温度传感器实验报告

时间:2024.4.20

温度传感器实验报告

一、实验目的

1、  了解各种电阻的特性与应用

2、  了解温度传感器的基本原理与应用

二、实验器材

传感器特性综合实验仪  温度控制单元  温度模块  万用表  导线等

三、实验步骤

1、  AD590温度特性

(1)、将主控箱上总电源关闭,把主控箱中温度检测与控制单元中的恒流加热电源输出与温度模块中的恒流输入连接起来。

(2)、将温度模块中的温控Pt100与主控箱的Pt100输入连接起来。

(3)、将温度模块中左上角的AD590接到传感器特性综合实验仪电路模块的a、b上(正端接a,负端接b),再将b、d连接起来,接成分压测量形式。

(4)、将主控箱的+5V电源接入a和地之间。

(5)、将d和地与主控箱的电压表输入端相连(即测量1K电阻两端的电压)。

(6)、开启主电源,改变温度控制器的SV窗口的温度设置,以后每隔设定一次,即Δt=,读取数显表值,将结果填入下表:

由于我们使用的是AD590温度集成模块,里面已经设置有如下关系:273+t=I (t为AD590设定温度),因此可得测量温度与设定温度对照表如下:

通过上表可清楚地看出之间的误差。

2、  PTC与NTC温度特性

(1)、将温度模块上的恒流输入和主控箱上的恒流输出连接好

(2)、开启主电源,改变温度控制器的SV窗口的温度设置,以后每隔设定一次,即Δt=

(3)、用万用表测量温度模块上的NTC和PTC的输出,记下每次设置温度下的电阻值,将结果填入下表:

PTC:

NTC:

从上面两个表格可以看出PTC的温度与电阻成反比,变化系数由大变小。NTC的温度与电阻成正比,变化系数由小而大再小。从中也可以看出热敏电阻实现电阻与温度的转换较为复杂。

3、Pt100热电阻特性

(1)、将温度模块中的实验Pt100接入传感器特性综合实验仪电路模块的a、b间,把b、c连接起来,这样,R1、R3、R4、Rw1、Pt100就组成了一种直流单臂电桥,再把Rw2逆时针旋到底(增益最小)。

(2)、把温度模块的±15V和主控箱的±15V输出连接起来,差动放大器的Vo与主控箱的电压表相连,再将差动放大器的输入端与地短接,调节Rw3使差动放大器的输出为零(调零)。

(3)、按下图连接好线,在端点a与地之间加+5V的直流电源,按下图将电桥的输出与差动放大器相连,温度控制器的SV窗口设定为,然后调节Rw1使电桥平衡,即使差放的输出为零。

                            Pt100热电阻测温实验接线图

(4)、在的基础上,以后每隔设定一次,即Δt=,读取数显表值,将结果填入下表。

从表中可以看出Pt100有一定的非线性误差,这也是无法避免的,然而比热敏电阻线性度要好得多,实现电压与温度的转换也教容易。

四、实验中应注意的事项

1、加热器温度不能太高,控制在120℃以下,否则将可能损坏加热器。

2、采用放大电路测量时注意要调零。

3、在测量AD590时,不要将AD590的+、-端接反,因为反向电压输出数值是错误的,而且可能击穿AD590。

五、实验总结

从这个实验中使我充分认识了AD590、PTC、NTC和PT100的温度特性和应用原理,学会了如何制作简单的温度计,也意识到了这些电阻由于会随温度而改变可以利用这一点来制作温度开关,通过温度的变化而使开关自动化,或通过改变温度而控制开关的通断。传感器这一门很新奇,我渴望学会更多的知识,看到更多稀奇的东西,学好传感器这一门学科,与其他学科知识相结合,提升自己的能力,希望有一天我能亲自开发出更有用、更先进的传感器。


第二篇:大学物理实验-温度传感器实验报告


关于温度传感器特性的实验研究

摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。热电偶的温差电动势关于温度有很好的线性性质。PN节作为常用的测温元件,线性性质也较好。本实验还利用PN节测出了波尔兹曼常量和禁带宽度,与标准值符合的较好。

关键词:定标  转化  拟合  数学软件

EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR

1.引言

温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。

2.热电阻的特性

2.1实验原理

2.1.1Pt100铂电阻的测温原理

和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。

按IEC751国际标准,铂电阻温度系数TCR定义如下:

TCR=(R100-R0)/(R0×100) (1.1)

其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。

Pt100铂电阻的阻值随温度变化的计算公式如下:

Rt=R0[1+At+B+C(t-100)] (-200℃<t<0℃) (1.2)

式中Rt表示在t℃时的电阻值,系数A、B、C为:A=3.908×;B=-5.802×;C=-4.274×

因为B、C相较于A较小,所以公式可近似为:

Rt=R0(1+At) (0℃<t<850℃) (1.3)

为了减小导线电阻带来的附加误差,在本实验中,对用作标准测温器件的Pt100采用三线制接法。

2.1.2热敏电阻温度特性原理

热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,它有负温度系数和正温度系数两种。负温度系数热敏电阻(NTC)的电阻率随着温度的升高而下降;而正温度系数热敏电阻(PTC)的电阻率随着温度的升高而升高。下面以NTC为例分析其温度特性原理。

在一定的温度范围内,半导体的电阻率和温度T之间有如下关系:

 (1.4)

式中A1和B是与材料物理性质有关的常数,T为绝对温度。对于截面均匀的热敏电阻,其阻值可用下式表示:

 (1.5)

将(1.4)式代入(1.5)式,令,于是可得:

 (1.6)

对一固定电阻而言,A和B均为常数。对(1.6)式两边取对数,则有

 (1.7)

可以发现成线性关系,在实验中测得各个温度T下的值后,即可通过作图求出B和A值,代入(1.7)式,即可得到的表达式。式中为元件在温度T(K)时的电阻值(Ω),A为在某一较大温度时元件的电阻值(Ω),B为常数(K),其值与半导体材料的成分和制造方法有关。

热敏电阻的温度系数定义为:

 (1.8)

2.2实验内容

(1)运用冰水混合物和沸水对Pt100进行标定;

(2)以Pt100作为标准测温器件来定标实验室中的NTC温度传感器,温度范围控制在室温到100℃之间。基于实验数据给出该器件的电阻温度曲线,并研究温度系数随温度的变化关系;

(3)用类似的方法研究PTC的电阻温度关系,结合实验数据寻找实验室提供的PTC器件的电阻温度关系的经验公式,并研究其温度系数。

2.3实验结果与讨论

2.3.1Pt100的定标

观察Pt100的电阻关于温度的函数关系式,发现电阻与温度近似成线性关系。因此,将Pt100分别浸入冰水混合物和沸水中,读出Pt100测得的温度,完成测量温度与实际温度之间的换算。

经测量,有如下结果:

由此得出之间的关系:

 (SI)

2.3.2NTC温度特性研究

将Pt100作为测温元件,改变温度,测量NTC的电阻变化,得到如下数据:

运用数学软件画出关于的图像,如下图所示:

NTC图像拟合.gif

由此可得:

则A==0.0224,B=3670K.

 (SI)

 (SI)

运用数学软件,可画出温度系数随温度的变化曲线:

温度系数随温度变化关系.gif

由图可得,NTC的温度系数为负,说明NTC的电阻随温度的升高而减小,又温度系数的绝对值不断减小,说明NTC电阻的电阻减小幅度不断减小。

2.3.3PTC温度特性研究

PTC电阻关于温度的测量数据如下:

运用作图软件可将这些点在图上描绘出来:

PTC散点图.gif

运用拟合的手段,可得出PTC电阻的大致表达式:

PTC拟合.gif

可得:

 (SI)

由图可得:PTC的电阻随温度的升高而增大。

3.热电偶温差电动势的研究

3.1实验原理

将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个接触点之间存在温差时,回路内便产生电动势,这种现象称为热电效应(或称塞贝克效应)。热电偶就是利用这一效应来工作的,它能将对温度的测量直接转换成对电势的测量,是工业上最常用的温度检测元件之一。

当组成热电偶的材料一定时,温差电动势Ex仅与两接点处的温度有关,并且与两接点的温差在一定的温度范围内有如下近似关系式:

 (1)

