音频信号光纤传输技术实验

时间:2024.4.20

音 频 信 号 光 纤 传 输 技 术 实 验

上课请带手机和耳机

[目的要求]   

1 熟悉半导体电光/光电器件的基本性能及主要特性的测试方法

2.了解音频信号光纤传输系统的结构及选配各主要部件的原则

3.  掌握半导体电光/光电器件在模拟信号光纤传输系统中的应用技术

4.训练音频信号光纤传输系统的调试技术

 [仪器设备]

1.OFE—A型光纤传输及光电技术综合实验仪一套;

[实验原理]

一、半导体发光二极管LED结构、工作原理、特性及驱动、调制电路

LED把电信号转为光信号。光纤通讯系统中对光源器件在发光波长、电光效率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED)和半导体激光二极管(LD),本实验采用LED作光源器件.光纤传输系统中常用的半导体发光二极管是一个如图(1)所示的N—p—P三层结构的半导体     

           

器件,中间层通常是由GaAs(砷化镓)p型半导体材料组成,称有源S层,其带隙宽度较窄,两侧分别由GaAlAsN型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙. 具有不同带隙宽度的两种半导体单晶之间的结构称为异质结. 在图(3)中,有源层与左侧的N层之间形成的是p—N异质结,而与右侧P层之间形成的是p—P异质结,故这种结构又称N—p—P双异质结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p—P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层与空穴符合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子:

hυ=E1—E2=E g

其中h是普郎克常数,υ是光波的频率,E1 是有源层内导电电子的能量,E2是导电电子与空穴复合后处于价健束缚状态时的能量。

本实验采用的半导体发光二极管的正向伏安特性如图3所示,与普通的二极管相比,在正向电压大于1V以后,才开始导通,在正常使用情况下,正向压降为

图3 LED的正向伏安特性

1.5V左右。半导体发光二极管输出的光功率P与其驱动电流I的关系称LED的电光特性如图4。而图5 即为电光特性测量原理图,图中光功率计由光电二极管和测量电路构成。

图4 LED的电光特性

为了使传输系统的发送端能够产生一个无非线性失真、而峰—峰值又最大的光信号,使用LED时应先给它一个适当的偏置电流 ,其值等于这一特性曲线线性部分中点对应的电流值,而调制电流的峰—峰值应尽可能大地处于这一电光特性的线性范围内。

音频信号光纤传输系统发送端LED的驱动和调制电路如图6所示,以BG1为主构成的电路是LED的驱动电路,调节这一电路中的W2可使LED的偏置电流在0—20mA的范围内变化。被传音频信号由IC1为主构成的音频放大电路放大后经电容器C4耦合到BG1基极,对LED的工作电流进行调制,从而使LED发送出光强随音频信号变化的光信号,并经光导纤维把这一信号传至接收端。

                  

图6  LED的驱动和调制电路

二.半导体光电二极管SPD的结构、工作原理及特性

SPD把光信号转化为电信号。半导体光电二极管与普通的半导体二极管一样,都具体一个p-n结,光电二极管在外形结构方面有它自身特点,这主要表现在光电二极管的管壳上有一个能让光射入其光敏区的窗口、此外与普通二极管不同,它经常工作在反向偏置电压状态(如图7a所示)或无偏压状态(如图7b所示)。在反偏电压下,p-n结的空间电荷区的势垒增高、宽度加大、结电阻增

                                                                     

图7  光电二极管的结构及工作方式

加、结电容减小,所有这些均有利于提高光电二极管的高频响应性能。无光照时,反向偏置的p-n结只有很小的反向漏电流,称为暗电流。当有光子能量大于p-n结半导体材料带隙宽度E g的光波照射到光电二极管的管芯时,p-n结各区域中的价电子吸收光能后将挣脱价键的束缚而成为自由电子,与此同时也产生一个自由空穴,这些由光照产生的自由电子—空穴对统称为光生载流子。在远离空间电荷区(亦称耗尽区)p区和n区内,电场强度很弱,光生载流子只有扩散运动,它们在向空间电荷区扩散的途中因复合而被消失掉,故不能形成光电流。形成光电流的主要靠空间电荷区的光生载流子,因为在空间电荷区内电场很强,在此强电场作用下,光生自由电子—空穴对将以很高的速度分别向n区和p区运动,并很快越过这些区域到达电极沿外电路闭合形成光电流,光电流的方向是从二极管的负极流向它的正极,并且在无偏压短路的情况下与入照的光功率成正比,因此在光电二极管的p-n结中,增加空间电荷区的宽度对提高光电转换效率有着密切关系。为此目的,若在p-n结的p区和n区之间再加一层杂质浓度很低以致可近似为本征半导体(用i表示)的i层,就形成了具有p—i—n三层结构的半导体光电二极管,简称PIN光电二极管, PIN光电二极管的p-n结除具有较宽空间电荷区外,还具有很大的结电阻和很小的结电容,这些特点使PIN管在光电转换效率和高频响应特性方面与普通光电二极管相比均得到了很大改善。

