西安第三,第四,第五污水处理厂实习报告

时间:2024.4.20

毕业实习报告

一、毕业实习安排.... 2

二、毕业实习要求.... 2

三、毕业实习正文.... 3

3.1、西安第三污水处理厂概况.... 3

3.2、第三污水处理厂工艺流程图.... 3

3.3 主要处理构筑物工艺设计参数.... 3

3.3.1 粗格栅.... 3

3.3.2 鼓风机房与细格栅.... 4

3.3.3 曝气沉砂池.... 4

3.3.4 生物反应区.... 4

3.3.5终沉池.... 6

3.3.6重力浓缩池.... 7

3.3.7污泥平衡池.... 8

3.3.8污泥浓缩脱水车间.... 9

3.3.9中水处理系统.... 9

3.3.10厂区平面图效果图.... 9

4.1第四污水处理厂概况.... 10

4.2进水水质指标.... 10

4.3出水水质指标.... 11

4.4第四污水处理厂工艺流程图.... 11

4.5除臭工艺技术路线确定.... 12

4.6 主要处理构筑物工艺设计参数.... 12

4.6.1 进水控制井.... 12

4.6.2 粗格栅间及提升泵房.... 12

4.6.3 细格栅间及曝气沉砂池.... 12

4.6.4 初次沉淀池.... 13

4.6.5 生物反应池.... 13

4.6.6 终沉池.... 13

4.6.7 接触消毒池.... 13

4.6.8 鼓风机房.... 13

4.6.9 加氯间及投药间.... 14

4.6.10 初沉池污泥泵房.... 14

4.6.11 剩余及回流污泥泵房.... 14

4.6.12 污泥浓缩池.... 14

4.6.13 储泥曝气池.... 14

4.6.14污泥脱水车间.... 14

4.6.15污泥外运.... 15

5.1第五污水处理厂概况.... 15

5.2进水水质指标.... 15

5.3出水水质指标.... 16

5.4第五污水处理厂工艺流程图.... 16

5.5 主要处理构筑物工艺设计参数.... 16

5.5.1 进水控制井.... 16

5.5.2 粗格栅间及提升泵房.... 16

5.5.3 细格栅间及曝气沉砂池.... 17

5.5.4 初次沉淀池.... 17

5.5.5 生物反应池.... 17

5.5.6 终沉池.... 18

5.5.7 接触消毒池.... 18

5.5.8 鼓风机房.... 18

5.5.9 五厂小结.... 18

六、毕业实习总结.... 19

前言:在学校的大力支持和带队老师的带领下,按照学校的安排,我们一行三十多人前去西安,在西安第三、第四、第五污水处理厂进行了为期一个星期的毕业实习。在此将实习内容整理成实习报告。

一、毕业实习安排

真正的实习时间为四天。第一天主要是参观在三厂的工艺流程,三十多人各分两组,上午参观水的工艺流程,下午参观泥的工艺流程。第二天为实验环节,由厂里的技术人员带领我们参与了污水处理厂每天必测的污水处理指标,如BOD,COD,SS,TP,TS等等,同时也参观了许多大型试验仪器。第三天主要是参观了四厂的处理工艺,四厂采用的是倒置A/A/O工艺,同时看到了四厂的施工图纸,对以后的学习有很大的帮助。第四天主要参观了五厂的工艺流程,于四厂相似,五厂采用的是A/A/O工艺。

二、毕业实习要求

1、实习学生在实习过程中,必须遵守国家法律法规、学校和教学基地的各项规章制度,积极参加所在实习单位的政治和学术活动,培养良好的职业道德,倡导无私奉献的精神,树立全心全意为人民服务的思想。

2、实习学生要认真学习理论知识、牢固掌握专业基本技能。要有主动学习精神和创新意识,力争在有限的时间内获得更多知识,掌握更多的专业技能。

3、实习学生必须尊重指导教师、虚心学习,培养严肃认真、实事求是、团结协作、勤奋刻苦的优良学风。

4、指导教师应具有较强的教学意识和责任感,言传身教,为人师表,按照实习大纲的要求,切实做好实习学生的思想工作和业务指导,从严要求,保证实习质量。

5、各教学基地和科室要把实习教学列为本单位或本科室的重要工作内容,落实和安排好实习学生的学习和生活,加强管理,确保实习工作的顺利完成。

三、毕业实习正文

3.1、西安第三污水处理厂概况

  西安第三污水处理厂总投资2.62亿元,日处理污水10万吨,回用水5万吨。西安市第三污水处理厂位于河东岸南牛寺村,日处理污水量为10万吨,每日中水回用可达10万立方米。项目分两期建设。一期工程日处理城市污水10万立方米,中水回用5万立方米,运行的第三污水处理厂主要接纳河东西两岸和纺织城地区2509公顷范围内的工业废水和生活污水,服务人口29万人,它对提高西安市污水处理率、改善东郊地区污水排放标准起到了重要作用。

污水处理厂进水水质;

COD=390 mg/L; BOD=200 mg/L; SS=250 mg/L ;NH3-N=20 mg/L; TP=4 mg/L出水水质; COD=60 mg/L; BOD=20 mg/L; SS=20 mg/L ;NH3-N=8 mg/L; TP=1.5 mg/L

