偏心拉伸试验报告

时间:2024.4.25

一、实验目的

1.测量试件在偏心拉伸时横截面上的最大正应变

2.测定中碳钢材料的弹性模量E;

3.测定试件的偏心距e;

二、试件形状、尺寸、力学性能

1、试件尺寸

截面的名义尺寸为:

实测尺寸:

2.试件力学性能:

3.试件平面形状如右图所示

、实验原理和方法

   试件承受偏心拉伸载荷作用,偏心距为e。在试件某一截面两侧的a点和b点处分别沿试件纵向粘贴应变片Ra和Rb ,则a点和b点的正应变为:

 εa p t         (1)

 εb p t         (2)

式中: εp——轴向拉伸应变

      εM——弯曲正应变

εt——温度变化产生的应变

有分析可知,横截面上的最大正应变为:

εmaxM               (3)

根据单向拉伸虎克定律可知:

         (4)

试件偏心距e的表达式为:

     (5)

可以通过不同的组桥方式测出上式中的εmax、εp及εM,从而进一步求得弹性模量E、最大正应力和偏心距e。

1、测最大正应变εmax

   组桥方式见图二。(1/4桥;2个通道)

εmax p M

=(εp t) -εt

        =εa t                       (6)

2、测拉伸正应变εp

全桥组桥法(备有两个温补片),组桥方式见图三。

 (7)

将εp代入式(4),即可求得材料的弹性模量E。

3、测偏心矩e

半桥组桥法,组桥方式见图四。

   (8)

将εM代入式(5)即得到试件的偏心距e:

四、加载方案:对于三个组桥方案,都是预加载荷6KN,然后一次性加载至16KN,重复四次,记录数据

五、实验步骤

1.        设计实验所需各类数据表格;

2.        测量试件尺寸;

测量试件三个有效横截面尺寸,取其平均值作为实验值 。

3.        拟定加载方案;

4.        试验机准备、试件安装和仪器调整;

5.        确定各项要求的组桥方式、接线和设置应变仪参数;

6.        检查及试车;

检查以上步骤完成情况,然后预加一定载荷,再卸载至初载荷以下,以检查试验机及应变仪是否处于正常状态。

7.        进行试验;

将载荷加至初载荷,记下此时应变仪的读数或将读数清零。重复加载,每重复一次,记录一次应变仪的读数。实验至少重复四次,如果数据稳定,重复性好即可。

8.        数据通过后,卸载、关闭电源、拆线并整理所用设备。

六、实测数据记录与处理

数据记录

数据处理

1.最大正应变增量

387

2.材料的弹性模量E

相对误差:

3.最大正应力增量

4.试件偏心距

相对误差:


第二篇:金属的拉伸实验(实验报告)


金属的拉伸实验一

一、实验目的

1、测定低碳钢的屈服强度、抗拉强度、断后延伸率和断面收缩率

2、观察低碳钢在拉伸过程中的各种现象,并绘制拉伸图(F─曲线)

3、分析低碳钢的力学性能特点与试样破坏特征

二、实验设备及测量仪器

1、万能材料试验机

2、游标卡尺、直尺

三、试样的制备

试样可制成圆形截面或矩形截面,采用圆形截面试件,试件中段用于测量拉伸变形,其长度称为“标矩”。两端较粗部分为夹持部分,安装于试验机夹头中,以便夹紧试件。试验表明,试件的尺寸和形状对材料的塑性性质影响很大,为了能正确地比较材料力学性能,国家对试件的尺寸和形状都作了标准化规定。直径,标矩的圆形截面试件叫做“标准试件”,如因原料尺寸限制或其他原因不能采用标准试件时,可以用“比例试件”。

四、实验原理

在拉伸试验时,利用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图2-11所示的F—ΔL曲线。图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。但同一种材料的拉伸曲线会因试样尺寸不同而各异。为了使同一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉伸曲线图的纵坐标(力F)除以试样原始横截面面积S0,并将横坐标(伸长ΔL)除以试样的原始标距得到的曲线便与试样尺寸无关,此曲线称为应力-应变曲线或R—曲线,如图2—12所示。从曲线上可以看出,它与拉伸图曲线相似,也同样表征了材料力学性能。

拉伸试验过程分为四个阶段,如图2—11和图2-12所示。

(1)、弹性阶段OC。 在此阶段中拉力和伸长成正比关系,表明钢材的应力与应变为线性关系,完全遵循虎克定律,如图2-12所示。若当应力继续增加到C点时,应力和应变的关系不再是线性关系,但变形仍然是弹性的,即卸除拉力后变形完全消失。

(2)、屈服阶段SK 当应力超过弹性极限到达锯齿状曲线时,键盘上的力值并往复运动,这时若试样表面经过磨光,可看到表征晶体滑移的迹线,大约与试样轴线成450方向。这种现象表征试样在承受的拉力不继续增加或稍微减少的情况下变形却继续伸长,称为材料的屈服,其应力称为屈服点(屈服应力)。示力盘的指针首次回转前的最大力(Fsu上屈服力)或不计初始瞬时效应(不计载荷首次下降的最低点)时的最小力(FsL下屈服力),分别所对应的应力为上、下屈服点。示力盘的主针回转后所指示的最小载荷(第一次下降后的最小载荷)即为屈服载荷Fs。由于上屈服点受变形速度及试样形状等因素的影响,而下屈服点则比较稳定,故工程中一般只定下屈服点。屈服应力是衡量材料强度的一个重要指标。