.系统的组成

图8示出了一个音频信号直接光强调制光纤传输系统的结构原理图,它主要包括由LED及其调制、驱动电路组成的光信号发送器、传输光纤和由光电转换、I—V变换及功放电路组成的光信号接收器三个部分。光源器件LED的发

光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近,本实验采用中心波长0.85μm附近的GaAs半导体发光二极管(LED)作光源、峰值响应波长为0.8~0.9μm的硅光二极管(SPD)作光电检测元件。为了避免或减少谐波失真,要求整个传输系统的频带宽度能够覆盖被传信号的频谱范围,对于语音信号,其频谱在300~3400Hz的范围内。由于光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。

四、光导纤维的结构及传光原理

衡量光导纤维性能好坏有两个重要指标:一是看它传输信息的距离有多远,二是看它携带信息的容量有多大,前者决定于光纤的损耗特性,后者决定于光纤的脉冲响应或基带频率特性。

经过人们对光纤材料的提纯,目前已使光纤的损耗容易做到1dB/Km以下。光纤的损耗与工作波长有关,所以在工作波长的选用上,应尽量选用低损耗的工作波长,光纤通讯最早是用短波长0.85μm,近来发展至用1.3~1.55μm范围的波长,因为在这一波长范围内光纤不仅损耗低,而且“色散”也小。

    光纤的脉冲响应或它的基带频率特性又主要决定于光纤的模式性质。光纤按其模式性质通常可以分成两大类:(1)单模光纤;(2)多模光纤。无论单模或多模光纤,其结构均由纤芯和包层两部分组成。纤芯的折射率较包层折射率大,对于单模光纤,纤芯直径只有5~10μm,在一定条件下,只允许一种电磁场形态的光波在纤芯内传播,多模光纤的纤芯直径为50μm或62.5μm,允许多种电磁场形态的光波传播;以上两种光纤的包层直径均为125μm。按其折射率沿光纤截面的径向分布状况又分成阶跃型和渐变型两种光纤,对于阶跃型光纤,在纤芯和包层中折射率均为常数,但纤芯折射率n1略大于包层折射率n2。所以对于阶跃型多模光纤,可用几何光学的全反射理论解释它的导光原理。在渐变型光纤中,纤芯折射率随离开光纤轴线距离的增加而逐渐减小,直到在纤芯—包层界面处减到某一值后,在包层的范围内折射率保持这一值不变。

本实验采用阶跃型多模光纤作为信道,用几何光学的全反射理论可以说明这种光纤的传光原理。

[实验内容及操作步骤]

LED伏安特性的测定

1、用两端为双通道耳机插头的一端接主机第一部分电路的LED插孔,另一端接光纤绕盘上LED输入插孔。

2、顺时针调节W1旋钮,观察光纤绕盘上两出光孔,有一孔中有红光,则表明LED已正常连通。

3、将SPD输入端接有光孔,另一端接主机第四部分SPD插孔。

4、将“光功率/电压”开关向下(测量LED端电压),将“LED电流/SPD反压”向上(测量LED电流)。

5、调节后面板左下小数点切换开关使电压表有两位小数,调节后面板左上小数点切换开关使电流表有一位小数。

6、电压从1.10V开始,每增加0.05V记录一次电压、电流值,直到电压为1.70V止。

二、LED电光特性测定(光功率计的组装) 

1、在以上连线基础上,将主机第四部分SPD切换开关向左(接通光功率计的测量电路),将“光功率/电压”开关向上(测量SPD接受光信号光功率,在本实验中,这也是LED输出光信号光功率)。

2、电流I为0时,光功率应为0,此时光功率计的示数叫做零差,记录数据时应减去。电流每增加4mA记录一次光功率计的示值,直到LED电流为40mA止。根据测量结果描绘LED—传偷光纤组件的电光特性曲线,并确出其线性度较好的线段。

三、音频信号光纤传输系统的调节实践

1、据LED电光特性数据确定其线性范围,其中点为最佳电流工作点I。。

2、在电光特性测试线路基础上,调节W1使LED电流为I。,将主机第四部分“SPD切换”开关向右(连接功放系统)。

3、将自带耳机接后面板“扬声器”插孔(需要控制插头的深浅达到无噪音连接)。

4、找到一端为三通道、另一端为两通道的电缆线。将三通道端接手机音频输出端,两通道端接主机中上部“模拟信号输入”孔。

5、用手机播放健康音乐,顺时针小范围旋转“模拟信号衰减”钮,直到听到舒适的音乐。

6、用手移开SPD,音乐停止,放回,音乐重起,说明音乐确实由光纤系统传输。

7、观察电流的变化,范围越小越好,不变最佳。

[数据记录]

