,itfollowsthat¦ÊremainsstronglycompactininV[f][G][C],whereC?¦ÊistheclubaddedbyforcingwithQSoverV[f][G].SinceC¡Éinacc?S,itfollowsthatCcontainsnocardinalswhicharemeasurableinV.Sincenomeasurablecardinalsarecreated,CcontainsnocardinalswhicharemeasurableinV[f][G]orinV[f][G][C].Becausetheforcingateverystagepreservescardinalsandco?nalities,thestandardreverseEastoniterationargumentsestablishthattheentireiterationalsopreservescardinalsandco?nalities.Finally,Iwillshowthatallmeasurablecardinalsarepreserved.CertainlythemeasurablecardinalsinVabove¦Êarepreserved.Also,Ihavearguedthatthestrongcompactnessof¦Êitselfispreserved.Sosupposethat¦Ã<¦ÊisameasurablecardinalinV,andhencealsoV[f].Sincetheforcingafterstage¦ÃinPisstrategicallycloseduptothenextinaccessiblecardinal,itcannota?ectthemeasurabilityof¦Ã.Also,forcingatstage

¡ì4IndestructibilityAftertheLotteryPreparation37

¦Ãisonlyallowedwhenitpreservesthemeasurabilityof¦Ã.Thus,itsu?cestoshowthat¦ÃismeasurableinV[f][G¦Ã].Therearetwocases.First,itmayhappenthatf"¦Ã?¦Ã.Inthiscase,theforcinguptostage¦Ãisexactlythemodi?edlotterypreparationof¦Ã,whichbytheargumentof3.5preservesthemeasurabilityof¦Ã.Second,alternatively,itmayhappenthatforsome¦Â<¦Ãwehavef(¦Â)¡Ý¦Ã.Sothereisnoforcingbetweenstage¦Âand¦Ã.Inthiscase,theforcinguptostage¦Âissmallrelativeto¦Ã,andthereforepreservesthemeasurabilityof¦Ã,andtheforcingatstage¦Âwasonlyallowedprovidedthatitalsopreservedthemeasurabilityof¦Ã,so¦ÃismeasurableinV[f][G¦Ã],asdesired.?Corollary

Inthepreviousargument,ifoneusescoherentclubforcingoneobtainsalsoawholesequenceofclubsC¦Ã?¦Ãforlotsof¦Ã¡Ü¦Ê,alldisjointfromthemeasurablecardinals,withthecoherencyproperty,sothatwhenever¦ÂisaninaccessibleclusterpointofC¦Ã,thenC¦ÂexistsandC¦Ã¡É¦Â=C¦Â.

Letmeintroduceanotherforcingnotionforwhichstronglycompactcardinalsbecomeindestructible.ThelongPrikyforcingposetQF,whereFisa¦Ê-complete?lteron¦Ê,consistsofconditions?s,A?,wheres¡Ê[¦Ê]<¦ÊandA¡ÊF,orderedinthePrikrymanner,sothat?s,A?¡Ü?t,B?whensend-extendst,A?B,ands?t?B.Thisforcingaddsasinglesetg?¦ÊsuchthateverysetinFcontainsatailofg.Itis<¦Ê-directedclosedandhasthe¦Ê+-chaincondition;soallcardinalsandco?nalities

Mwhenarepreserved.De?nethatasetzisaccessibletoanembeddingj:

z¡Ê

¡ì4IndestructibilityAftertheLotteryPreparation38

M[j?(f)]?M[j(f)]suchthatj?(f)(¦Ê)>¦Ä.SinceRwasallowedatstage¦Ê,itisinH(j(f)(¦Ê)+)M[j(f)][G],andconsequently,bytheclosureofftail,itisinM[f][G].

g]andtheposetR?QFsatis?estherequiredclosureAndsincealsoQF¡ÊM[f][G][?

conditions,itisallowedtoappearinthestage¦Êlotteryofj?(P).LetpbetheconditionwhichoptsforR?QFatstage¦Ê,sothatbelowptheforcingj?(P)factorsasP?(R?QF)?Ptail,wherePtailis¡Ü¦Ä-strategicallyclosedinM[j?(f)][G][?g][g].