(3)、强化阶段KE过了屈服阶段以后,试样材料因塑性变形其内部晶体组织结构重新得到了调整,其抵抗变形的能力有所增强,随着拉力的增加,伸长变形也随之增加,拉伸曲线继续上升。KE曲线段称为强化阶段,随着塑性变形量的增大,材料的力学性能发生变化,即材料的变形抵抗力提高,塑性降低。在强化阶段卸载,弹性变形会随之消失,塑性变形将会永久保留下来。强化阶段的卸载路径与弹性阶段平行,卸载后重新加载时,加载线与弹性阶段平行,重新加载后,材料的比例极限明显提高,而塑性性能会相应下降。这种现象叫做形变硬化或冷作硬化。当拉力增加,拉伸曲线到达顶点E时,示力盘上的主针开始返回,而副针所指的最大拉力为Fm,由此可求得材料的抗拉强度。它也是材料强度性能的重要指标。

4)、局部变形阶段EG(颈缩和断裂阶段)。对于塑性材料来说,在承受拉力Fm以前,试样发生的变形各处基本上是均匀的。在达到Fm以后,变形主要集中于试样的某一局部区域,该处横截面面积急剧减小,这种现象即是“颈缩”现象,此时拉力随着下降,直至试样被拉断,其断口形状呈碗状,如下图所示。试样拉断后,弹性变形立即消失,而塑性变形则保留在拉断的试样上。利用试样标距内的塑性变形来计算材料的断后延伸率和断面收缩率

五、实验步骤

   1、 根据试样的形状、尺寸和预计材料的抗拉强度来估算最大拉力,并使用合适的万能试验机进行拉伸实验。然后,选用与试样相适应的夹具。

2、 在试样的原始标距长度范围内用划线机等分10个分格线,以便观察标距范围内沿轴向变形的情况和试样破坏后测定断后延伸率。

3、根据国标GB/T 228-2002《金属室温拉伸试验方法》中的规定,测定试样原始横截面积。本次试验采用圆形试样,应在标距的两端及中间处的两个相互垂直的方向上各测一次横截面直径,取其算术平均值,选用三处测得的直径最小值,并以此值计算横截面面积。

4、安装试样,依据万能材料试验机的操作规程进行操作,并将键盘的力值和峰值清零,即可开始试验。

5、加载试验,在试验过程中,要求均匀缓慢地进行加载。要注意观察拉伸过程四个阶段中的各种现象。万能试验将自动记下屈服载荷值,最大载荷Fm值。

6、对于拉断后的低碳钢试样,要分别测量断裂后的标距和颈缩处的最小直径。测定的方法为:将试样断裂后的两段在断口处紧密地对接起来:

1)、如果试样断口断在试样中部,直接测量原标距两端的距离作为断后的距。

2)、若断口处到最邻近标距端线的距离小于1/3时,则需要用“移位法”来计算。其方法是:在长段上从拉断处O取基本等于短段格数得B点,接着取等于长段所余格数[偶数,如下图a]的一半,得C点;或者取所余格数[奇数,下图b]分别减1与加1的一半,得CC1点。移位后的分别为:AB+2BC或者AB+BC+BC1

测定断面收缩率时,在试样颈缩最小处两个相互垂直的方向上测量其直径d1,取其算术平均值作为d1计算其断面收缩率。

六、实验结果处理

1、根据试验测定数据,可分别计算材料的强度指标和塑性指标。

强度指标: 屈服强度:                            

           抗拉强度:                              

塑性指标:  断后延伸率:                                               

断后截面收缩率:                

                         

2、 绘出拉伸过程中的F-ΔL曲线,对试验中的各种现象进行分析比较,并写进试验报告中

七、实验数据和计算结果

金属的拉伸实验二

一、实验目的

1、测定铸铁的抗拉强度Rm

2、观察铸铁在拉伸过程中的现象,并绘制拉伸图(F─曲线)

3、分析比较低碳钢和铸铁的力学性能特点与试样破坏特征

二、实验设备及测量仪器

1、万能材料试验机

2、游标卡尺

三、试样的制备

试样可制成圆形截面或矩形截面,采用圆形截面试件,试件中段用于测量拉伸变形,其长度称为“标矩”。两端较粗部分为夹持部分,安装于试验机夹头中,以便夹紧试件。试验表明,试件的尺寸和形状对材料的塑性性质影响很大,为了能正确地比较材料力学性能,国家对试件的尺寸和形状都作了标准化规定。直径,标矩的圆形截面试件叫做“标准试件”,如因原料尺寸限制或其他原因不能采用标准试件时,可以用“比例试件”。

四、实验原理

做拉伸试验时,利用试验机的自动绘图器绘出铸铁的拉伸曲线,如图2-14所示。在整个拉伸过程中变形很小,无屈服、颈缩现象,拉伸曲线无直线段,可以近似认为经弹性阶段直接断裂,其断口是平齐粗糙的。如下图所示。