一、           LED伏安特性的测定

二、           LED电光特性测定

光功率零差:

线性段对应的电流范围是--------------------,其中点电流值为-----------

三、           音频信号光纤传输系统的调节实践

你调节的实验系统稳定性如何。

[数据处理要求]

1、  作出伏安特性曲线(以I为纵坐标)

2、  作出LED电光特性曲线(以P为纵坐标)

 [回答问题]

 光功率计的构造是什么?以后在其他仪器上你能否接好它?


第二篇:长安大学物理实验音频信号光纤传输技术实验


更多相关推荐:
物理实验报告:音频信号光纤传输技术实验

大学物理实验报告音频信号光纤传输技术实验

2音频信号光纤传输实验报告

实验报告实验目的音频信号光纤传输本报告仅供参考每个同学应根据指导老师讲解和实际实验过程自行撰写1学习音频信号光纤传输系统的基本结构和各部件的选配原则2熟悉光纤传输系统中电光光电转换器件的基本性能3训练如何在音频...

光纤音频信号传输技术实验

TKGT1型音信号传输仪器评价报告学院工业制造学院专业测控技术与仪器班级20xx级2班报告人邱兆芳学号20xx10114201光纤音频信号传输技术实验1引言随着Internet网络时代的到来人们对数据通讯的带宽...

音频信号光纤传输技术实验

音频信号光纤传输技术实验目的要求1234熟悉半导光光电器件的基本性能及主要特性的测试方法了解音频信号光纤传输的结构及选配各主要部件的原则学习分析集成运放电路的基本方法训练音频信号光纤传输系统的测试技术仪器设备1...

北邮音频光纤传输实验报告

音频信号光纤传输实验北京邮电大学北京市邮编100876摘要实验通过对LED传输光纤组件的电光特性的测量得出了在合适的偏置电流下其具有线性验证了硅光电二极管可以把传输光纤出射端输出的信号转变成与之成正比的光电流关...

音频信号光纤传输技术

音频信号光纤传输技术实验实验目的1熟悉半导体电光光电器件的基本性能及主要特性的测试方法2了解音频信号光纤传输系统的结构及选配各主要部件的原则3学习分析集成运放电路的基本方法4训练音频信号光纤传输系统的调试技术实...

普通物理实验(下)光纤音频信号传输实验论文

普通物理实验C课程论文题目学院专业年级学号姓名指导教师论文成绩答辩成绩20xx年11月28日光纤音频信号传输实验研究宋妍西南大学物理科学与技术学院重庆400715摘要本论文探讨了音频信号光纤传输系统的基本结构及...

TKGT-型光纤音频信号传输实验仪器评估报告

关于TKGT型光纤音频信号传输实验仪器评估报告一前言通过TKGT型光纤音频信号传输实验仪器对音频信号光纤传输的实验了解到了光纤通信是利用光波在光导纤维中传输信息的通信方式采用光纤通讯其优势在于光的全反射由于纤芯...

光纤音频信号传输实验研究 - 副本

普通物理实验C课程论文题目学院专业年级学号姓名指导教师论文成绩答辩成绩音频信号光纤传输实验年月日光纤音频信号传输实验研究姓名院校地址邮编摘要光纤俗称玻璃纤维是由高纯度的玻璃棒经拉丝工艺制成以其优良的传输特性已经...

2资料三:音频信号光纤传输技术

音频信号光纤传输技术实验实验目的1熟悉半导体电光光电器件的基本性能及主要特性的测试方法2了解音频信号光纤传输系统的结构及选配各主要部件的原则3学习分析集成运放电路的基本方法4训练音频信号光纤传输系统的调试技术实...

音频信号光纤传输技术档

实验9音频信号光纤传输技术声音是一种低频信号低频信号的传播受周围环境的影响很大传播的范围有限在通信中一般是使用一个高频信号作为载波利用被传输的信号如音频信号对载波进行调制当信号到达传输地点时需对信号进行解调也就...

数字信号光纤传输技术实验论文`

数字信号光纤传输技术实验论文摘要光纤通信现在已经成为重要的通信方式因为它独有的优势越来越受到各国的重视对于光纤特性的研究也成为了光学研究的重要组成部分对于它的研究也愈发重要本文描述了作者做光纤技术实验的主要过程...

音频信号光纤传输技术实验报告(15篇)