?PtailoverV[f][G][g]andlifttheembeddingtoj?:V[f][G]¡úForcetoaddG?tail?M[j?(f)][j?(G)]wherej?(G)=G?(?g?g)?G?tail.Nowconsiderthej(QF)forcing.

EnumerateF=?X¦Á|¦Á<2¦Ê?.Sincej"¦È?s,itfollowsthatj?(F)?s=?Y¦Â|¦Â¡Ês?j(2¦Ê)?providesacoverofj?"Fofsizeatmost¦Ä.SincethesetsY¦Âareallinj?(F),andj?(F)isaj?(¦Ê)-complete?lterinM[j?(f)][j?(G)],IcanintersectthemalltoobtainasetY=¡É{Y¦Â|¦Â¡Ês?j(2¦Ê)}¡Êj?(F).Sincej?(X¦Á)=Yj?(¦Á),itfollowsthatY?j?(X)foranyX¡ÊF.Thus,?g,Y?isaconditioninj?(QF)withthepropertythatany?t,A?¡Êghas?g,Y?¡Ü?t,j?(A)?=j?(?t,A?);thatis,itisamaster

?condition.Forcebelowittoaddthegenericj?(g),andinV[f][G][g][G?tail][j(g)]lift

theembeddingtoj?:V[f][G][g]¡úM[j(f)][j?(G)][j?(g)].If?0isany?nemeasureonP¦Ê¦ËinV,thenwemay?ndaseeds0¡ÊMfor?0asin3.7,andlet??0bethemeasuregerminatedbys0viaj?.Certainly??0extends?0andtheargumentof3.7involvingtheenumerationuofthenicenamesinVforsubsetsofP¦Ê¦ËinV[f][G][g]showsthat??0liesinV[f][G][g],asdesired.?Theorem

Inthecasethatastronglycompactcardinalhassomenontrivialdegreeofsupercompactness,thispartialsupercompactnesscanbeusedtoobtainmoreinde-structibilityforthefullstrongcompactness.

IndestructibilityTheorem4.5If¦Êisstronglycompactand¦Ë-supercompactinthegroundmodel,thenafterthelotterypreparationrelativetoafastfunction,bothofthesepropertiesareindestructiblebyany<¦Ê-directedclosedforcingofsizelessthanorequalto¦Ë.

Proof:FirstletmeshowthepreliminaryclaiminV[f]thatforany¦Èthereisa¦Ë-closed¦È-stronglycompactembeddingwitnessingtheMenaspropertyoff.BeginwiththeargumentprecedingTheorem4.2,whichproducesa¦È-stronglycompactembeddingj:V[f]¡úM[j(f)],theultrapowerbya?nemeasure¦ÇonP¦Ê¦È,whichisclosedunder¦Ë-sequences.Inparticular,j"¦Ë¡ÊM[j(f)].ByRemark1.2,itmustbethatj"¦Ë¡ÊM.ByLemma2.7,wemayassumethats=[id]¦Ç¡ÊM,andmoreoverthatj"¦Ëisdirectlycodedintothetopelementsofs.Now,bytheFlexibilityTheorem1.11,thereisanotherembeddingj?:V[f]¡úM[j?(f)]?M[j(f)]with

¡ì4IndestructibilityAftertheLotteryPreparation39

j?(f)(¦Ê)>|s|.LetX={j?(h)(s)|h¡ÊV[f]}?M[j?(f)]betheseedhullofswithrespecttoj?,andj0:V[f]¡úM0[j0(f)]theinducedfactorembedding,withj0=¦Ð?jwhere¦ÐistheMostowskicollapseofX.Itfollowsthats0=¦Ð(s)generatesallofM0[j0(f)],andsoj0istheultrapowerbythe¦È-stronglycompactmeasure¦Ç0germinatedbysviaj(orbys0viaj0).Sincej"¦Ë¡ÊX,itfollowsthatj0"¦Ë¡ÊM0[j0(f)].Furthermore,j0(f)(¦Ê)>|s0|.Inparticular,j0isa¦Ë-closed¦È-stronglycompactembeddingwhichwitnessestheMenaspropertyoff,sothepreliminaryclaimisproved.