五、实验步骤

1、 根据试样的形状、尺寸和预计材料的抗拉强度来估算最大拉力,以选择合适的万能实验机。然后,选用与试样相适应的夹具。

2、根据国标GB/T 228-2002《金属室温拉伸试验方法》中的规定,测定试样原始横截面积。本次试验采用圆形试样,应在标距的两端及中间处的两个相互垂直的方向上各测一次横截面直径,取其算术平均值,选用三处测得的直径最小值,并以此值计算横截面面积。

3、安装试样,依据万能材料试验机的操作规程进行操作,并将键盘的力值和峰值清零,即可开始试验。

4、加载试验,在试验过程中,要求均匀缓慢地进行加载。对于铸铁试样,只需测定其最大载荷Fm值。试样被拉断后立即停机,并取下试样。

5、根据测理的实验数据计算试样的强度指标。

六、实验结果处理

1、根据试验测定数据,可分别计算材料的强度指标:

强度指标 : 抗拉强度 : 

2、 绘出拉伸过程中的F-ΔL曲线,对试验中的各种现象进行分析比较,并写进试验报告中

七、实验数据和计算结果

更多相关推荐:
偏心拉伸实验报告

实验三偏心拉伸实验36050221唐智浩一实验目的1测量试件在偏心拉伸时横截面上的最大正应变max2测定中碳钢材料的弹性模量E3测定试件的偏心距e二实验设备与仪器1微机控制电子万能试验机2电阻应变仪3游标卡尺三...

偏心拉伸试验报告

偏心拉伸试验学院专业班实验组别实验者姓名实验日期年月日实验室温度批改时间报告成绩批阅人一实验原理接桥方法设计a测量轴力图及计算公式b测量弯矩图及计算公式二实验设备电阻应变仪型号名称实验装置名称量具名称精度mm三...

偏心拉伸实验报告

预习要求1预习构件在单向偏心拉伸时横截面上的内力分析2复习电测法的不同组桥方法3设计本实验所需数据记录表格一实验目的1测量试件在偏心拉伸时横截面上的最大正应变max2测定中碳钢材料的弹性模量E3测定试件的偏心距...

偏心拉伸试验

偏心拉伸试验实验目的1测定偏心拉伸时的最大正应力验证迭加原理的正确性2学习拉弯组合变形时分别测量各内力分量产生的应变成分的方法3测定偏心拉伸试样的弹性模量E和偏心距e4进一步学习用应变仪测量微应变的组桥原理和方...

偏心拉伸试验

偏心拉伸试验实验目的1测定偏心拉伸时的最大正应力验证迭加原理的正确性2学习拉弯组合变形时分别测量各内力分量产生的应变成分的方法3测定偏心拉伸试样的弹性模量E和偏心距e4进一步学习用应变仪测量微应变的组桥原理和方...

实验一 偏心拉伸试验

实验一偏心拉伸试验实验目的1测定偏心拉伸时的最大正应力验证迭加原理的正确性2学习拉弯组合变形时分别测量各内力分量产生的应变成分的方法3测定偏心拉伸试样的弹性模量E和偏心距e4进一步学习用应变仪测量微应变的组桥原...

综合实验偏心拉伸的应力测试

1实验目的及意义12实验器材121XL2118C型力amp应变综合测试仪122试样及应变片介绍33电桥531测量电桥的工作原理532温度补偿和温度补偿片633桥路连接74实验原理841原理842测量各内力分量产...

PE塑料拉伸性能试验报告

PE塑料拉伸性能试验报告执行标准试样宽度15196mmGBT104092试样厚度2916mm试样原始标距偏置屈服应变13956mm

拉伸强度试验不确定度报告

土工布拉伸强度试验不确定度报告试验人试验日期审核批准大连工环建测试服务有限公司11概述11环境条件2012设备30kN万能材料试验机13试件准备于一块土工布上截取实验用土工布试样20块纵横两个方向按规定尺寸20...

实验六__偏心拉伸实验

实验六偏心拉伸实验一实验目的1234测定偏心拉伸时的最大正应力验证叠加原理的正确性分别测定偏心拉伸时由拉力和弯矩所产生的应力测定弹性模量E测定偏心距e二实验设备1组合变形电测综合实验装置自制2电阻应变测力仪三实...

偏心拉伸实验

实验二偏心拉伸实验一实验目的1测定偏心拉伸试样材料的弹性模量E2测定偏心拉伸试样的偏心距e3学习组合载荷作用下由内力产生的应变成份分别单独测量的方法二设备和仪器同7三试样采用图21所示的铝合金偏心拉伸试样Ra和...

实验八 偏心拉伸电测实验

实验八偏心拉伸电测实验一实验目的1用电测法测定偏心位伸试件横截面上正应力分布并与材力理论计算比较2用不同的桥路接法在组合变形情况下测取单一成分应变的方法二实验设备1电阻应变仪见附表一2152型材料拉力试验机三实...

偏心拉伸试验报告(18篇)