in order to 的用法

时间:2024.4.13

in order to

[观察]

1. He got up very early in order to / so as to catch the first bus.

2. In order to catch the first bus, he got up very early.

3. He works very hard in order to / so as to support his family.

4. Turn the volume down in order not to / so as not to wake the child.

[归纳] in order to 意为 “为了……”,表示目的;在用法和意义上相当于so as to结构,但是in order to结构可以用于句首、句中,而so as to多用于句中。其否定式分别为:in order not to 和so as not to。

[拓展] in order to和so as to在句中表示目的时,常可以转化成in order that或so that引导的目的状语从句。如:

We should work hard in order to / so as to pass the exam.

→ We should work hard in order that / so that we can pass the exam.

为了能通过考试,我们应该努力学习。

[小试] 翻译下面的句子。

1. He went there early so as to / in order to get a good seat.

He went there early so that / in order that he could get a good seat.

2. In order not to wake the baby we went in quietly.

Key:

1. 他去得早,以便找到个好座位。

2. 为了不惊醒小孩,我们轻轻地走了进去。


第二篇:Threshold resummation to any order in (1-x)


PreprinttypesetinJHEPstyle-PAPERVERSION

arXiv:0710.5693v3 [hep-ph] 13 Nov 2007GeorgesGrunberg?CentredePhysiqueTh?eorique,EcolePolytechnique,CNRS,91128PalaiseauCedex,FranceE-mail:georges.grunberg@pascal.cpht.polytechnique.frAbstract:Asimpleansatzissuggestedforthestructureofthresholdresummationofthemomentumspacephysicalevolutionkernels(‘physicalanomalousdimensions’)atallordersin(1?x),takingasexamplesDeepInelasticScatteringandtheDrell-Yanprocess.Eachtermintheexpansionisassociatedtoadistinctrenormalizationgroupandschemeinvariantperturbativeobject(‘physicalSudakovanomalousdimension’)dependingonasinglemomentumscalevariable.Bothlogarithmicallyenhancedtermsandconstanttermsarecapturedbytheansatzatanyorderintheexpansion.Theansatzismotivatedbyalarge–β0dispersivecalculation.Adispersiverepresentationat?niteβ0ofthephysicalSudakovanomalousdimensionsisalsoobtained,associatedtoasetof‘Sudakove?ectivecharges’whichencapsulatethenon-Abeliannatureoftheinteraction.Itisfoundthatthedispersiverepresentationrequiresanon-trivial,andprocess-dependent,choiceofvariablesinthe(x,Q2)plane.SomeinterestingpropertiesofthephysicalSudakovanomalousdimen-sionsarepointedout.Theensuing1/Nexpansioninmomentspaceisstraightforwardly

derivedfromthemomentumspaceexpansion.Keywords:resummation,renormalons.

1.Introduction

Thresholdresummation,namelytheresummationtoallordersofperturbationtheoryofthelargelogarithmiccorrectionswhicharisefromtheincompletecancellationofsoftandcollineargluonsattheedgeofphasespace,isbynowawelldevelopedtopic[1,2]inperturbativeQCD.Abouttenyearsago,thesubjectwasextended[3–5]tocoveralsotheresummationoflogarithmicallyenhancedtermswhicharesuppressedbysomepowerof(1?x)forx→1inmomentumspace(orbysomepowerof1/N,N→∞inmomentspace),concentratingonthecaseofthelongitudinalstructurefunctionFL(x,Q2)inDeepInelasticScattering(DIS)wherethesecorrectionsareactuallytheleadingterms.AsfarasIamaware,littleworkhasbeenperformedonthissubjectsincethen.Inthispaper,buildingupontherecentwork[6],Iprovideaverysimpleansatzforthestructureofthresholdresummationatallordersin(1?x),workingatthelevelofthemomentumspacephysicalevolutionkernels(or‘physicalanomalousdimensions’,seee.g.[7–10]),whichareinfraredandcollinearsafequantitiesdescribingthephysicalscalingviolation,where

–1–

thestructureoftheansatzappearstobeparticularlytransparent.Ishalldealexplicitlywiththeexamplesofthe(non-singlet)DeepInelasticScattering(DIS)structurefunctionF2(x,Q2),aswellaswiththeDrell-Yanprocess.Theansatzismotivatedbyalarge–β0dispersivecalculation,and,following[6,11–15],easilygeneralizesitselftoageneral?nite–β0dispersiverepresentationofthephysicalevolutionkernelatanyorderinthex→1expansion.