回用水水质; COD=50 mg/L; BOD=10 mg/L; SS=5 mg/L ;TN=8 mg/L; TP=1.0 mg/L

第三污水处理厂污水排放执行的是城镇污水排放一级B标准。回用水经过混凝沉淀和砂滤等工序处理送往电厂。

3.2、第三污水处理厂工艺流程图

第三污水处理厂的主体工艺为氧化沟,其工艺流程图见下图

3.3主要处理构筑物工艺设计参数

3.3.1粗格栅

    采用的是四组反捞式粗格栅都是采用间歇式运行的方法,粗格栅前后有速闭闸门,目的是为污水处理设备检修,可以实现在3-5s关闭进水,当后续处理工艺需要检修的时候,污水可以从超越管内流到下一个构筑物或者直接流入河道。粗格栅后接四台污水提升泵,每台泵都为2080m3/h,其中三台定速,一台变速并且常开,并且每台泵前后都有速闭阀,泵房顶部设计有电葫芦,便于潜水泵的检修。

3.3.2鼓风机房与细格栅

第三污水处理厂采用的是将鼓风机房与细格栅合建,采用的是半地下室的。鼓风机房有两台罗茨鼓风机。三台螺旋格栅除砂机,在细格栅间还有在线监测仪,实时检测进水水质,同步传到环保局和中控室,检测的数分别有;COD,NH3-N,PH,流量,四个数值。

3.3.3曝气沉砂池

本厂采用曝气沉砂池,配置的是桥式吸砂机,砂水分离器,隔油一个小时清除一次,平面尺寸为38×10m .水深3m。,曝气是在水深1/3处曝气,出水采用旋转式调节堰。

3.3.4生物反应区

第三污水处理厂所采用的是奥贝尔氧化沟,一期工程共四座,二期运行两座,在建两座。其工艺特征如下:
  1、奥贝尔氧化沟由三个同心椭园形沟道组成,污水由外沟道进入,与回流污泥混合后,由外沟道进入中间沟道再进入内沟道,在各沟道循环达数百到数十次。最后经中心岛的可调堰门流出,至二次沉淀池。在各沟道横跨安装有不同数量水平转碟曝气机,进行供氧兼有较强的推流搅伴作用。外沟道体积占整个氧化沟体积的50%-55%,溶解氧控制趋于0.0mg/L,高效地完成主要氧化作用;中间沟道容积一般为25%-30%,溶解氧控“在1.0mg/L左右,作为“摆动沟道”,可发挥外沟道或内沟道的强化作用;内沟道的容积约为总容积的15%-20%,需要较高的溶解氧值(2.0mg/L左右),以保证有机物和氨氮有较高的去除率。
  2、外沟道的供氧量通常为总供氧量的50%左右,但80%以上的BOD可以在外沟道中去除。由于外沟道溶解氧平均值很低,绝大部分区域DO为0.0mg/L,所以,氧传递作用是在亏氧条件下进行的,氧的传递效率有所提高,有一定的节能效果。加之下面将谈到的外沟道内所特有的同时硝化反硝功能,节能效果更为明显。内沟道作为最终出水的把关,一般应保持较高的溶解氧,但内沟道容积最小,能耗相对较低。中沟道起到互补调节作用,提高了运行的可靠性和可控性。奥贝尔氧化沟独特的构造和机理,使之以较节能的方式获得稳定的处理效果。
  3、奥贝尔氧化沟具有较好的脱氮功能。在外沟道形成交替的耗氧和大区域的缺氧环境,较高程度地发生“同时硝化反硝化”,即使在不设内回流的条件下,也能获得较好的脱氮效果。
  4、奥贝尔氧化沟具有推流式和完全混合式两种流态的优点。对于每个沟道内来讲,混合液的流态基本为完全混合式,具有较强的抗冲击负荷能力;对于三个沟道来讲,沟道与沟道之间的流态为推流式,有着不同的溶解浓度和污泥负荷,兼有多沟道串联的特性,有利于难降解有机物的去除,并可减少污泥膨胀现象的发生。
  5、奥贝尔氧化沟采用的曝气转碟,其表面密布凸起的三解形齿结,使其在与水体接触时将污水打碎成细密水花,具有较高的充氧能力和动力效率。通过改变曝气机的旋转方向、浸水深度、转速和开停数量,可以调整供氧能力和电耗水平。尤其是蝶片可以方便的拆装,更为优化运行提供了简便手段。另一方面,由于转碟具有极强的整流和推流能力,氧化沟有效水深可达4米以上,即使因优化控制需要而减少曝气机运行台数时,一般也不会发生沉淀现象这是曝气转碟和奥贝尔沟型所独具的优点。