式中α称为温差电系数,对于不同金属组成的热电偶,α是不同的,其数值上等于两接点温度差为1℃时所产生的电动势。Th为工作端温度,Tc为冷端的温度。

为了测量温差电动势,就需要在图2-1的回路中接入电位差计,但测量仪器的引入不能影响热电偶原来的性质,例如不影响它在一定的温差T-Tc下应有的电动势EX值。要做到这一点,实验时应保证一定的条件。根据伏打定律,即在A、B两种金属之间插入第三种金属C时,若它与A、B的两连接点处于同一温度Tc,则该闭合回路的温差电动势与上述只有A、B两种金属组成回路时的数值完全相同。所以,我们把A、B两根不同化学成份的金属丝的一端焊在一起,构成热电偶的热端(工作端)。将另两端各与铜引线(即第三种金属C)焊接,构成两个同温度(Tc)的冷端(自由端)。铜引线与电位差计相连,这样就组成一个热电偶温度计,如图2-2所示。通常将冷端置于冰水混合物中,保持Tc=0℃,将热端置于待测温度处,即可测得相应的温差电动势,再根据事先校正好的曲线或数据来求出温度Th。热电偶温度计的优点是热容量小,灵敏度高,反应迅速,测温范围广,能直接把非电学量温度转换成电学量。因此,在自动测温、自动控温等系统中得到广泛应用。

3.2实验内容

1. 以Pt100作为标准测温器件来研究实验室中热电偶的温度特性曲线,温度范围控制在室温到100℃之间。

2. 计算热电偶的温差电系数,比较热电偶和热敏电阻在温度特性方面的区别。

3.3实验结果与讨论

通过不断改变热端温度,得到如下数据:

绘制-图像:

温差电动势散点图真.gif

可以发现,温差电动势随温度升高而增大,且与温度成正比关系,这一性质要优于PTC元件。

且由图可以发现,温差电动势与温差并不是严格的正比关系。

通过计算斜率,可大致得到温差电系数:

4.PN节正向压降与温度的关系

4.1实验原理

PN结温度传感器有灵敏度高、线性较好、热响应快和体小轻巧易集成化等优点。

理想的PN结的正向电流IF和正向压降VF存在如下近关系式:

 (3.1)

其中q为电子电荷;k为玻尔兹曼常数;T为绝对温度;IS为反向饱和电流。IF是一个和PN结材料的禁带宽度以及温度有关的系数,可以证明:

 (3.2)

其中C是与结面积、掺质浓度等有关的常数,r也是常数(r的数值取决于少数载流子迁移率对温度的关系,通常取r=3.4);Vg(0)为绝对零度时PN结材料的带底和价带顶的电势差。

将(3.2)式代入(3.1)式,两边取对数可得:

 (3.3)

其中

方程(3.3)就是PN结正向压降作为电流和温度函数的表达式,它是PN结温度传感器的基本方程。令IF=常数,则正向压降只随温度而变化,只不过在方程(3.3)中包含了非线性项Vn1。可以证明,在室温范围附近,Vn1项所引起的线性误差很小,因此可以忽略。

下面研究PN结的线性响应,设温度由T1变为T时,正向电压由VF1变为VF,按理想的线性温度响应,VF应取如下形式:

 (3.4)

由(3.3)式可得:

 (3.5)

所以

 (3.6)

综上所述,在恒流供电条件下,PN结的VF对T的依赖关系取决于线性项V1,即正向压降几乎随温度升高而线性下降,这就是PN结测温的理论依据。必须指出,上述结论仅适用于杂质全部电离,本征激发可以忽略的温度区间(对于通常的硅二极管来说,温度范围约-50℃-150℃)。如果温度低于或高于上述范围时,由于杂质电离因子减小或本征载流子迅速增加,VF-T关系将产生新的非线性,这一现象说明VF-T的特性还随PN结的材料而异,对于宽带材料(如GaAs,Eg为1.43eV)的PN结,其高温端的线性区则宽;而材料杂质电离能小(如Insb)的PN结,则低温端的线性范围宽。对于给定的PN结,即使在杂质导电和非本征激发温度范围内,其线性度亦随温度的高低而有所不同,这是非线性项Vn1引起的。

4.2实验内容

1.在九孔板上搭建电路,保持IF=100μA,测量0℃下的VF(0)。

2.设计方案,通过实验求得玻尔兹曼常数k,并和公认值比较。

3.以Pt100作为标准测温器件来研究实验室中PN结的正向压降与温度的关系曲线,绘制ΔV-T曲线,温度范围控制在室温到100℃之间。

4.计算被测PN结正向压降随温度变化的灵敏度S(mV/℃)。

5.估算被测PN结材料的禁带宽度,根据(3.5)式,略去非线性项,可得:

Vg(0)=VF(0)+△T=VF(0)+S·△T (3.7)

式中△T=-273.2K,即摄氏温标与凯尔文温标之差。VF(0)为0℃时PN结正向压降。将实验所得的Eg(0)=eVg(0)与公认值Eg(0)=1.21eV比较,求其误差。

4.3实验内容

4.3.1的测量

将PN节浸入冰水混合物中,测得=1.6V.