Thepaperisorganizedasfollows:section2isdevotedtoDIS.Insection2.1,themomentumspaceansatzforthresholdresummationforthenon-singletstructurefunctionF2(x,Q2)isdisplayed,whichintroducesateachorderofthex→1expansionanew‘jetphysicalanomalousdimension’.Theansatzisjusti?edinsection2.2byalarge–β0calculation,whichalsoprovidesadispersiverepresentationforeachofthepreviousphysicalanomalousdimensions.Thesedispersiverepresentationsarethenextendedto?nite–β0insection2.3,whereasetof‘jetSudakove?ectivecharges’whichencapsulatethenon-Abeliannatureoftheinteractionisintroduced.TheDrell-Yancaseisaddressedinsection3inquiteasimilarway.Theansatzfortheanalogousτ→1expansionisgiveninsection3.1,andjusti?edinsection3.2byalarge–β0calculation,whichyieldsthedispersiverepresentationofthecorresponding‘softphysicalanomalousdimensions’speci?ctotheDrell-Yanprocess.Theserepresentationsarethenextendedto?nite–β0insection3.3,whereasetof‘softSudakove?ectivecharges’isintroduced.BothintheDISandintheDrell-Yancase,anon-trivial(process-dependent)choiceofexpansionparameterinthe(x,Q2)(resp.(τ,Q2))planehastobemadeinordertoderivethedispersiverepresentations.TheconclusionsaregiveninSection4.The1/NexpansioninmomentspaceisderivedinastraighforwardwayfromthecorrespondingmomentumspaceexpansionansatzinAppendixA(DIS)andB(Drell-Yan).Thesetwolastappendicesalsoclarifytheconnectionbetweenthede?nitionsofthe‘jet’(DIS)(orthe‘soft’(DY))scalesinmomentumandmomentspacesrespectively.

2.DeepInelasticScatteringcase

2.1Asystematicexpansionforx→1

Thescale–dependenceofthe(?avournon-singlet)deepinelasticstructurefunctionF2canbeexpressedintermsofF2itself,yieldingthefollowingevolutionequation(seee.g.Refs.[7,9,10]):

dF2(x,Q2)K(x/z,Q2)F2(z,Q2).(2.1)z

K(x,Q2)isthemomentumspacephysicalevolutionkernel,orphysicalanomalousdimen-sion;itisrenormalization–groupinvariant.In[6],usingknownresultsofSudakovresum-mationinmomentspace,theresultfortheleadingcontributiontothisquantityinthex→1limitwasderived.Forcompletness,Ireproducethisshortderivationhere.

De?ningmomentsby

?2(N,Q)=F2?1

0dxxN?1F2(x,Q2),(2.2)

–2–

Eq.(2.1)impliesthatthemoment–spacephysicalevolutionkernelis:

?1?2(N,Q2)dlnFN?122?dxxK(x,Q)=K(N,Q)≡

dlnQ2=?1

dx

0xN?1?1

dln?2(2.5)

whereA(αs)isthe‘cusp’anomalousdimension,andB(αs)thestandard‘jet’Sudakovanomalousdimension1.Moreover,theconstanttermcanbewritten[14]intermsofthequarkelectromagneticformfactorF(Q2)[18–21]:

??2)2dlnF(Q2J(?)H(αs(Q2))=(2.6)?2????=G1,αs(Q2),ε=0+Bαs(Q2),

whereeachofthetwotermsinthe?rstlineisseparatelyinfrareddivergent,butthedivergencecancels[14]inthesum;inthesecondlinetheresultisexpressedintermsof?22???222B(αs)andGQ/?,αs(?),ε,whichisthe?nitepartofdlnF(Q)/dlnQ2asde?nedinRef.[21]usingdimensionalregularization.

Comparing(2.3)and(2.4)onetherefore?ndsthefollowingrelation[6]inmomentumspace:

??2??J(1?x)Q0δ(1?x)+O(1?x)K(x,Q2)=dlnQ2

=???2J(1?x)Q

dlnQ2+

???Q2d?20

1?x

1?=+?10??dxF(x)?F(1)???J(1?x)Q2AandBareseparatelyschemedependentquantities.

–3–

whereF(x)isasmoothtestfunction.Thisprescriptionaccountsforthedivergentvir-tualcorrections,whichcancelagainstthesingularitygeneratedwhenintegratingthereal–??emissioncontributionsnearx=1.Onethus?ndsthatJ(1?x)Q2/(1?x)istheleadingtermintheexpansionofthephysicalmomentumspaceevolutionkernelK(x,Q2)inthex→1limitwith(1?x)Q2?xed.Thetermproportionaltoδ(1?x)iscomprisedofpurelyvirtualcorrectionsassociatedwiththequarkformfactor.Thistermisinfrareddivergent,butasindicatedinthesecondlinein(2.7),thesingularitycancelsexactlyuponintegrating??overxwiththedivergenceoftheintegralofJ(1?x)Q2/(1?x)nearx→1.

NextIobservethateq.(2.7)stronglysuggeststhefollowinggeneralizationtoasys-tematicexpansionforx→1inpowersof1?x,or,moreconveniently(forreasonstobeclari?edinsection2.2),inpowersof

r≡1?x

rJW??2+??2dlnF(Q2)

IalsonotethatnointegrationovertheLandaupoleexplicitlyappearsinthismomen-tumspaceversionofSudakovresummation.Weshallseehoweverthattheperturbative??expansionsofthesubleadingphysicalSudakovanomalousdimensionsJiW2docontain??infraredrenormalons(atthedi?erenceofJW2!).

Onecanalsogivethegeneralizationofeq.(2.7),witharegularizedvirtualcontribution:K(x,Q)=21

dlnQ2

?1δ(1?x)+J0W?Q2

0?2??2??2?+rJ1W+Or=dlnQ2+

??d?2x,W2=1?x

r

whereF(x)isasmoothtestfunction.Theproofthat(2.12)isindeedequivalentto(2.7)forthetwoleadingtermsisgiveninAppendixA,byconsideringthemomentsofthetwoexpressions.