为了更好的脱磷,第三污水处理厂在氧化沟的前面设置了厌氧池,曝气采用转碟曝气。曝气转碟属转盘类水平推流式表面曝气器,由盘片、水平轴及其两端的滚动轴承、减速机和电动机组组成。每片圆形的曝气转碟由两个半圆形部件组成。每对半圆形部件跨穿水平轴,组成整体的圆片,每个碟片可以独立拆装,便于调节安装密度,使整机达到所需的充氧能力,每米轴长一般装碟片3片至5片。碟片采用聚苯材料注塑或采用玻璃钢压铸而成,其中聚苯材料碟片自重较轻,动力效率较高,国内已有质量很好的合资产品。碟片表面布有梯形凸块,兼有供氧和推流搅拌的功能。水平轴采用厚壁无缝钢管制造,表面作特种防腐处理。驱支装置主要由减速机和电机组成。
  曝气转碟的基本性能如下:
  曝气转碟直径:1400mm;
  适用转速:50-55rpm,经济转速:50rpm;
  适用浸没深度:400-530mm,经济浸没深度:500mm;
  单盘标准清水充氧能力:0.8-1.6kgO2/kw.h(以轴功率计);
  适用工作水深:4-5m;
  水平轴跨度:〈=10.0m;
  安装密度:<5ds/m。

脚下站的地方为氧化沟外沟的转蝶曝气所在的地方。

3.3.5终沉池

第三污水处理厂所采用的是幅流式二沉池,采用周边进水周边出水。共六座,一期四座,二期两座。分别对应六座奥贝尔氧化沟。采用的是单吸式吸泥机。

如图所示:

3.3.6重力浓缩池

现在二期采用的是重力浓缩池,一期二期的AB,CD,EF六座氧化沟的经二沉池后均流入重力浓缩池,进行重力浓缩,省去了一期机械浓缩的费用,特别是药剂的费用。

但是重力浓缩的出水效果并不是很好,如图所示,浓缩池泥水分离效果并不是很好。

或许是因为是刚建成的工艺,所以出水效果并不是太好。

3.3.7污泥平衡池

污泥平衡池是二期新建的构筑物,接纳来自于初沉池和重力浓缩池的污泥。进行污泥脱水之前的调理:水质的均衡,污泥的混匀。

经过终沉池的的沉淀,污泥经过污泥泵房打到污泥平衡池。平衡池的为一个圆柱,尺寸为:H×D=7×13m。平衡池的主要作用为;1、平衡污泥浓度。2、曝气防止厌氧,防止厌氧菌释磷。泥龄最大可以达到23天。污泥含水率一般在99.1~99.3%。底部为圆锥型,污泥靠重力自流打入污泥浓缩脱水车间。

3.3.8污泥浓缩脱水车间

第三污水处理厂一期所采用的是污泥浓缩机,采用型号为转塞式污泥浓缩机,这在很大程度上节约了占地,时污泥浓缩时间比较好控制,但是从何加大了成本,采用污泥浓缩机无疑要加药,要用电,所以成本比较高。污泥浓缩后的污泥含水率为96~97%.

污泥脱水采用的机械脱水,离心脱水和螺旋压榨机并用。三台离心脱水机和一台螺旋压榨机。污泥脱水后污泥含水率在80%左右。

3.3.9中水处理系统

中水处理系统主要包括混凝沉淀池和砂滤池两大反应器。

混凝沉淀构成部分分别为;折形板反应器,斜板管沉淀池,V型槽。底部是锥形采用管径为DN150虹吸排泥,排泥间隔为10h/次。

采用V型砂滤。从上往下分别为,粒径1.2mm的石英砂1.2m。10cm厚的鹅卵石层,不均匀系数为1.3~1.4. 最下面为衬托层布有2687个滤头。反冲洗时间间隔一般为24~48h,并且反冲洗的污水排入粗格栅之中。

3.3.10厂区平面图效果图

4.1第四污水处理厂概况

西安市第四污水处理厂是继邓家村污水厂、北石桥污水净化中心和第三污水处理厂之后,建设的第四座城市污水处理厂。该厂位于西安市北郊北绕城高速路以北,尚宏路以西,郑西客运专线以南,规划远期建设规模50×104m3/d,近期建设规模25×104m3/d。第四污水处理厂是西安市利用日本国际协力银行贷款水环境综合治理一期工程中项目之一,建成后将对西安市西北部地区的水环境、漕运明渠及渭河水质改善具有重大意义。该项目由西安市市政设计研究院和中国市政工程西北设计研究院联合设计,根据西安市排水工程规划及2002~20##年对水量的调查分析,按远期50×104m3/d处理规模进行征地和总平面布置,按近期25×104m3/d处理规模进行设计和建设,并适当预留污水深度处理再生利用设施用地。该项目已于20##年12月开工建设,目前工程施工顺利。

4.2进水水质指标

污水处理厂进水水质是工程设计的基本参数之一,关系到处理工艺的选择与确定,进而影响工程投资、占地和运行费用等。通过对西安市邓家村污水处理厂和北石桥污水净化中心进水水质的大量调查,结果表明,西安市城市污水处理厂入流水质指标数据总体符合正态分布。根据统计学原理,提出了污水厂设计进水水质频率保证率的方法,即对进水水质有小到大进行排序,采用85%的水质频率统计值作为污水厂设计水质[1]。通过频率保证率的方法对2002~20##年第四污水处理厂进厂总管水质监测结果进行分析,其进水水质指标的变化范围为:CODcr=192~412mg/L, BOD5=108~203mg/L, SS=117~303mg/L, NH3-N=18.3~41.5mg/L, TN=27.8~46.2mg/L, TP=3.0~4.11 mg/L 。结果表明各项水质指标均不是很高,属于典型的城市污水水质。采用85%的保证率得到西安市第四污水处理厂进水水质如表1所示。此结果与可行性研究报告中的设计值比较,CODcr减小7.3%,BOD5减小17.4%,SS增加4%,NH3-N减小14%。依据该数值进行污水处理厂的设计,将使污水处理厂的建设投资减少。