?¡Ý¦Ëandany¦È¡Ý22¦Ë,Continuingwiththemainargumentnow,?xany¦Ë

andsupposethatj:V[f]¡úM[j(f)]isa¦Ë-closed¦È-stronglycompactembeddingwitnessingtheMenaspropertyoff.Wemayassumej"¦Ë¡ÊMandj(f)(¦Ê)>¦Ä=|s|wheres=[id]¦Ç¡ÊM.Supposeg?QisV[f][G]-genericforthe<¦Ê-directedclosedforcingQofsizeatmost¦Ë.BythetechniquesusedpreviouslyIcanlifttheembeddingtoj:V[f][G]¡úM[j(f)][j(G)]inV[f][G][g][Gtail]suchthatthegenericj(G)=G?g?GtailoptsfortheforcingQatstage¦Ê,andthenextstageofforcingisbeyond¦Ä.IknowthatQ¡ÊM[j(f)][G]sinceM[j(f)]isclosedunder¦Ë-sequencesandQhassizeatmost¦Ë.Itisallowedtoappearinthestage¦Êlotterybecausej(f)(¦Ê)>¦Ä¡Ý¦È.Considernowtheforcingj(Q).Fromgandj"¦Ëwecanconstructj"ginM[j(f)][j(G)].Andsincethissethassize¦Ë<j(¦Ê)andisdirected,thereisaconditionp¡Êj(Q)beloweveryelementofj"g.Forcebelowptoaddj(g),andlifttheembeddingtoj:V[f][G][g]¡úM[j(f)][j(G)][j(g)]inV[f][G][g][Gtail][j(g)].Let?bethesetofallX?P¦Ê¦ËinV[f][G][g]suchthatj"¦Ë¡Êj(X).Itiseasytoseethatthisisnormaland?ne.Furthermore,theargumentsoftheprevioustheoremsshowthat?¡ÊV[f][G][g].Consequently,¦Êis¦Ë-

?extendstoa?nemeasuresupercompactthere.Finally,any?nemeasure?0onP¦Ê¦Ë

??0inV[f][G][g]bytheargumentsgivenpreviously,so¦Êisstronglycompactthereaswell,asdesired.Indeed,Ihaveshownthatevery¦Ë-supercompactnessmeasureinVextendstoameasureinV[f][G][g],andeverystrongcompactnessmeasureinVextendstoameasureinV[f][G][g].?Theorem

Noticethatwhilethelotterypreparationusesstrategicallyclosedforcingateverystage,Ionlyclaimpreservationby<¦Ê-directedclosedforcinginthepre-vioustheorem.Thiscannotbegeneralizedtoincludeall<¦Ê-strategicallyclosedforcing,becausetheforcingwhichaddsanon-re?ectingstationarysubsetto¦Êis<¦Ê-strategicallyclosed,butalwaysdestroyseventheweakcompactnessof¦Ê.Thereasonforusingstrategicallyclosedforcinginthelotterypreparationistoallow?<¦Ê

¡ì4IndestructibilityAftertheLotteryPreparation40

fortheforcingsuchasQS,whichisnotgenerally<¦Ê-closed,whilesimultaneouslyretainingthedistributivityofthetailforcingPtail.

Inanycase,itfollowsfromthepreviousargumentthatforasupercompactcardinal,thelotterypreparationaccomplisheseverythingthattheoriginalLaverpreparationwasmeanttoaccomplish:

Corollary4.6Afterthelotterypreparation,asupercompactcardinal¦Êbecomesindestructiblebyany<¦Ê-directedclosedforcing.

Proof:Ifoneusesafastfunction,thiscorollaryfollowsimmediatelyfromthepre-vioustheorem.Letmeillustrate,nevertheless,howonecandirectlyfollowLaver¡¯s