2.2DispersiverepresentationofthephysicalSudakovanomalousdimensions

(largeβ0)

ThecorrectnessoftheansatzEq.(2.11)canbecheckedatlarge–β0,upontakingthex→1expansionofthelarge–β0dispersiverepresentationofthephysicalevolutionkernel.Thisprocedurewillactuallyyieldamorepowerfulresult,namelythe(large–β0)dispersiverep-resentationsofthephysicalSudakovanomalousdimensionsJandJi.

Letusconsiderthelarge–β0butarbitraryx(0<x<1)dispersiverepresentation[8]ofthephysicalevolutionkernel.Atthelevelofthepartoniccalculation,theconvolutiononther.h.sof(2.1)becomestrivialinthelarge–β0limitsincetheO(αs)correctionstoF2(z,Q2)generatetermsthataresubleadingbypowersof1/β0.Therefore,inthislimitK(x,Q2)isdirectlyproportionaltothepartonicdF2(x,Q2)/dlnQ2,so

?∞2?d?K(x,Q2)?largeβ0=CF0??JW2?=+?10?1dxF(x)1?x???2,(2.13)J(1?x)Q

),andaMink(?2)istheV

integratedtime-likediscontinuityoftheone-loopV-schemecoupling(whichcorrespondstothesingledressedgluonpropagator,using‘naivenon-abelization’):d?2

ρV(?)=2daMink(?2)V

m2ρV(m2),(2.15)

–5–

where

ρV(?2)≡

1

π

=

1

lnwith

?

k2/Λ2V

?.Λ2V=Λ2e

5/3

,whereΛ2isde?nedinthe

12CA

?

1

(r)r

F(r)(ξ)+F0(ξ)+rF(r)

1(ξ)+O(r2),

where

ξ≡

?

W2,

with

F(r)(ξ)=?lnξ?

3

1

2

ξ+

2ξlnξ?4ξ+

1

2+2

lnξ?6?9ξlnξ+

1

2

ξ2.

Thus(.≡??2

d

r

F˙(r)(ξ)+F˙(r)0(ξ)+rF˙(r)1

(ξ)+O(r2),with

F˙(r)(ξ)=1?12

ξ2

F˙(r)0

(ξ)=?1?2ξlnξ+2ξ?ξ2

F˙(r)1

(ξ)=32

ξ+2ξ2lnξ?10ξ2,(2.17)(2.18)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

and,takingasecondderivative:

¨(r)(?,x)=1xF

¨(r)(ξ)F02=2ξlnξ+2ξ2

¨(r)(ξ)=?9ξlnξ?35F1ξ+ξ2

r

with?FJ(ξ)+FJ0(ξ)+rFJ1(ξ)+O(r)+Vs(?)δ(1?x),2(2.28)

FJ(ξ)=F(r)(ξ)θ(ξ<1)

FJi(ξ)=

?1˙xF(?,x)=(r)Fi(ξ)θ(ξ<1),(2.29)

r

with?¨J(ξ)+F¨J(ξ)+rF¨J(ξ)+O(r)+V¨s(?)δ(1?x),F012(2.32)

¨J(ξ)=F¨(r)(ξ)θ(ξ<1),Fii¨J(ξ)=F¨(r)(ξ)θ(ξ<1)F(2.33)

(r)˙(r)(ξ),F˙(r)(ξ)in(2.20)andwhereIusedthefactthatallthetermsF(r)(ξ),Fi(ξ)andFi

(2.23)vanishatξ=1(whichallowstotreattheθfunctione?ectivelyasamultiplicativeconstantwhentakingthederivatives).Thesefeaturesactuallyfollowfromthestronger

–7–

˙(r)(?,x),bothpropertythattheexactfunctionF(r)(?,x),aswellasits?rstderivativeFvanishatξ=1,i.e.for?=1?x

4r??(1+r)(3+r)(1?ξ)2+O(1?ξ)3.(2.34)

Ifurthernotethatthetermswhichvanishforξ→0inFJi(butnotinFJ!)arelog-arithmicallyenhanced,hencenon-analytic,whichimplies(seebelow)thatthesubleadingphysicalSudakovanomalousdimensionsJidohaverenormalons(atthedi?erenceoftheleadingphysicalanomalousdimensionJ!).

ReportingtheresultEq.(2.32)into(2.14),onethusobtainsthesmallrexpansion(r=(1?x)/x)ofthephysicalevolutionkernel:

?1?2?K(x,Q)largeβ0=CF?∞

?Mink2¨2a(?)FJ1(ξ)+O(r)?2V

?∞2d?+δ(1?x)CF0Mink2¨a(?)FJ(ξ)?2V+d?20

?Ji(W)?largeβ0=CF2??2∞¨J(ξ)aMink(?2)FVd?2

dlnQ2?????=CF

largeβ0?∞0d?2

dlnQ2+?Q2

0d?2aMink(?2)V2???2222¨˙Vs(?/Q)+FJ(?/Q),

(2.38)

wheretheintegralonther.h.s.isindeedbothinfraredandultravioletconvergent.