4.3出水水质指标

第四污水厂处理后的水经漕运明渠最终排入渭河,根据国家《地面水环境质量标准》(GB3838—2002),渭河在西安市区北郊草滩段属于Ⅲ类水域,因此按《城镇污水处理厂污染物排放标准》(GB18918-2002)规定排入Ⅲ类水域的出水,应执行一级标准中的B标准。根据上述规定并结合西安市环境保护局关于西安市第四污水处理厂排放标准的意见,确定第四污水处理厂的出水水质确定为:

CODcr≤60 mg/l BOD5≤20 mg/l SS≤20 mg/l

TN≤25 mg/l NH3-N≤8 mg/l TP≤1.5 mg/l

4.4第四污水处理厂工艺流程图

第四污水处理厂采用的是倒置A2O工艺,对脱氮除磷有很好的效果,在此基础上有脱臭的效果。其工艺流程图如下图;图4.1

4.5除臭工艺技术路线确定

污水处理厂运行过程中,产生臭味的区域主要为污水、污泥的前处理单元,因此,设计中主要对粗格栅间、提升泵房、曝气沉砂池、污泥浓缩池和储泥曝气池的臭气收集并进行处理。目前工程中除臭工艺主要有生物除臭和化学除臭,而生物除臭相比化学除臭具有除臭效果显著、造价低、能耗小,运行费用省,无二次污染,并能承受高浓度废气负荷的冲击等特点。

4.6主要处理构筑物工艺设计参数

4.6.1进水控制井

进水控制井按远期规模一次建成,总进水管为d2400mm,控制井分配至近远期两根管均为d2000mm,另设d2200超越管一根,发生事故时溢流至漕运明渠。控制井为地下式钢筋混凝土结构,平面尺寸L×B=9.9×6.3m,深度12.31 m。安装φ2000 闸板及配套手电两用启闭机2套;φ2200 闸板及配套手电两用启闭机1套。

4.6.2粗格栅间及提升泵房

粗格栅间为地下式钢筋砼结构,平面尺寸L×B=10.5×12.5 m,深度14.3 m,地面上高6.3m。设计格栅渠道共3条,每条宽1.7 m,渠内设间隙为20mm的不锈钢栅条,共用液压移动抓爪式格栅清污机1套。

提升泵房与粗格栅间合建,为半地下式钢筋砼结构,泵房尺寸 L×B=20.4×12.6m,地下深14.3m,地面上高6.3m。其中集水池、水泵间位于地面以下,控制间及配电间位于地上。泵房安装潜污泵 5 台(4用1备),单台流量2605m3/h,扬程19.5m,配电机功率192 kw;潜污泵 3 台(2用1备),单台流量1421m3/h,扬程19.1m,配电机功率N=109kw。

4.6.3细格栅间及曝气沉砂池

细格栅间为地上式钢筋砼结构,平面尺寸 18.9×16.6 m。设计格栅渠宽1.6m,共计7条,安装阶梯式格栅除污机6台,栅条间隙6mm,配电机功率2.2 kw;钢栅条事故格栅一道,人工清渣,无轴螺旋输送机1套,L=15m,配电机功率3.0 kw,螺旋压榨机1台,配电机功率6 kw。曝气沉砂池与细格栅间和建,为地上式矩形钢筋砼结构,分两格,每格长 47.2m,宽4.7m,池深 5.65 m。根据西安市现有两座污水厂运行经验,曝气沉砂池设计停留时间为7min,水平流速:V水=0.1m/s,气水比:0.2m3/m3水。安装桥式吸砂机一套,L=10m,配电机功率2×0.55kw,砂水分离器1套,处理量 27l/s ,配电机功率0.75kw,无轴螺旋输送机1套,L=12m,配电机功率3.0 kw,螺旋压榨机1台,配电机功率6 kw。细格栅间一层为鼓风机房,安装鼓风机3台(2用1备),单台风量22.82 m3/min,风压58.8Kpa,配电机功率37 kw。另外,用于储泥曝气池的鼓风机也安装在一层,共2台(1用1备),单台风量 4.70 m3/min,风压58.8Kpa,配电机功率7.5 kw。

4.6.4初次沉淀池

采用占地少、处理效果稳定可靠的平流式沉淀池。通过絮凝沉淀试验,在有效水深为3.0m、水力停留时间为2h的条件下,研究分析了初次沉淀池对污染物的去除率,结果为:CODcr平均去除率为20.8%,而悬浮固体SS的平均去除率为51.3%, TN平均去除率为7.0%,TP平均去除率为8.1%。设计中采用了这一试验结果[4]。初次沉淀池为地上矩形钢筋砼结构,每组平面尺寸L×B= 60.85 ×76.9m,(包括配水渠),池深5.1 m。分2组,每组6座,共12座,设计水力停留时间1.94h,水平流速7mm/s,表面负荷 1.92 m3/ m2·h,安装桥式刮泥机12套,配电机功率0.55 kw。