[Lav78]originalargumentinthelotterycontext,whileassumingonlytheMenaspropertyonf.Supposeg?QisV[G]-genericforsome<¦Ê-directedclosedforc-ingQ.Fixany¦Ëandletj:V¡úMbea¦È-supercompactembeddingforsome<¦Ê¦È¡Ý2¦Ë,|Q|whichwitnessestheMenaspropertyoff,sothatj(f)(¦Ê)>¦È.Be-lowaconditionwhichoptsforQinthestage¦Êlottery,theforcingj(P)factorsasP?Q?Ptail,wherePtailis¡Ü¦È-strategicallyclosedinM[G][g].ForcetoaddagenericGtail?Ptail,andinV[G][g][Gtail]lifttheembeddingtoj:V[G]¡úM[j(G)]wherej(G)=G?g?Gtail.Now,usingj"¦È,itfollowsthatj"g¡ÊM[j(G)],andsobythedirectedclosureofj(Q)thereisamasterconditionq¡Êj(Q)beloweveryelementofj"g.Forcetoaddj(g)belowqandlifttheembeddinginV[G][g][Gtail][j(g)]toj:V[G][g]¡úM[j(G)][j(g)].Let?bethenormal?nemeasureonP¦Ê¦Ëgermi-natedviajbyj"¦Ë.Since?measureseverysetinV[G][g],itsu?cestoshowthat?¡ÊV[G][g].Certainly?isinV[G][g][Gtail][j(g)].SincetheforcingGtail?j(g)was¡Ü¦È-directedclosedinV[G][g],itcouldnothaveadded?.So?isinV[G][g],asdesired.?Corollary

ImprovedVersion4.7Afterthelotterypreparationrelativetoafastfunctionandanyfurther<¦Ê-directedclosedforcing,everysupercompactnessmeasureon¦Êfromthegroundmodelextendstoameasureintheforcingextension,andeverysupercompactnessmeasureintheforcingextensionextendsameasurefromthegroundmodel.Furthermore,ifthegchholds,theneverysu?cientlylargesuper-compactnessembeddingfromthegroundmodelliftstotheextension.

ThisisanimprovementovertheLaverpreparation,throughwhichonecanliftanembeddingj:V¡úMonlywhenj(?)(¦Ê)isappropriate.

Proof:The?rsthalfofthe?rstsentencefollowsimmediatelyfromtheproofof

4.5.ThesecondhalffollowsfromRemark1.2.ThesecondsentencefollowsbythediagonalizationtechniqueofTheorems3.10and1.10.Speci?cally,ifV[f][G]

¡ì4IndestructibilityAftertheLotteryPreparation41

isthelotterypreparationrelativetothefastfunction,g?Qis<¦Ê-directedclosed

<¦Êforcingofsizeatmost¦Ëand2¦Ë=¦Ë+,thenany¦Ë-supercompactnessembedding

j:V¡úMliftstotheextensionj:V[f][G][g]¡úM[j(f)][j(G)][j(g)].?Theorem

ThepreviousargumentadmitsacompletelylocalanalogueinawaythatLaver¡¯soriginalpreparationdoesnot.Ingeneral,onecannotperformtheLaverpreparationofa¦Ë-supercompactcardinal¦Êunlessonehas¦Ë-supercompactnessLaverfunction;<¦ÊbutLaver¡¯sproofthatsuchafunctionexistsrequiresthat¦Êis2¦Ë-supercompactinthegroundmodel.Thus,ithasbeenopenwhetheranypartiallysupercompactcardinalcanbemadeindestructible,evenassumingthegch.Thisquestionisansweredbythefollowingtheorem.

Level-by-levelPreparation4.8If¦Êis¦Ë-supercompactinVand2¦Ë=¦Ë+,thenafterthelotterypreparationthe¦Ë-supercompactnessof¦Êisfullyindestructibleby<¦Ê-directedclosedforcingofsizeatmost¦Ë.

Proof:ThisisessentiallywhatIactuallyarguedintheprevioustheorem.Tosup-portthediagonalizationargument,oneonlyneedstheMenaspropertyonf.?Theorem

Ihaveshownbytheprevioustheoremsthatthelotterypreparationmakesanystronglycompactcardinal¦Êpartiallyindestructible;butperhapsthereismuchmoreindestructibilitythanIhaveidenti?ed,soitisnaturaltoask:

Question4.9Forwhichothernaturalforcingnotionsdoesastronglycompactcardinal¦Êbecomeindestructibleafterthelotterypreparation?