–8–

2.3DispersiverepresentationofthephysicalSudakovanomalousdimensions

(?niteβ0)

Following[6,13],itisstraightforwardtogivethegeneralizationofEqs.(2.36)and(2.37)at?niteβ0:

2J(W)=CF?∞0d?2(2.39)

?2¨J(ξ),aMink(?2)FJii

where,infullanalogywith(2.15),

ρJ,Ji(?)=22daMinkJ,Ji(?)m2ρJ,Ji(m2),(2.40)

and,similarlyto(2.16),ρJ,Ji(?2)correspondtothetimelikediscontinuitiesofsome“Eu-

clidean”e?ectivecharges,originallyde?nedforspacelikemomenta:

?∞2?∞d?d?2Eucl2aJ,Ji(k)==?(1+?2/k2)200

?∞

0dlnQ2

?=CFd?2

Q2

dlnQ2+d?2

wheretermshavebeenarrangedproperlytohavebothinfraredandultravioletconver-gence:InotethattheintegralsoveraMink(?2)andaMink(?2)in(2.43),althoughinfraredFJconvergent,areseparatelyultravioletdivergent.

Fromthesedispersiverepresentations,theperturbativeexpansionsofthe‘jet’Sudakove?ectivechargesaMink(?2)andaMink(?2)canbederivedinastraightforwardway[6]JJi

orderbyorderinthefullnon-Abeliantheory,giventheexpansionsofJ(W2)andJi(W2)(andsimilarlyforaMink(?2)using(2.43)and(2.6)).F??22¨Vs(?/Q)+1?2???Mink222˙+aJ(?)FJ(?/Q)?1,aMink(?2)F?(2.43)

3.Drell-Yancase

3.1Theτ→1expansion

ThecrosssectionoftheDrell–Yanprocess,ha+hb→e+e?+X,is:

??1dxidσfi/ha(xi,?F)fj/hb(xj,?F)gij(τ,Q2,?2F)29Qsxj0i,j(3.1)

–9–

wheresisthehadroniccenter–of–massenergy,s?=xixjsisthepartonicone,Q2isthesquaredmassoftheleptonpairandτ=Q2/s?.Thepartonicthresholdτ→1ischaracter-izedbySudakovlogarithms.

Letusde?netheMellintransformofthequark–antiquarkpartoniccrosssectionin

222(3.1),e.g.inelectromagneticannihilationgqq?(τ,Q,?F)=eq[δ(1?τ)+O(αs)],by

?12222(3.2)dττN?1gqqGqq?(τ,Q,?F).?(N,Q,?F)≡

IntheN→∞limitonecanderive(seee.g.[14])theanalogueofEq.(2.4):

22dlnGqq?(N,Q,?F)

1?τ

whereKDY(τ,Q2)isthemomentumspacephysicalDrell–Yanevolutionkernelde?nedforarbitraryτ,andtheN-dependenttermsarecontrolledbythe‘soft’SudakovphysicalanomalousdimensionS:

S(?2)=A(αs(?2))+1

dln?2,(3.4)?2SQ2(1?τ)2+HDY(αs(Q2))+O(1/N),?(3.3)

whereDisthestandard(scheme-dependent)‘soft’SudakovanomalousdimensionrelevanttotheDrell-Yanprocess.Moreover,theconstanttermcanbeexpressedintermsoftheanalytically–continuedelectromagneticquarkformfactor[14]:

????22?dlnF(?Q)?2HDY(αs(Q))=S(?2),(3.5)2?

wheretheinfraredsingularitiescancel[14]inthesum,asin(2.6):

????22?dlnF(?Q)?2S(?2)HDY(αs(Q))=2????dR=G1,αs(Q2),ε=0+β(αs)

withR(αs(Q2))?2?=ln?F(?Q)

????2dln?F(?Q2)?

?(3.7)2?Dαs(Q2),?(3.6)1?τ1?τ

?????dln?F(?Q2)?2

+????+?+infrared?nite???02?δ(1?τ)+O(1?τ)S(?)DY??2?

–10–

WeseethatthephysicalSudakovanomalousdimensionScontrolstheleadingtermintheexpansionofthemomentumspacephysicalDrell–Yankernel(3.3)nearthreshold.Theτ→1limitistakensuchthatEDY=Q(1?τ),correspondingtothetotalenergycarriedbysoftgluonstothe?nalstate,iskept?xed.Thevirtualcontribution,proportionaltoδ(1?τ),isdeterminedbythequarkformfactor,analytically–continuedtothetime–likeaxis.Thistermisinfraredsingular,butuponperforminganintegraloverτthissingularitycancels

?2?2withtheonegeneratedbyintegratingthereal-emissionterm2SQ(1?τ)/(1?τ)near

τ→1.

SimilarlytotheDIScase,Eq.(3.7)suggestsageneralizationtoanexpansionforτ→1inpowersof1?τat?xedEDY.AsintheDIScase,however,itturnsout(seesection3.2)thatinordertoderiveadispersiverepresentationsuchanexpansionisnottheappropriateone.Instead,oneshouldconsideranexpansioninpowersofthealternativevariable:

rDY≡2

1?τ

τ

(3.8)

2,with:(properlynormalizedsothatrDY?1?τforτ→1)at?xedWDY

22

WDY≡rDYQ2,

(3.9)

namely:KDY(τ,Q2)=

2

dlnQ2

?2??2??2?