4.6.5生物反应池

通过模型装置试验研究,对污水处理厂入流污水的生化反应动力学参数的进行了测定,结果表明:污泥产率系数a=0.4573 kgSS/kgBOD5,污泥衰减系数b=0.0125 d-1;去除单位重量BOD5所需的氧量a'为0.6266kgO2/kgBOD5,单位重量MLVSS内源呼吸需氧量b'为0.0924 kgO2/kgVSS×d。此试验结果与《给水排水设计手册》(第5册)中给出的参数值相比,与建议值有一定的差距[5]。实际设计计算时采用模型试验实测值。

生物反应池为半地下式钢筋砼结构,共2组,每组4座。每组平面尺寸L×B= 118.30 m×100m,有效水深6.0m。采用倒置A2/O工艺,设计水力停留时间为:缺氧池1.98h,厌氧池1.0h,好氧池7.94h;污泥负荷为0.11 kgBOD5/kg MLSS·d,混合液浓度3040 mg/l,最大回流比200%,污泥龄14.03 d。缺氧池、厌氧池中均安装潜水混合器4×6 台,配电机功率3.1kw;混合液内循环泵4× 3 台,每台流量:532L/S,扬程0.7m,配电机功率13kw;好氧池中安装棕刚玉盘式微孔曝气器共计4×7644个。厌氧、缺氧池中设有ORP测定仪,在线显示池内氧化还原电位;好氧池中设有溶解氧仪,在线显示水中溶解氧含量,并反馈至鼓风机,随时调节鼓风机送风量。

4.6.6终沉池

终沉池采用圆形辐流式沉淀池,共8座,为地下式圆形钢筋砼结构, 内径45m,池边水深4.5m,中心池深10.75m(含泥斗)。设计表面负荷为0.9m3/m2.h,沉淀时间为2.5h。安装φ45m周边传动刮泥机 8 台 ,配电机功率0.37kw。

4.6.7接触消毒池

采用廊道式接触消毒池,共1座(分2格),两格之间为巴氏计量槽,实时记录污水厂处理水量,接触池为地下式钢筋砼结构,设计接触时间t=30min,平面尺寸L×B=61.4m×33.6m,池深3.8m。另外该池中安装潜污泵2台(1用1备),配电机功率4KW,交替使用,供给厂区绿化用水。

4.6.8鼓风机房

鼓风机房为地上一层框架结构,地下一层局部为管廊和进风通道。平面尺寸为L×B= 29.4× 15.0m(不包括工具间、值班室等)。安装离心式鼓风机5台(4用1备),单机风量18430m3/h,扬程7m,配电机功率470KW;卷帘式空气过滤器2套,配电机功率N=0.1KW。鼓风机出风经总管汇集后,再分别送至各座生物反应池。

4.6.9加氯间及投药间

设计加氯量为8mg/l,加氯间为地上一层框架结构, 平面尺寸L×B= 32.5×22.2m,包括氯库和值班室。安装真空柜式加氯机3台(2用1备),最大加氯量57kg/h,配套蒸发器2套、氯气切换装置一套、余氯吸收装置一套,并安装漏氯检测仪2台。

为弥补生物除磷不足,设计采用化学药剂强化除磷。设计加药间与加氯间合建,采用化学除磷药剂为Fe2(SO4)3,投加量为10~15mg/l,投加浓度为15%。药剂投加点分别设在终沉池配水井和初沉池进水渠内。根据进、出水水质变化情况,调节投加药量。加药间安装干粉加药装置一套,投加量为5.64~26.28kg/h。

4.6.10初沉池污泥泵房

初沉池污泥泵房共设2座,为半地下式钢筋砼结构,平面尺寸为8.25×3.8m, 深7.76m,分别对应6座初次沉淀池。初沉池污泥量为812 m3/d,含水率为96%。每座污泥泵房安装潜污泵2台(1用1备),流量57.24m3/h,扬程8m,配电机功率3.1kw。

4.6.11剩余及回流污泥泵房

剩余及回流污泥泵房共设4座,为地下式钢筋砼结构,每一座对应2座终沉池,每座平面尺寸为10.47×6m,深6m。设计最大污泥回流比100%,剩余污泥量为4017 m3/d,含水率为99.4%。每座泵房安装回流污泥潜污泵2台,流量1508m3/h,扬程6m,配电机功率37KW;安装剩余污泥潜污泵1台,流量61m3/h,扬程9m,配电机功率4.2KW。

4.6.12污泥浓缩池

初沉池污泥与剩余污泥先在浓缩池配泥井中进行混合。设计采用圆形重力式连续流浓缩池共2座,为地下式钢筋砼结构,直经20m,池边深4.6m,中心深6.3m。浓缩池设计固体表面负荷为90kg/m2·d,水力停留时间12.5h,安装中心传动污泥浓缩机,配电机功率1.5KW。浓缩后污泥体积为1616.7m3/d,含水率96.5%。

