09年高中物理知识点总结力学

时间:2024.4.20

09年高中物理知识点总结力学:解决力学问题的三种手段:

(1)牛顿运动定律与运动学结合;

(2)能量的观点,尤其是动能定理;本资料来源于贵-州-学-习-网 高考频道高考物理

(3)动量守恒定律;这三类解决有关动力学问题的手段将高中物理的绝大部分知识点概括了。

热学:

(1)分子动理论;

(2)热力学三定律;

(3)气体压强:这里边的有些具体问题也与力学有关。

电学:

电场,磁场的基本性质掌握以后,难点还是动力学问题;与力无关的一部分是欧姆定律

光学:

折射定律;干涉;衍射;物理光学。

原子物理:

光电效应;量子论;核反应。

三大守恒定律贯穿始末:

(1)质量守恒定律;

(2)能量的转化与守恒定律;

(3)电荷守恒定律

处理高中物理高考重难点的思路及方法:

高中物理高考重点考查的是力学和电磁学这两大块,而电磁学问题经过实质性的转化以后,实际上分为了两类:一类是动力学问题(比如静电场中和静磁场中带电粒子的运动问题,安培力问题)一类是电路问题(多与电磁感应联系)。所以:整个高中物理的重点(力学与电磁学),只要识破题意,就只有两类问题:动力学问题和电路问题。下面谈一下处理这两类问题的方法:

动力学问题:分析问题抓两个要点,1、物体或系统的受力情况;2、物体或系统的运动情况;3、结合1.、2选择规律列方程求解。在规律的选择上主要是从能量(主要是动能定理)、动量(动量定理和动量守恒定律)两方面入手。这里没有提牛顿运动运动定律,原因在于:在高中阶段,牛顿运动定律只能用来处理恒力问题,而通过动能定理与动量定理完全可以处理恒力问题,并且比牛顿运动定律省时。高中阶段学习牛顿运动定律的最大作用我认为是通过与匀变速直线运动结合导出动能定理和动量定理,

这类问题失分的主要原因是审题不清(无法下手)和规律选择不恰当(浪费时间)。如何审题呢?抓住题中描述运动与受力的关键字(做好标记);如何选择规律呢?涉及能量、速度位移、路程的与能量有关,涉及时间的与动量有关。 物理实验的问题:高中阶段要考的实验只有19个。每个实验必须弄清实验原理,因为考点多考实验原理。在者是实验中的注意事项,资料上、课本上几乎都有,考题中实验不成功,而让分析原因时,多为没有考虑注意事项。 物理中涉及的数学知识:

1、函数(一次函数、二次函数)

2、斜率(物理图象:v-t,s-t,波动、振动图象电磁感应中的图象)

3、几何知识(匀速圆周运动、光学运用较多;尤其是带电粒子在电磁场中做圆周运动时,考的多为部分圆周运动,几何关系有时比物理关系难找)

4、等差数列、等比数列求和公式。

力学部分:

1、基本概念:

力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速

2、基本规律:

匀变速直线运动的基本规律(12个方程);

三力共点平衡的特点;

牛顿运动定律(牛顿第一、第二、第三定律);

万有引力定律;

天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);

动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系);

动量守恒定律(四类守恒条件、方程、应用过程);

功能基本关系(功是能量转化的量度)

重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点); 功能原理(非重力做功与物体机械能变化之间的关系);

机械能守恒定律(守恒条件、方程、应用步骤);

简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;

简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;

3、基本运动类型:

运动类型受力特点备注

直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析

匀变速直线运动同上且所受合外力为恒力1.匀加速直线运动

2.匀减速直线运动

曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向

合外力指向轨迹内侧

(类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解

匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心

(合外力充当向心力)一般圆周运动的受力特点

向心力的受力分析

简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析

4、基本方法:

力的合成与分解(平行四边形、三角形、多边形、正交分解);

三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);

对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法—假设法);

处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像);

解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);

针对简谐运动的对称法、针对简谐波图像的描点法、平移法

5、常见题型:

合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。

斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括物体除受常规力之外多一个某方向的力的分析);

(3)整体(斜面和物体)受力情况及运动情况的分析(整体法、个体法)。 动力学的两大类问题:(1)已知运动求受力;(2)已知受力求运动。 竖直面内的圆周运动问题:(注意向心力的分析;绳拉物体、杆拉物体、轨道内侧外侧问题;最高点、最低点的特点)。