δ(1?τ)+S0WDY+rDYS1WDY+OrDY,

(3.10)

wherethecoe?cientsSandSiarethephysical‘soft’anomalousdimensionsappropriatetotheDrell-Yanprocess.Afterregularizingthevirtualcontribution,Eq.(3.10)canbewrittenas:KDY(τ,Q)=

?

2

2

dlnQ2

2

dlnQ2

δ(1?τ)+S0WDY+rDYS1WDY

+??

?

Q2

?

2

??

2

??2?+OrDY

=

d?2

τ+

rDY

2

SWDY

?

??

=

+

?

1

?

1

dτF(τ)

1?τ

S(1?τ)2Q

?

(3.12)

??2

,

whereF(τ)isasmoothtestfunction.

–11–

3.2DispersiverepresentationofthephysicalSudakovanomalousdimensions

(largeβ0)

InquiteasimilarwaytotheDIScase,westartfromthelarge–β0butarbitraryτ(0<τ<1)dispersiverepresentationofthephysicalDrell–Yanmomentumspaceevolutionkernel,

?2?KDY(τ,Q)largeβ0=CF?∞d?20

where?=?2/Q2,andexpandingtherealcontributionusingtheexplicitexpression3for(r)FDY(?,τ)in[8](Eq.(4.87)there),oneobtains:

FDY(?,τ)=(r)??)2+Vt(?)δ(1?τ),(3.14)41?4?22EDY???11?4?21?4?2

τ+√

2rDY=?2

rDY2FDY(ξDY)+F0,DY(ξDY)+rDYF1,DY(ξDY)+O(rDY),(r)(r)(r)(3.17)

with

FDY(ξDY)=2tanh(r)?1

1?4ξDY?(1?4ξDY)tanh?2??19+84ξDY?32ξDY2?1+(18+16ξDY+32ξDY)tanh(81?4ξDY?(?1?(

rDY

Takingonederivative(.=??2

rDY

with

(r)˙DYF(ξDY)=?d1+11+11?4ξDY+....(3.19)(r)˙(r)(ξDY)+rDYF˙DY˙(r)(ξDY)+O(r2),(ξDY)+FFDY0,DY1,DY(3.20)

˙(r)(ξDY)=F0,DY11?4ξDY12ξDY?1?4ξDY

8√1?4ξDY?4ξDYtanh?1?((3.21)1?4ξDY),(r)˙DY˙(r)(ξDY)arenowsingular,butintegrable,atthephase-whereallthetermsF(ξDY)andFi,DY

spaceboundary4ξDY=1.Thisresultfollowsimmediatelyfrom(3.19)whichyields:

2(r)˙DY(?,τ)=F42rDY

Usingtheseresultsin(3.14),andnotingthat:

?√θ(1?τ(1+

?FS(ξDY)+FS0(ξDY)+rDYFS1(ξDY)+O(rDY)+Vt(?)δ(1?τ),(3.24)2??2rDY1+....1?4ξDY(3.22)

rDY

with

FS(ξDY)=FDY(ξDY)θ(4ξDY<1)

FSi(ξDY)=(r)Fi,DY(ξDY)θ(4ξDY(r)<1),(3.25)

–13–

and

˙DY(?,τ)=F?2

1?4ξDY)??1

τ+√

rDY

??2

0+rDYd?2??˙˙ρV(?)FS0(ξDY)?FS0(0)2?∞d?20(3.29)

?2¨t(?),aMink(?2)VV

whereIperformedintegrationbypartsinthevirtualcontribution,inordertoobtainat

˙t(0)beingin?nite(theintegralitselfisinfrareddivergentsinceleasta?niteintegrand,V2):¨t(0)=?1).Comparingwith(3.10)Ideduce(ξDY=?2/WDYV

?2?S(WDY)largeβ0=CF

andalso(?=?2/Q2):

????22?dlnF(?Q)?¨t(?),aMink(?2)VV(3.31)?∞0d?2??2˙S(ξDY)?F˙S(0),ρV(?)Fii(3.30)?2?2

–14–

whichchecksEq.(3.10)inthelarge–β0limit,andinadditiongivesthe(large–β0)dispersiverepresentationsofthephysicalSudakovanomalousdimensionsSandSi,aswellasthe(large–β0)dispersiverepresentationofthetime-likequarkformfactor[14].Finally,thedispersiverepresentationoftheregularizedvirtualcontributionin(3.11)isgivenby:

????2dln?F(?Q2)?S(?)=CF2

?2?∞d?20

Si(WDY)=CF2?∞

0?2d?2??˙˙ρS(?)FS(ξDY)?FS(0)2

dln?2;aMinkS,Si(?)≡?2?∞?2dm2

?2aMinkS,Si(?)2?2/k2?2+k2ρS,Si(?2).(3.35)

Fromthesedispersiverepresentations,theperturbativeexpansionsofthe‘soft’Sudakove?ectivechargesaMink(?2)andaMink(?2)canbederivedinastraightforwardway[6]orderSSi2)andS(W2).byorderinthefullnon-Abeliantheory,giventheexpansionsofS(WDYiDY

Furthermore,thegeneralizationof(3.31)is

????2dln?F(?Q2)?

whereasthatof(3.32)is:

????2dln?F(?Q2)?S(?)=CF2?2¨t(?),aMink(?2)VF(3.36)

?2?∞0d?2

4.Conclusions

IpresentedasimplemomentumspaceansatzforthestructureofasystematicexpansionofthephysicalevolutionskernelsaroundtheSudakovlimit,focussingonDISandtheDrell-Yanprocess.Eachorderintheexpansionisgivenbyapeculiar‘jet’or‘soft’(dependingontheprocess)physicalSudakovanomalousdimension.