4.6.13储泥曝气池

一期工程设储泥曝气池1座,为地下式钢筋砼结构,平面尺寸为7.3×12.8m,深度4.15m。设计停留时间为8小时。池中安装潜水搅拌2台,配电机功率2. 5KW,DN40穿孔曝气管间隙运转,防止污泥沉淀和厌氧条件下磷释放。

4.6.14污泥脱水车间

污泥脱水车间为一层框架结构。一期工程需脱水污泥量为698m3/d,含水率94%。安装离心式污泥脱水机4台(3用1备),单台处理能力17 m3/h,配电机功率37.5KW;投配泵及加药装置与脱水机同步连续运行, 脱水后泥饼含水率78%~80%。混凝药剂(PAM)投加量210kg/d,配套安装加药设备2套(包括PAM药剂配备和投加系统),制备能力12kg/h,配电机功率2.8KW;污泥切割机4台(3用1备),处理能力20m3/h,配电机功率3.0KW;螺杆式污泥投配泵4台(3用1备),流量5~35m3/h,扬程20m,配电机功率5.5KW;30º倾斜安装无轴螺旋输送机2套,输送能力10m3/h,长度9.0m,配电机功率3.7KW,水平安装无轴螺旋输送器2套, 输送能力10m3/h,长度6.0m,配电机功率2.5KW。

4.6.15污泥外运

    城镇污水处理厂的污泥产泥量过大是普遍存在的问题,西安第三第四污水处理厂也不例外,据不完全统计,污泥外运的频率应该在每两个小时一车次。

5.1第五污水处理厂概况

第五污水处理厂概算总投资4.5亿元,日处理污水20万吨的一期工程今年年内将开工建设。
   西安市第五污水处理厂规划厂址位于灞河河堤以西,规划占地400亩,核定工程概算总投资 45402万元,总投资服务区域45平方公里,服务范围为西安市东北郊、北郊及南郊部分地区。第五污水处理厂远期规划日处理城市污水40万吨,深度处理每日10万吨。工程分期建设,一期工程日处理城市污水20万吨,处理后出水最终排至灞河。               

西安市每天排出的生活污水和工业生产废水量有100万吨,但目前西安市投入运行的北石桥污水处理厂、邓家村污水处理厂、第三污水处理厂和临潼区污水处理厂合计污水日处理能力只有43.5万吨,远远满足不了需求。今年以来,西安市加快污水处理厂的建设速度,目前有7个污水处理厂正在建设当中,合计污水处理能力80万吨/ 日,其中5个预计今年建成,分别为第四污水处理厂、高陵县污水处理厂、长安区污水处理厂、西南郊污水处理厂、阎良污水处理厂。第五污水处理厂年内开工建设后,可以进一步增加西安市的污水处理能力,方便西安市东北郊、北郊及南郊部分地区的群众生活。

5.2进水水质指标

污水处理厂进水水质是工程设计的基本参数之一,关系到处理工艺的选择与确定,进而影响工程投资、占地和运行费用等。通过对西安市邓家村污水处理厂和北石桥污水净化中心进水水质的大量调查,结果表明,西安市城市污水处理厂入流水质指标数据总体符合正态分布。其进水水质指标的变化范围为:CODcr=192~412mg/L, BOD5=108~203mg/L, SS=117~303mg/L, NH3-N=18.3~41.5mg/L, TN=27.8~46.2mg/L, TP=3.0~4.11 mg/L 。结果表明各项水质指标均不是很高,属于典型的城市污水水质。采用85%的保证率得到西安市第四污水处理厂进水水质如表1所示。此结果与可行性研究报告中的设计值比较,CODcr减小7.3%,BOD5减小17.4%,SS增加4%,NH3-N减小14%。依据该数值进行污水处理厂的设计,将使污水处理厂的建设投资减少。

5.3出水水质指标

第五污水厂处理后的水经漕运明渠最终排入渭河,根据国家《地面水环境质量标准》(GB3838—2002),渭河在西安市区北郊草滩段属于Ⅲ类水域,因此按《城镇污水处理厂污染物排放标准》(GB18918-2002)规定排入Ⅲ类水域的出水,应执行一级标准中的B标准。根据上述规定并结合西安市环境保护局关于西安市第四污水处理厂排放标准的意见,确定第五污水处理厂的出水水质确定为:

CODcr≤60 mg/l BOD5≤20 mg/l SS≤20 mg/l

TN≤25 mg/l NH3-N≤8 mg/l TP≤1.5 mg/l

5.4第五污水处理厂工艺流程图

工艺流程图如下:

5.5 主要处理构筑物工艺设计参数

5.5.1进水控制井

进水控制井按远期规模一次建成,总进水管为d 2400mm,控制井分配至近远期两根管均为d2000mm,另设d2200超越管一根,发生事故时溢流至漕运明渠。控制井为地下式钢筋混凝土结构,平面尺寸L×B=9.9×6.3m,深度12.31 m。安装φ2000 闸板及配套手电两用启闭机2套;φ2200 闸板及配套手电两用启闭机1套。

5.5.2粗格栅间及提升泵房

粗格栅间为地下式钢筋砼结构,平面尺寸L×B=10.5×12.5 m,深度14.3 m,地面上高6.3m。设计格栅渠道共3条,每条宽1.7 m,渠内设间隙为20mm的不锈钢栅条,共用液压移动抓爪式格栅清污机1套。