4.3.2波尔兹曼常数k的测量

,两边取对数得:

保持T不变,则成一次函数关系。于是将PN节放入冰水中,测量,画出关于的图像,则有:

波尔兹曼常数测量.gif

此图像斜率为:39.80,即为的数值,由此得出:k=1.472,与标准值比较相近。

4.3.3PN节的正向压降与温度的关系

与T的关系图为:

VT图.gif

4.3.4灵敏度

由图可得,S=-2.34 mV/

4.3.的计算

与标准值相差5.8%。

5.参考文献

更多相关推荐:
大学实验报告系列之温度传感器

大学物理实验报告注1所有电子版实验报告必须使用统一摸版内容按统一规定编辑2学院班姓名等用宋体正文五号不要加粗3实验名称用宋体正文四号不要加粗4其余项目统一用宋体正文五号不要加粗5报告内容中出现英文字母或英文单词...

温度传感器实验报告

温度传感器DS18B20实验报告一实验目的12复习掌握Protueskeil软件的使用了解掌握DS18B20的工作原理以及编程方法二实验器材单片机开发板温度传感器芯片DS18B20串口线三实验原理一应用背景概述...

温度传感器实验报告

温度传感器实验报告摘要温度是表征物体冷热程度的物理量一般只能通过物体随温度变化的某些特征来间接测量温度传感器就是将温度信号转换成易于传递和处理的电信号的器件本实验通过对热电阻特性对热电阻温差电动势以及对PN结正...

温度传感器实验报告

电子092班林楚狄32号温度传感器实验报告一实验目的1了解各种电阻的特性与应用2了解温度传感器的基本原理与应用二实验器材传感器特性综合实验仪温度控制单元温度模块万用表导线等三实验步骤1AD590温度特性1将主控...

温度传感器实验报告

信号实验报告温度传感器实验光纤光电传感器实验电涡流传感器实验电容式传感器实验蔡达38030414温度传感器实验蔡达38030414一实验目的了解各种温度传感器热电偶铂热电阻PN结温敏二极管半导体热敏电阻集成温度...

AVR数字温度传感器实验报告

南京邮电大学20xx20xx学年第1学期课程设计实验报告模块名称AVR单片机课程设计专业网络工程学生班级B080221学生学号B080221xx学生姓名XXXXX指导教师李虹戴海鸿杨洁王明伟日期20xx年11月...

温度传感器实训报告

温度传感器实训报告实训报告课程信号检测与技术专业应用电子技术班级应电1131班小组成员欧阳主王雅志朱知荣周玙旋周合昱指导老师宋晓虹老师20xx年4月23日一实训目的了解18b20温度传感器的基本原理与应用二实训...

传感器实验报告--半导体温度传感器设计

工程测试技术课程设计报告学部机械与电子信息学部姓名班级机械四班学号2500090402指导老师成绩20xx年1月1日半导体温度传感器设计一设计目的通过本课程的设计使学生更进一步了解有关温度传感器的工作原理加工工...

温度控制器实验报告

目录第1节引言211温度控制器的概述212设计目的任务及要求2第2节系统硬件设计221芯片的选择222系统工作原理423系统的硬件构成及功能5231温度控制器总体电路图5232单元电路功能简介错误未定义书签第3...

温度传感器的制作检测报告

温度传感器放大电路设计实验姓名方海斌班级机自学号110220xx020xx204指导老师胡雄心一设计要求要求以小组为单位设计并制作一个温度检测与放大的电路然后进行检测二设计过程1本小组温度传感器与放大电路的原理...

单片机温度控制器实验报告

南京邮电大学通达学院20xx20xx学年第1学期课程设计实验报告课题名称基于CPU的8LED温度显示控制器的设计专业通信工程学生班级070018学号07001836姓名指导老师林建中实验日期20xx年11月19...

大学物理实验报告英文版--温度传感器

PhysicalLabReportTemperatureSensorsWriterNoThistimeinthelabIcometodosomethingabouttemperaturesensorsBeforetheexperi...

温度传感器实验报告(35篇)