Theansatzhasbeenderivedfromalarge–β0dispersiverepresentation,whichcanbereadilyextendedtothefullnon-Abeliantheoryat?niteβ0.Clearlymorejusti?cationsandchecksarestillneeded.Inthisrespect,thegeneralOPEmethodintroducedin[3,4]maygivetheappropriatetoolforasystematicderivation.Anotherpossibility(whichshallbethesubjectofafutureinvestigation)istoperformacheckoftheansatzbymatchingitwithexisting[24,25]?xedordercalculations;asaby-productonewouldget(iftheansatzturnsouttobecorrect)theperturbativeexpansionoftherelevant‘jet’and‘soft’physicalanomalousdimensionswhichoccurascoe?cientsintheseexpansions.

Ihaveshownthattheconnectionoftheansatzwiththedispersiverepresentationrequiresanon-trivial,andprocess-dependent,choiceofexpansionparameterintheSudakovlimit.WhiletheadequateparameterrintheDIScaseisstandard,andreferstothe?nalstatejetmassscale,themeaningofthecorrespondingparameterrDYintheDrell-Yancaseremainstobeunderstood:itdoesnotcorrespond(ascouldbenaivelyexpected)tothetotalenergyEDYradiatedinthe?nalstate.

2))momentumspaceItwasfoundthat,althoughtheleadingjet(J(W2))andsoft(S(WDY

physicalanomalousdimensionsdonot[6]haverenormalons(atleastatlarge–β0),renor-

2))physicalmalonsdostarttoappearinthesubleadingjet(J0(W2))andsoft(S0(WDY

anomalousdimensions.

GiventhemultiplicityofemergingphysicalSudakovanomalousdimensions,itwouldbeinterestingto?ndoutwhetherthereexistsanyrelationshipbetweenthem.Inparticular,onemightwonderwhetheranyexact,orapproximate,universalitypropertyholdsamong

Minkthevarious‘Sudakove?ectivecharges’aMinkJ,JiandaS,Si.Actually,fromtheobservationthat

thesumJ(W2)+J0(W2)isatotalderivativeatlarge–β0(whichfollowsfromthe?nitnessofFJ(ξ)+FJ0(ξ)atξ=0,see(2.22)),andmakingtheassumptionthatthisproperty

2stillholdsat?niteβ0,onecanalreadyreadilydeduceintheDIScasethataMinkJ(?)and

2aMinkJ0(?)haveidenticalexpansionsuptoNLO,andtherefore[6]coincidewiththecusp

anomalousdimensionuptothisorder.

Thetransitiontoan1/Nexpansioninmomentspacehasbeenshowntobestraightforward,andtheconnectionbetweenthemomentumandmomentspacejet(orsoft)scaleshasbeenclari?ed.Fromtheexpansionsinmomentspace,onecaneasilyobtainthemomentspacedispersiverepresentations,followingthemethodin[6],bysubstitutingthedispersiverepresentationsofthephysicaljetandsoftphysicalanomalousdimensionsinthemomentspaceexpansion.

ThelongitudinalstructurefunctionFL(x,Q2),whichhasnotbeenaddressedinthispaper,needsaspecialtreatment(tobereportedelsewhere).Indeed,itappearsthedispersiveap-proachdoesnotworkinastraightforwardwayinthiscase,essentiallybecauseatlarge–β0thelongitudinalphysicalevolutionkernelKL(x,Q2)doesnotcoincideanymorewiththe

–16–

derivativedFL(x,Q2)/dQ2.Thisisduetothefactthatthelongitudinalcoe?cientfunctionisO(αs),ratherthenO(α0s)asinthecaseofF2(whichcouldbereplacedatlarge–β0byitsleadingtermδ(1?z)ontherighthandsideofEq.(2.1)).Inparticular,KL(x,Q2)isnotsuppressedforx→1,contrarytoFL(x,Q2)itself.Preliminaryinvestigationnever-thelessseemstoindicatethatanansatzoftheformofEq.(2.11)mightstillbevalidforKL(x,Q2)(withadi?erentcoe?cientoftheδ(1?x)term),althoughtheconnectionwiththedispersiveapproachislost(excepteventuallyatlarge–β0,wheretheleadingSudakov??physicalanomalousdimensionJLW2couldbeatotalderivative).

Finally,althoughIhavestudiedherethesimplestexampleswhereonlyonescale(‘jet’or‘soft’)ispresent,theansatzcanbereadilyextendedtoothercases[6]wherebothofthesescalesdooccursimultaneously.