Letmeconsidernowthelotterypreparationofastrongcardinal¦Ê.Recallthat¦Êisstrongwhenforevery¦Ëthecardinal¦Êis¦Ë-strong,sothatthereisanembeddingj:V¡úMwithcriticalpoint¦ÊsuchthatV¦Ë?M.GitikandShelah[GitShl89],usingWoodin¡¯s[CumWdn]techniqueforpreservingastrongcardinal,showedhowtomakeanystrongcardinalindestructibleby¡Ü¦Ê-directedclosedforcing(indeed,theyimprovethistoweakly¦Ê-closedposetswiththePrikryproperty).IwouldliketoshowthatsuchindestructibilityisalsoachievedbytheLotterypreparation.Theorem4.10Afterthelotterypreparationofastrongcardinal¦Êsuchthat2¦Ê=¦Ê+,thestrongnessof¦Êbecomesindestructibleby¡Ü¦Ê-strategicallyclosedforcing.

Proof:ThisissimilartotheproofofTheorem3.6,exceptthatIwilloptfortheappropriateforcingatstage¦Êinj(P).SupposethatV[G]isthelotterypreparationde?nedrelativetoafunctionfwiththeMenaspropertyforstrongcardinalsinV.Theresultislocalinthatonlythe¦Ë-strongnessof¦ÊinVisneededtoknowthatthe<¦Ê

¡ì4IndestructibilityAftertheLotteryPreparation42

¦Ë-strongnessof¦ÊisindestructibleoverV[G]byanyforcingnotionofrankbelow¦Ë.SupposeH?Q¡Ê(V[G])¦ËisgenericoverV[G]for¡Ü¦Ê-strategicallyclosedforcingQ.Fixa¦Ë-strongembeddingj:V¡úMfromthegroundmodelsuchthatj(f)(¦Ê)>¦Ë.AsinTheorem3.6,ImayassumethatM={j(h)(s)|h¡ÊV&s¡Ê¦Ä<¦Ø},where¦Ä=?¦Ë<j(¦Ê).Letpbetheconditioninj(P)whichoptstoforcewithQinthestage¦Êlottery.Sincethenextinaccessiblebeyondbeyond¦Ëmustbebeyond¦Ä,theforcingj(P)factorsbelowpasP?Q?Ptail,wherePtailis¡Ü¦Ä-strategicallyclosedin

¨B=j(h)(¦Â)M[G][H].Theremustbesomeordinal¦Â<¦ÄandfunctionhsuchthatQ

¨BforQ.LetforsomenameQ

X={(z¨B)G?H|z¨B=j(g)(¦Ê,¦Â,¦Ä)forsomefunctiong¡ÊV}.

Itisnotdi?culttoverifytheTarski-Vaughtcriterion,sothatX?M[G][H].Also,Xisclosedunder¦Ê-sequencesinV[G][H].Notethat¦Ê,¦Â,¦Ä,p,QandPtailareallinX.Furthermore,sincePtailisj(¦Ê)-c.c.inM[G][H]andthereareonly2¦Ê=¦Ê+manyfunctionsg:¦Ê¡úV¦ÊinV,thereareatmost¦Ê+manyopendensesubsetsofPtailinX.SincePtailis¡Ü¦Ê-closed,onecanperformthediagonalizationargumenttoconstructinV[G][H]a?lterGtail?PtailwhichisX-generic.LetmearguenowthatGtailisalsoM[G][H]-generic.IfDisanopendensesubsetofPtailinM[G][H],

¨BG?HforsomenameD¨B¡ÊM.Consequently,D¨B=j(g)(¦Ê,¦Ê1,...,¦Ên)thenD=D

forsomefunctiong¡ÊVand¦Ê<¦Ê1<¡¤¡¤¡¤<¦Ên<¦Ä.Let

Dremainsopenanddense.Furthermore,

D,andsince

¡ì5ImpossibilityTheorem43

Theorem4.11Afterthelotterypreparationofastrongcardinal¦Êrelativetoa

?Sfastfunction,thestrongnessof¦ÊisindestructiblebyAdd(¦Ê,1)andbyQSandQ

whenever¦Ê¡Êj(S)forarbitrarilylarge¦Ë-strongembeddingsj.