人造地球卫星问题:(几个近似;黄金变换;注意公式中各物理量的物理意义)。

动量机械能的综合题:

(1)单个物体应用动量定理、动能定理或机械能守恒的题型;

(2)系统应用动量定理的题型;

(3)系统综合运用动量、能量观点的题型:

①碰撞问题;

②爆炸(反冲)问题(包括静止原子核衰变问题);

③滑块长木板问题(注意不同的初始条件、滑离和不滑离两种情况、四个方程);

④子弹射木块问题;

⑤弹簧类问题(竖直方向弹簧、水平弹簧振子、系统内物体间通过弹簧相互作用等);

⑥单摆类问题:

⑦工件皮带问题(水平传送带,倾斜传送带);

⑧人车问题;人船问题;人气球问题(某方向动量守恒、平均动量守恒); 机械波的图像应用题:

(1)机械波的传播方向和质点振动方向的互推;

(2)依据给定状态能够画出两点间的基本波形图;

(3)根据某时刻波形图及相关物理量推断下一时刻波形图或根据两时刻波形图求解相关物理量;

(4)机械波的干涉、衍射问题及声波的多普勒效应。

电磁学部分:

1、基本概念:

电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速

2、基本规律:

电量平分原理(电荷守恒)

库伦定律(注意条件、比较-两个近距离的带电球体间的电场力)

电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场) 电场力做功的特点及与电势能变化的关系

电容的定义式及平行板电容器的决定式

部分电路欧姆定律(适用条件)

电阻定律

串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系) 焦耳定律、电功(电功率)三个表达式的适用范围

闭合电路欧姆定律

基本电路的动态分析(串反并同)

电场线(磁感线)的特点

等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点

常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管)

电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、效率)

电动机的三个功率(输入功率、损耗功率、输出功率)

电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截距的物理意义)

安培定则、左手定则、楞次定律(三条表述)、右手定则

电磁感应想象的判定条件

感应电动势大小的计算:法拉第电磁感应定律、导线垂直切割磁感线 通电自感现象和断电自感现象

正弦交流电的产生原理

电阻、感抗、容抗对交变电流的作用

变压器原理(变压比、变流比、功率关系、多股线圈问题、原线圈串、并联用电器问题)

3、常见仪器:

示波器、示波管、电流计、电流表(磁电式电流表的工作原理)、电压表、定值电阻、电阻箱、滑动变阻器、电动机、电解槽、多用电表、速度选择器、质普仪、回旋加速器、磁流体发电机、电磁流量计、日光灯、变压器、自耦变压器。

4、实验部分:

(1)描绘电场中的等势线:各种静电场的模拟;各点电势高低的判定;

(2)电阻的测量:①分类:定值电阻的测量;电源电动势和内电阻的测量;电表内阻的测量;②方法:伏安法(电流表的内接、外接;接法的判定;误差分析);欧姆表测电阻(欧姆表的使用方法、操作步骤、读数);半偏法(并联半偏、串联半偏、误差分析);替代法;*电桥法(桥为电阻、灵敏电流计、电容器的情况分析);

(3)测定金属的电阻率(电流表外接、滑动变阻器限流式接法、螺旋测微器、游标卡尺的读数);

(4)小灯泡伏安特性曲线的测定(电流表外接、滑动变阻器分压式接法、注意曲线的变化);

(5)测定电源电动势和内电阻(电流表内接、数据处理:解析法、图像法);

(6)电流表和电压表的改装(分流电阻、分压电阻阻值的计算、刻度的修改);

(7)用多用电表测电阻及黑箱问题;

(8)练习使用示波器;

(9)仪器及连接方式的选择:①电流表、电压表:主要看量程(电路中可能提供的最大电流和最大电压);②滑动变阻器:没特殊要求按限流式接法,如有下列情况则用分压式接法:要求测量范围大、多测几组数据、滑动变阻器总阻值太小、测伏安特性曲线;

(10)传感器的应用(光敏电阻:阻值随光照而减小、热敏电阻:阻值随温度升高而减小)

5、常见题型:

电场中移动电荷时的功能关系;

一条直线上三个点电荷的平衡问题;

带电粒子在匀强电场中的加速和偏转(示波器问题);