Acknowledgements

IwishtothankEinanGardiforanumberofpastdiscussionsonthedispersiveapproach.

A.N→∞expansioninmomentspace(DeepInelasticScattering)

TheN→∞expansionofthemomentspacephysicalevolutionkernelEq.(2.3)canbestraightforwardlyobtainedbytakingthemomentsofthemomentumspaceexpansionEq.(2.11)(r=1?x

??2?2?dlnF(Q2)JW+r

N1+i?∞0dt?1N?N+1tJiti?Q2

1+tNe?tt

N1+i?∞0dte?ti

Oneshouldnotethattheintegralonther.h.s.of(A.4)containsconstantterms,aswellaslogarithmsofN.Moreover,theintegralbeingconvergent,theconstanttermsdetermine??2?tJitW+O(1/N2+i).(A.4)

–17–

thelogarithmicallydivergentterms,giventhebetafunctioncoe?cients:seetheargumentfollowingEq.4in[13]–whichimpliesthattheknowledgeofthelogarithmictermsatagivensubleadingorderofthe1/Nexpansionalso?xestheconstanttermsatthesameorder.Inparticular,theN→∞expansionofthenexttoleadingrealemissionterminEq.(A.1)is:

?1

?2?1N?1

dxxJ0W=

r

JW

and,takingtheN→∞limitwithQ2/N?xedinsidetheintegralonther.h.s.,theanalogue

ofEq.(A.4):

?1??

2N?11?+O(1/N).(A.7)JtWdxx

t0inEq.(A.1)(wheretheIRdivergences

?2

?Q2d?2

Q

cancell,aswehaveseeninsection(2.1)).Since0tJt

dlnQ2

??2

=

?

dt

?

1

N

?N+1

1

N

?

,(A.6)

TheinfrareddivergenceinEq.(A.7)canberegularizedasinEq.(2.12)bysubtractingfrom

?Q22

ther.h.s.of(A.7)theIRdivergentpiece0d?

r

JW

??2

?

=

+

??+

dte?t

1

t

?

1

2

Combining(A.5)with(A.8)onethusgetsthelargeNexpansionofthe?rsttwoleadingrealemissiontermsinEq.(A.1):

???1??N1?1?2?dtJtWdxxN?1

t00

???∞?1?t2?dte+J0tW

N0

?

?2+O(1/N2).(t?2)JtW

?2JtW

?

??

(A.8)

The?rsttermonther.h.sof(A.9)canalsobewritten,uptoexponentiallysmallcorrectionsatlarge

RN

N,as0dt(e?t?1)1

?Q2

5

dlnQ2

d?2

+

Ialsonotethattakingthemomentsoftheleadingterminthe?rstlineofEq.(2.7)onegets(settingt=N(1?x)):

?

1

dxxN?1

1

=?

N

∞0

dte?t

1

?N?1

1

N

?

τ+

rDY

????

?2?dln?F(?Q2)?2SWDY+

N1+i

?

∞0

du

?

1

2N

?2N+1

uSiu

i

?

2Q

2

N1+i

?

∞0

due

?u

ThustheN→∞expansionofthenexttoleadingrealemissionterminEq.(B.1)is:

?

1

??

2?2

uSiuWDY+O(1/N2+i).

i

(B.3)

dττ

N?1

S0WDY=

?

2

?

1

rDY

?2?SWDY=2

?

∞0

du

?

1

2N

?2N+1

1

N2

?

,(B.5)

–19–

and,takingtheN→∞limitwithQ2/N2?xedinsidetheintegralonther.h.s.of(B.5),theanalogueofEq.(B.3):

?

1

dττ

N?1

2

u

TheinfrareddivergenceinEq.(B.6)canberegularizedasinEq.(3.11)bysubtractingfrom

?Q22

ther.h.s.of(B.6)theIRdivergentpiece0d?

dlnQ2

?2?SuWDY+O(1/N).?

2

(B.6)

cancell,aswehaveseeninsection(3.1)).Since

?Q2

inEq.(B.1)(wheretheIRdivergences

?

d?22Q2

Suu

???

2?DYSu2W

(B.7)

rDY

?2?

SWDY

?

+

??=2+

∞0

due?u

1

?

u

2

1

2

?2?(u?2)SuWDY+O(1/N2).

Combining(B.4)with(B.7)onethusgetsthelargeNexpansionofthe?rsttwoleading

realemissiontermsinEq.(B.1):?

1

dττ

N?1

??

2

?

∞0

N

due

?u

u?

??12?2

S0uWDY+

???

2?DY?2Su2W

N

du

1

?Q2

dlnQ2

d?2

+

1?τ

??22

S(1?τ)Q=2

?

N0

?udu1?

u

which,comparedto(B.6),checkstheequivalenceoftheleadingtermsin(3.7)and(3.11).

2fDYu2W

u

??

2?2

SuWDY+O(1/N),

?2

2QSu

(B.9)

u

S

.

–20–

References

[1]G.Sterman,Nucl.Phys.B281(1987)310.

[2]S.CataniandL.Trentadue,Nucl.Phys.B327(1989)323.

[3]R.Akhoury,M.G.SotiropoulosandG.Sterman,Phys.Rev.Lett.81(1998)3819

[arXiv:hep-ph/9807330].