¡ì5ImpossibilityTheorem

OnemighthopetogeneralizetheprevioustheoremsbyprovingthatthelotterypreparationorsomeotheralternativetotheLaverpreparationcanmakeanystronglycompactcardinalfullyindestructible.Butthishopewillnotbeful?lled;thesadfactwhichIwillnowproveisthatnopreparationwhichnaivelyresemblestheLaverpreparationcanmakeastronglycompactnon-supercompactcardinalfullyindestructible.

ImpossibilityTheorem5.1Thelotterypreparationwillalwaysfailtomakeastronglycompactcardinalfullyindestructibleunlessitwasoriginallysupercompact.Infact,anyforcingwhichresemblestheLaverpreparation¡ªaniterationofstrate-gicallyclosedforcinginwhichthenextnontrivialstageofforcingliesbeyondthesizeofthepreviousone¡ªwillfailtomakeastronglycompactnon-supercompactcardinalfullyindestructible.Indeed,afteraddingasingleCohenreal,thereisno¡Ü¦Ø1-strategicallyclosedpreparatoryforcingwhichmakesastronglycompactnon-supercompactcardinal¦Êfullyindestructible.

Thistheoremreliesonmyrecentworkin[Ham¡Þ]and[Ham98],inwhich,asImentionedinRemark1.2,Ide?nedthatanotionofforcingadmitsagapbelow¦ÊwhenitfactorsasP1?P2where,forsome¦Ä<¦Ê,|P1|<¦Äand?P2is¡Ü¦Ä-strategicallyclosed.AnykindofLaverpreparation,obtainedbyiteratingtheclosedforcingprovidedbysomekindofLaverfunction,admitsnumerousgapsbelow¦Ê.Thelotterypreparationadmitsagapbetweenanytwolotterystages.TheImpossibilityTheorem5.1,therefore,isanimmediateconsequenceofthefollowingtheorem.Theorem5.2Forcingwhichadmitsagapbelowastronglycompactcardinal¦Êcannotmakeitindestructibleunlessitwasoriginallysupercompact.

Thistheoremisanimmediateconsequenceofthefollowingtheorem,wherecoll(¦Ê,¦È)istheusualforcingnotionwhichcollapses¦Èto¦Ê.

Theorem5.3IfV[G]admitsagapbelow¦Êand¦ÊismeasurableinV[G]coll(¦Ê,¦È),then¦Êwas¦È-supercompactinV.

Proof:SupposethatV[G]admitsagapbelow¦Ê,that¦Êremainsmeasurableafterthecollapseof¦Èto¦Ê.Imustshowthat¦Êis¦È-supercompactinV.Fixan

¡ì5ImpossibilityTheorem44

embeddingj:V[G][g]¡úM[j(G)][j(g)]withcriticalpoint¦Ê,witnessingthat¦ÊremainsmeasurableinV[G][g].NoticethattheforcingG?gadmitsagapbelow¦Ê.Sincemoreoverjisanultrapowerembedding,M[j(G)][j(g)]isclosedunder¦Ê-sequencesinV[G][g].Since¦Èhasbeencollapsed,itisthereforealsoclosedunder¦È-sequences.ItfollowsdirectlynowfromtheGapForcingTheoremof[Ham¡Þ],explainedinRemark1.2,thatj?Visde?nableinVandthatMisclosedunder¦È-sequencesinV.Thus,¦Êis¦È-supercompactinV,asdesired.?Theorem

Corollary5.4Thefollowingareequivalent:

1.¦Êissupercompact.

2.¦Êismeasurableinaforcingextensionwhichadmitsagapbelow¦Êandinthisextensionthemeasurabilityof¦Êisindestructiblebycoll(¦Ê,¦È)forany¦È.

Proof:Certainly1implies2becausetheLaverpreparation(ortheLotteryprepa-ration)ofasupercompactcardinal¦Êmakes¦Êindestructibleandadmitsagapbelow¦Ê.Conversely,2implies1bytheprevioustheorem.?Corollary

Infact,ifthegchholds,thentheresultiscompletelylocal:¦Êis¦È-supercompactifandonlyifthereisaforcingpreparationwhichadmitsagapbelow¦Êwhichmakesthemeasurabilityof¦Êindestructiblebycoll(¦Ê,¦È).Fortheforwarddirection,onecanuseTheorem4.8.