提升泵房与粗格栅间合建,为半地下式钢筋砼结构,泵房尺寸 L×B=20.4×12.6m,地下深14.3m,地面上高6.3m。其中集水池、水泵间位于地面以下,控制间及配电间位于地上。泵房安装潜污泵 5 台(4用1备),单台流量2605m3/h,扬程19.5m,配电机功率192 kw;潜污泵 3 台(2用1备),单台流量1421m3/h,扬程19.1m,配电机功率N=109kw。

5.5.3细格栅间及曝气沉砂池

细格栅间为地上式钢筋砼结构,平面尺寸 18.9×16.6 m。设计格栅渠宽1.6m,共计7条,安装阶梯式格栅除污机6台,栅条间隙6mm,配电机功率2.2 kw;钢栅条事故格栅一道,人工清渣,无轴螺旋输送机1套,L=15m,配电机功率3.0 kw,螺旋压榨机1台,配电机功率6 kw。曝气沉砂池与细格栅间和建,为地上式矩形钢筋砼结构,分两格,每格长 47.2m,宽4.7m,池深 5.65 m。根据西安市现有两座污水厂运行经验,曝气沉砂池设计停留时间为7min,水平流速:V水=0.1m/s,气水比:0.2m3/m3水。安装桥式吸砂机一套,L=10m,配电机功率2×0.55kw,砂水分离器1套,处理量 27l/s ,配电机功率0.75kw,无轴螺旋输送机1套,L=12m,配电机功率3.0 kw,螺旋压榨机1台,配电机功率6 kw。细格栅间一层为鼓风机房,安装鼓风机3台(2用1备),单台风量22.82 m3/min,风压58.8Kpa,配电机功率37 kw。另外,用于储泥曝气池的鼓风机也安装在一层,共2台(1用1备),单台风量 4.70 m3/min,风压58.8Kpa,配电机功率7.5 kw。

5.5.4初次沉淀池

采用占地少、处理效果稳定可靠的平流式沉淀池。通过絮凝沉淀试验,在有效水深为3.0m、水力停留时间为2h的条件下,研究分析了初次沉淀池对污染物的去除率,结果为:CODcr平均去除率为20.8%,而悬浮固体SS的平均去除率为51.3%, TN平均去除率为7.0%,TP平均去除率为8.1%。设计中采用了这一试验结果[4]。初次沉淀池为地上矩形钢筋砼结构,每组平面尺寸L×B= 60.85 ×76.9m,(包括配水渠),池深5.1 m。分2组,每组6座,共12座,设计水力停留时间1.94h,水平流速7mm/s,表面负荷 1.92 m3/ m2·h,安装桥式刮泥机12套,配电机功率0.55 kw。

5.5.5生物反应池

通过模型装置试验研究,对污水处理厂入流污水的生化反应动力学参数的进行了测定,结果表明:污泥产率系数a=0.4573 kgSS/kgBOD5,污泥衰减系数b=0.0125 d-1;去除单位重量BOD5所需的氧量a'为0.6266kgO2/kgBOD5,单位重量MLVSS内源呼吸需氧量b'为0.0924 kgO2/kgVSS×d。此试验结果与《给水排水设计手册》(第5册)中给出的参数值相比,与建议值有一定的差距[5]。实际设计计算时采用模型试验实测值。

生物反应池为半地下式钢筋砼结构,共2组,每组4座。每组平面尺寸L×B= 118.30 m×100m,有效水深6.0m。采用倒置A2/O工艺,设计水力停留时间为:缺氧池1.98h,厌氧池1.0h,好氧池7.94h;污泥负荷为0.11 kgBOD5/kg MLSS·d,混合液浓度3040 mg/l,最大回流比200%,污泥龄14.03 d。缺氧池、厌氧池中均安装潜水混合器4×6 台,配电机功率3.1kw;混合液内循环泵4× 3 台,每台流量:532L/S,扬程0.7m,配电机功率13kw;好氧池中安装棕刚玉盘式微孔曝气器共计4×7644个。厌氧、缺氧池中设有ORP测定仪,在线显示池内氧化还原电位;好氧池中设有溶解氧仪,在线显示水中溶解氧含量,并反馈至鼓风机,随时调节鼓风机送风量。

5.5.6终沉池

终沉池采用圆形辐流式沉淀池,共8座,为地下式圆形钢筋砼结构, 内径45m,池边水深4.5m,中心池深10.75m(含泥斗)。设计表面负荷为0.9m3/m2.h,沉淀时间为2.5h。安装φ45m周边传动刮泥机 8 台 ,配电机功率0.37kw。

5.5.7接触消毒池

采用廊道式紫外消毒池,共4格。另外该池中安装潜污泵2台(1用1备),配电机功率4KW,交替使用,供给厂区绿化用水。

5.5.8鼓风机房

鼓风机房为地上一层框架结构,地下一层局部为管廊和进风通道。平面尺寸为L×B= 29.4× 15.0m(不包括工具间、值班室等)。安装离心式鼓风机5台(4用1备),单机风量18430m3/h,扬程7m,配电机功率470KW;卷帘式空气过滤器2套,配电机功率N=0.1KW。鼓风机出风经总管汇集后,再分别送至各座生物反应池。