[4]M.G.Sotiropoulos,R.AkhouryandG.Sterman,arXiv:hep-ph/9903442.

[5]R.AkhouryandM.G.Sotiropoulos,arXiv:hep-ph/0304131.

[6]E.GardiandG.Grunberg,“AdispersiveapproachtoSudakovresummation,”(toappearin

Nucl.Phys.B)arXiv:0709.2877[hep-ph].

[7]G.Grunberg,Phys.Rev.D29(1984)2315.

[8]Y.L.Dokshitzer,G.MarchesiniandB.R.Webber,Nucl.Phys.B469(1996)93

[hep-ph/9512336].

[9]S.Catani,Z.Phys.C75(1997)665[hep-ph/9609263].

[10]W.L.vanNeervenandA.Vogt,Nucl.Phys.B568(2000)263[hep-ph/9907472].

[11]G.Grunberg,“Infrared?nitecouplinginSudakovresummation,”[hep-ph/0601140].

[12]G.Grunberg,Phys.Rev.D73,091901(2006)[hep-ph/0603135].

[13]G.Grunberg,Phys.Rev.D74(2006)111901[hep-ph/0609309].

[14]S.FriotandG.Grunberg,JHEP0709(2007)002,arXiv:0706.1206[hep-ph].

[15]G.Grunberg,AIPConf.Proc.892(2007)268[hep-ph/0610310].

[16]S.ForteandG.Ridol?,Nucl.Phys.B650(2003)229[hep-ph/0209154].

[17]E.GardiandR.G.Roberts,Nucl.Phys.B653(2003)227[hep-ph/0210429].

[18]A.Sen,Phys.Rev.D24(1981)3281;

[19]A.H.Mueller,Phys.Rev.D20(1979)2037;

[20]J.C.Collins,Phys.Rev.D22(1980)1478;

[21]L.MagneaandG.Sterman,Phys.Rev.D42(1990)4222.

[22]G.CurciandM.Greco,Phys.Lett.B92(1980)175.

[23]D.Amati,A.Bassetto,M.Ciafaloni,G.MarchesiniandG.Veneziano,Nucl.Phys.B173

(1980)429.

[24]S.Moch,J.A.M.VermaserenandA.Vogt,Nucl.Phys.B688(2004)101[hep-ph/0403192].

[25]J.A.M.Vermaseren,A.VogtandS.Moch,Nucl.Phys.B724(2005)3[hep-ph/0504242].

[26]M.DasguptaandB.R.Webber,Phys.Lett.B382(1996)273[arXiv:hep-ph/9604388].

–21–

更多相关推荐:
Debit Note 与Credit Note

debitnote是什么意思在国际业务中debitnote一般指借记单或借记票而值得注意的是需要明确debitnote和Creditnote使用情况此外对于外贸企业而言掌握debitnote使用方法是件很有必要...

credit

信用证样本学习信用证首先是信用证审核信用证审证的基础是以前的谈判结果或合同并应坚持由知名大银行开立或保兑单证及其他要求合理可行备单做事不求人无软条款可参考福步外贸论坛资料整理大全信用证软条款出口商的陷阱实践中常...

credit memoNO.1 - 副本

CREDITMEMOFromSouthportGatewayZhenjiangApparelTradeCoLtdToROMEOampJULIETTEINC7524OLDAUBURNROADCITRUSHEIGHTSCA95610U...

Self-introduction

UnitThreeSelfintroductionPartIHowtoWriteSelfintroduction1BriefIntroduction简要说明自我介绍是向别人展示你自己的一个重要手段自我介绍好不好...

Self Introduction例文

SelfIntroductionHelloeveryoneImverygladtointroducemyselftoyouMynameisYangYifanandyoucancallmeAysunImfromBeihaiandno...

My Self-introduction

MySelfintroductionGoodmorningafternooneveryteacherandprofessorsThankyouverymuchforgivingmetheopportunitytoattendthi...

self introduction

中英文自我介绍范例谢谢我叫xx本科和研究生都就读于xx专业方向是是信息与系统我的职业理想是成为一名优秀的工程师所以我选择了xx选择了我现在的专业我希望在未来成为这方面的专家为了实现这个梦想我特别注重与此相关的专...

Self-introduction自我介绍

自我介绍SelfIntroductionHelloeveryoneNowpleaseallowmetodoanintroductionMynameisLiLeiIm14yearoldMybirthdayison...

self introduction

GoodmorningitismypleasuretohaveopportunitytobehereforyourinterviewFirstIwillgiveabriefintroductionMynameisWangJiang...

英语简历self introduction

MynameisXiaoShengguangIcomefromXiantaocityasmallcityinHubeiprovinceNowImaseniorstudentofpostgraduateschoolinChongqi...

自我介绍 How to Write Self-Introduction

UnitThreeSelfintroductionPartIHowtoWriteSelfintroduction1BriefIntroduction简要说明自我介绍是向别人展示你自己的一个重要手段自我介绍好不好...

OECD范本(OECD Model Double)

OECDModelDoubleTaxationConventiononIncomeandCapital19xxTITLEOFTHECONVENTIONConventionbetweenStateAandStateBfortheav...

credit note 范本(3篇)