Whileonemightsupposefromtheseresultsthateveryindestructiblestronglycompactcardinalissupercompact,thiscannotberightbecausethetheoremofApterandGitik[AptGit97],whichImentionedearlier,saysthatitispossibletohaveafullyindestructiblestronglycompactcardinalwhichisalsotheleastmea-surablecardinal.Suchacardinalcouldneverbesupercompact.Beginningwithasupercompactcardinal,ApterandGitik¡¯spreparationinvolvesiteratedPrikryforcingandconsequentlydoesnotadmitagapbelow¦Ê.

Thetheoremabovedoesshow,however,thatonecannothopetomakestronglycompactnon-supercompactcardinalsindestructiblewithforcingthatnaivelyre-semblestheLaverpreparation,sinceallsuchforcingswouldadmitagapbelow¦Ê.Inparticular,onecannotprovethatanystronglycompactcardinalcanbemadeindestructibleby¡Ü¦Ø1-closedpreparatoryforcing,oreven¡Ü¦Ø1-strategicallyclosedpreparatoryforcing,sinceifsuchforcingwereprefacedbyaddingaCohenreal,thenthecombinedforcingwouldadmitagap.Thus,whenitcomestomakinganystronglycompactcardinalfullyindestructible,weevidentlyneedacompletelynewtechnique.Atthemoment,thefollowingquestionsareopen:

Bibliography45

Question5.5Suppose¦Êisstronglycompact.Isthereapreparatoryforcingto

makethestrongcompactnessof¦ÊindestructiblebyforcingoftheformAdd(¦Ê,¦Ä)?

orjustbyAdd(¦Ê,¦Ê+)?oroftheformcoll(¦Ê,¦Ä)?orjustcoll(¦Ê,¦Ê+)?

KobeUniversity,Kobe,Japan,and

TheCityUniversityofNewYork

hamkins@postbox.csi.cuny.edu

http://www.library.csi.cuny.edu/dept/users/hamkins

Bibliography

[Apt96]ArthurW.Apter,personalcommunication

[Apt97]ArthurW.Apter,PatternsofCompactCardinals,AnnalsofPureandAppliedLogic89no.7p.

101-115(????)

[AptGit97]ArthurW.Apter&MotiGitik,Theleastmeasurablecanbestronglycompactandindestructible,

toappearintheJournalofSymbolicLogic

[Apt98]ArthurW.Apter,Laverindestructibilityandtheclassofcompactcardinals,JournalofSymbolic

Logic63no.1p.149-157(????)

[CumWdn]JamesCummings&W.HughWoodin,GeneralisedPrikryforcings,(unpublishedmanuscript)

[GitShl89]MotiGitik&SaharonShelah,Oncertainindestructibilityofstrongcardinalsandaquestionof

Hajnal,Arch.Math.Logic28p.35-42(????)

[Ham94]JoelDavidHamkins,Liftingandextendingmeasures;fragilemeasurability,(????)UCBerkeley

Dissertation

[Ham97]JoelDavidHamkins,CanonicalseedsandPrikrytrees,JournalofSymbolicLogic62no.2p.

373-396(????)

[Ham98]JoelDavidHamkins,Destructionorpreservationasyoulikeit,AnnalsofPureandAppliedLogic

91p.191-229(????)

[Ham¡Þ]JoelDavidHamkins,GapForcing,submittedtotheBulletinofSymbolicLogic(availableonthe

author¡¯swebpage)

[KunPar71]K.Kunen,J.Paris,Booleanextensionsandmeasurablecardinals,AnnalsofMath.Logic2p.

359-377(????)

[Lav78]RichardLaver,Makingthesupercompactnessof¦Êindestructibleunder¦Ê-directedclosedforcing,

IsraelJournalMath29p.385-388(????)

[Mag76]MenachemMagidor,Howlargeisthe?rststronglycompactcardinal?,AnnalsofMathematical

Logic10p.33-57(????)

[Men74]TelisK.Menas,Onstrongcompactnessandsupercompactness,AnnalsofMathematicalLogic7p.

327¨C359(????)

¸ü¶àÏà¹ØÍƼö£º
The story of an hour book review

TheStoryofanHourBookReviewTheStoryofanHourisashortstorywrittenbyKateChopinandpublishedin1894Thestorydescribestheser...