5.5.9五厂小结

无论是在处理工艺还是在实际运行当中,五厂的处理效果与四厂极为相似,在此不再过多的叙述。

下图为五厂的中控室的流程图:

六、毕业实习总结

本次毕业实习所经历的阶段分别有,第三污水处理厂污水处理系统、污泥处理系统、机械电器、和中水处理系统,第四污水处理厂污水处理系统和第五污水处理厂污水处理系统。在此基础上还对工程施工图进行了查看和了解。

本次毕业实习让我们进一步了解了本专业的工作性质,亲身经历了我们以后有可能所从事的工作环境,在那里掌握了国内现在所用的主流工艺和第一手资料。

在西安度过的将近一个月的时间当中,我们学到了很多专业课的知识。通过污水处理厂技术人员详细的介绍和指导老师的指导,在西安污水处理厂的这几天无论是生活还是学习都有很大的收获。

以前都是在课堂上学习,现在终于有了亲身的体会,有了在实地学习的机会,这让我对于污水处理有了进一步的认识,很多东西并不是那么简单的。这点我在那些工作人员身上得到了验证。

在此感谢学校、指导老师在毕业实习期间对我生活学习上的细心关照和耐心指导。

更多相关推荐:
西安市第三污水处理厂实习报告

西安市第三污水处理厂实习报告宝鸡文理学院地理科学与环境工程系环境工程实习地点陕西省西安市东郊浐灞生态区实习单位西安市第三污水处理厂实习时间目录01摘要12正文23第三污水处理厂231西安第三污水处理厂概况232...

第三污水处理厂实习报告

旅游与环境学院学生阶段性实习登记表(1)第一部分:污水处理厂实习报告目录摘要...-1-一、毕业实习目的...。。。。。。。。。。。。。-1-二、毕业实习要求...。。。。。。。。。。。。。-1-三、毕业实习正…

西安第三污水处理厂实习报告

西安市第三污水处理厂实习三、3.1、西安第三污水处理厂概况.周边环境:西安市第三污水处理厂位于河东岸南牛寺村,浐灞河流经西安市东郊地区,是西安的一道亮丽的风景线,三场概况:西安市第三污水处理厂场正是在这个号召下…

西安第三污水厂实习报告

西安市第三污水处厂实习报告学院环境与化学工程学院专业班级学生姓名郭喜旺学号40904040117指导教师张洛红周育红于翔一第三污水处理厂概况西安市第三污水处理厂位于河东岸南牛寺村浐灞河流经西安市东郊地区是西安的...

西安市第五污水处理厂实习报告

西安市第五污水处理厂实习报告前言收获与体会通过这次的实践活动对我们在情感态度和价值观取向方面起到了教育引导作用并初步形成了主动参与社会决策的意识我们较好地将理论知识与实际情况相结合更加巩固了对污水处理等专业知识...

西安市污水处理厂实习报告

赴西安低碳环保生活调查社会实践报告系部名称石油化工学院08级环境工程二班实践单位西安市第三污水处理厂实践时间20xx年7月17日28日实践主题低碳环保为了深入贯彻党的精神增强大学生的社会责任意识引导广大青年大学...

西安市第三污水处理厂参观报告

西安市第三污水处理厂参观报告CHANGANUNIVERCITY参观时间20xx年11月10日参观地点西安市第三污水处理厂参观方式由专业指导老师带领在工作人员的讲解下参观学习西安市第三污水处理厂简介西安市第三污水...

东郊污水处理厂实习报告

实习报告一实习名称天津创业环保东郊再生水厂二实习日期20xx年6月13日三实习地点天津市东丽区登州北路四带队老师郭振华老师五实习目的了解垃圾焚烧发电工艺流程烟气处理流程和焚烧废渣的处理方法为专业课学习毕业设计及...

开发区污水处理厂实习报告

暑期实习报告实习主题参观污水处理厂的工艺流程相关设备以及总体环境学号05510117学生姓名林徐达指导老师黄娟老师实习日期20xx818实习地点南京市江宁区开发区污水处理厂

北京高碑店污水处理厂见习报告

北京高碑店污水处理厂参观实习报告姓名学号专业参观时间参观地点带队老师一实习概要20xx年11月30日我们在胡老师的带领下参观啦北京高碑店污水处理厂在工作人员的细心讲解下我们了解了许多实际污水处理工艺的知识更加强...

北石桥污水处理厂实习报告

一参观时间20xx年3月30日二参观地点西安市北石桥污水处理厂三参观目的1巩固和深化所学理论知识培养谦虚严谨实事求是的科学作风为从实习生向职业工作着过度奠定扎实的理论与实践基础掌握本专业基本工作内容方法和专业技...

毕业设计实习报告(污水处理厂)

毕业实习报告学院能源与环境学院专业环境工程班级环境101学号20xx01144117学生姓名汤振磊指导老师陈启石20xx年3月8号毕业实习报告一实习时间20xx38二实习地点陕西省佛坪县城区污水处理厂三实习目的...

西安市第三污水处理厂实习报告(9篇)