The Story of an HourÊÇһƪ·Ç³£ÖøÃûµÄ¶ÌƪС˵

TheStoryofanHourÊÇһƪ·Ç³£ÖøÃûµÄ¶ÌƪС˵×÷Õß¿­ÌØФ°îÐðÊöÁËÅ®Ö÷È˹«MrsMallardLouiseÔÚµÃÖªÕÉ·ò¹ýÊÀÖ®ºóµÄһϵÁз´Ó¦¿ÎÌÃÉÏÀÏʦ˵ÒÑÓÐÐí¶àÃû¼Ò¶ÔÕâƪС˵×ö³öÆÀÂÛµ«²»ÖªÎªºÎµÚÒ»´Î¶ÁÕâƪС...

The Analysis of The Story of an Hour¶ÔһСʱ¹ÊʵķÖÎö

TheAnalysisofTheStoryofanHourThestoryofanhourisaboutawomanwhogainedthepreciousfreedomwheninformedtheaccidentaldeath...

The story of an hour Ó¢ÎļøÉÍ

1AFeministPerspectiveThestoryTheStoryofanHourwrittenbyKateChopinisashortbutpowerfulstoryTheendingofthestoryofanhour...

Ó¢ÃÀС˵ÉÍÎö The story of an hour ¾ø¶ÔÍêÕû,¸ß·Ö!!!

ºÚÁú½­Íâ¹úÓïѧԺ20xx20xxѧÄêµÚ1ѧÆÚTerm120xx20xx3AcademicYearHeilongjiangInternationalUniversityAStudyintoFeministCons...

The Story Of An Hour ÒëÎÄÐÀÉÍ

TheStoryOfAnHourÒëÎÄÐÀÉÍÕã½­·î»¯¶þÖÐÎâ²ÊÔƶÁÁËTheStoryofAnHourʹÎÒ¸ÐÊܵ½Õâ¹ÊʳäÂúÁËÓÄĬºÍ·í´ÌËüµÄ½á¾Ö³öºõÒâÁÏÕâʹÈËÏëÆðÁËÏîÁ´µÄ½á¾Ö×÷Õ߶ԹÊÊÂÖеÄÖ÷È˹«±íʾǿÁҵķí´ÌÒ²¸ø¶ÁÕßÔöÌí...

´ÓŮȨÖ÷Òå¿´The story of an hour

AStudyonFeminismofTheStoryofanHourAbstractKateChopinisoneofAmericansmostimportantwomenwritersofthe19thcenturyKateCh...

The Story of An Hour,һСʱµÄ¹ÊÊÂ

һСʱµÄ¹ÊÊÂ1894¿­ÌØФ°î185119xxÖªµÀÂíÀ¼µÂ·òÈËMrsMallardµÄÐÄÔàºÜË¥ÈõËûÃǾ¡¿ÉÄÜСÐÄÒíÒíµØ°ÑËýÕÉ·òËÀÍöµÄÏûÏ¢¸æËßËýÂêÀ¼µÂµÄ½ã½ãԼɪ·ÒJosephineÓò»Á¬¹áµÄÓïÑÔÕÚÕÚÑÚÑڵظøËý°µÊ¾×ÅËýÕÉ·ò...

The_story_of_an_hourÓ¢ÎÄÔ­ÎÄ

ThestoryofanhourKnowingthatMrsMallardwasafflictedwithahearttroublegreatcarewastakentobreaktoherasgentlyaspossibleth...

The First Seven Years×ÊÁÏ

TheFirstSevenYearsCriticalOverviewWithitsJewishimmigrantcharacterslivingindingysurroundingsandburdenedbyt...

The First Seven Years

TheFirstSevenYearsCriticalOverviewWithitsJewishimmigrantcharacterslivingindingysurroundingsandburdenedbytheweightof...

Checkpoints_1_the_first_seven_years

TheFirstSevenYearsbyBernardMalamudAbouttheauthorBernardMalamudApril2619xxBrooklynNewYorkMarch1819xxwasanauthorofnov...

the story of an hour ¶Áºó¸Ð£¨34ƪ£©