全电路中一部分电路电阻发生变化时的电路分析(应用闭合电路欧姆定律、欧姆定律;或应用“串反并同”;若两部分电路阻值发生变化,可考虑用极值法); 电路中连接有电容器的问题(注意电容器两极板间的电压、电路变化时电容器的充放电过程);

通电导线在各种磁场中在磁场力作用下的运动问题;(注意磁感线的分布及磁场力的变化);

通电导线在匀强磁场中的平衡问题;

带电粒子在匀强磁场中的运动(匀速圆周运动的半径、周期;在有界匀强磁场中的一段圆弧运动:找圆心-画轨迹-确定半径-作辅助线-应用几何知识求解;在有界磁场中的运动时间);

闭合电路中的金属棒在水平导轨或斜面导轨上切割磁感线时的运动问题; 两根金属棒在导轨上垂直切割磁感线的情况(左右手定则及楞次定律的应用、动量观点的应用);

带电粒子在复合场中的运动(正交、平行两种情况):

①.重力场、匀强电场的复合场;

②.重力场、匀强磁场的复合场;

③.匀强电场、匀强磁场的复合场;

④.三场合一;

复合场中的摆类问题(利用等效法处理:类单摆、类竖直面内圆周运动); LC振荡电路的有关问题;


第二篇:高中物理力学总结


高中物理力学知识总结

第一单元:力学中的三种常见力 物体受力分析

一、力的概念

1、力:力是力不能一个物体受到力的作用,一定有它施加这种作用。

2、力的效果:使受力物体的我们可以通过力的作用效果来检验力的存在与否,上述两种效果可以独立产生,也可以同时产生。

3、力是矢量,在三要素: 要完整的表述一个力既要说明它的大小,又要说明它的方向。为形象、直观的表述一个力,我们一般用 来表示力的 ,这各表示力的方法叫力的图示。作力的图示应注意以下两个问题:一是不能用不同的标度画同一物体所受的不同力;二是力的图示与力的示意图不同,力的图示要求严格,而力的示意图着重于力的方向,不要求做出标度。

4、力的分类:在力学中按可分为:重力、弹力、摩擦力等;按 可分为:拉力、压力、支持力、动力、阻力等。性质相同的力效果可以不同,也可以相同;效果相同的力,性质可以相同,也可以不同。

5、力的单位:在国际单位制中,力的单位是。

6、力的测量用 。

二、重力

1、产生:是由于 而产生的。

2、重力的大小:重力与质量的关系为测出,其大小在数值上等于物体静止时对水平支持面的压力或者对竖直悬绳的拉力。

3、重力的方向: 。

4、物体所受重力的等效作用点。质量分布均匀的物体, 有关,形状规则且质量分布均匀的物体,它的重心就在其 上。不规则物体的重心位置,除跟物体的形状有关外,还跟物体质量的分布有关。对于形状不规则或者质量分布不均匀的薄板,可用 测定其重心的位置。因为重心为一等效概念,所以物体的重心不一定在物体上,可能在物体外,也可能在物体之内。如圆环的重心就不在圆环上。

三、弹力

1、定义:发生形变的物体由于要恢复原状,会对 产生力的作用,这种力叫弹力。

2、产生条件:一是

3、弹力的方向:一是压力、支持力的方向 指向被压、被支持的物体。二是绳的拉力方向总是沿着 的方向。三是弹力方向可以说成与施力物体形变的方向相反。

4、弹力大小的计算:一是胡克定律,既在弹性限度内,弹簧产生的弹力大小与形变

量成正比,即F= 。其中K是由弹簧本身特性决定的物理量(注意和弹簧匝数有关),叫劲度系数。X表示弹簧伸长或被压缩之后的长度与没有发生形变时的长度之差,即弹簧的形变量。二是除弹簧外,其他物体所受的弹力的大小,通常利用平衡条件或动力学规律建立方程求解。

四、滑动摩擦力

1、定义:一个物体在另一个物体表面上时候,要受到另一个物体 的力,这种力就叫滑动摩擦力。

2、产生条件:一是是是 。

3、滑动摩擦力的方向总跟接触面方向相反。

4、滑动摩擦力的大小跟成正比,也就是成正比。公式为F= 。F表示滑动摩擦力的大小,FN表示压力的大小,μ叫动摩擦因数。

5、效果:总是物体间的,但并不总是阻碍物体的运动,可能是动力,也可能是阻力。

五、静摩擦力

1、产生条件:

2、方向与接触面 ,并与物体的 方向相反。

3、大小:一是随着相对运动趋势强弱变化而在零到最大值之间变化。跟运动趋势的强弱程度有关,但跟接触面相互挤压的力FN无直接关系。二是最大静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为它们在数值上相等。

4、效果:阻碍物体间的是阻力。

六、物体受力分析

1、方法是隔离物体法。将要受力分析的物体与其它物体隔离开,只分析的到的力,不分析该物体对其它物体的力。只分析性质力,不分析效果力。

2、受力分析的步骤:一根据题意选取适当的,把要研究的对象从周围物体中 出来选取的研究对象要有利于问题的处理,可以是单个物体,也可以是物体的一部分,也可以是几个物体组成的 ,即物体系,应视具体问题而定。二按照先 ,再 ,再 的顺序对物体进行受力分析,并画出物体的受力示意图,按此顺序分析受力可以防止漏力。三在分析受力的过程中,要找到它的施力物体,没有施力物体的力是 的,这样可以防止 。

答案:

一、物体之间的相互作用;离开物体独立存在;另外的物体;体积;形状;使受力物体的运动状态发生变化;大小;方向;作用点;带箭头的线段;大小;方向;作用点;性质;效果;牛顿;测力计。

二、地球吸引;F=mg;测力计;竖直向下;形状;几何中心;悬挂法。

三、跟它直接接触的物体;两物体直接接触;发生弹性形变;垂直于接触面;绳子指向绳子收缩的方向;kx。

四、相对于;滑动;阻碍作用;直接接触、相互挤压;接触面粗糙;有相对运动;相切;相对运动;压力;跟一个物体对另一个物体表面的垂直作用力;μFN;阻碍;相对运动。

五、直接接触、相互挤压;接触面粗糙;有相对运动趋势;相切;相对运动趋势;相对运动。

六、这个物体;研究对象;隔离;系统;重力;弹力;摩擦力;不存在;多力。

第二单元:力的合成与分解 共点力作用下物体的平衡

一:力的合成与分解

一、合力与分力 一个力如果它产生的 跟几个力共同产生的 相同,则这个力就叫那几个力的 ,而那几个力就叫这个力的 ,合力与分力之间是等效代替。

二、平行四边形定则 用表示两个共点力F1和F2的线段为 作 ,那么,合力F的大小和方向就可以用这两个邻边之间的 表示出来,这叫力的平行四边形定则。

三、力的合成

1、 叫做力的合成。

2、已知两个共点力的大小分别为F1和F2,其方向之间的夹角为θ,那么:A、在F1和F2大小不变的情况下,F1和F2之间夹角θ越大,合力F就 ;θ越小,其合力F 。

当θ=0°时,F= ,为F的 ;当θ=90°时,F= ; 当θ=120°时,且F1=F2时,F=F1=F2;当θ=180°时,F= ,为F的 。

B、合力变化范围为。例如:F1=5N,F2=7N,两力的合力变化范围就是 ≤F≤ 。由此看出,合力可以大于分力,也可小于分力。

四、力的分解

1、

2、把一个已知力分解时,如果没有限制条件,将有 对大小、方向不同的分力。如果加上一些条件,就可以得到确定的解,以下是几种常见的情况(请同学们自己作出示意图)。

已知合力和两个分力的方向,可求得两个分力的大小(唯一解)。

已知合力和一个分力的大小、方向,可求得另一个分力的大小和方向(唯一解)。 已知合力、一个分力F1的大小与另一个分力F2的方向,可求F2大小和F1的方向(这时要注意有一组解或两组解,当然也可能无解,也就是不能分解)。

附注:以上所述均不包括合力方向与分力方向在一条直线上的情况。

3、在实际问题中,一舰是根据力的作用效果把力进行唯一分解。如:在光滑斜面上的下滑物体,其重力产生的效果一是 ,二是 ,故其重力的分解就按效果进行,分解为这两个方向的分力。请同学们作出重力分解示意图,两个分力的大小分别是G1,G2。但不能就此认为所有斜

面上物体的重力都得这样分解,有时为了解题方便,我们会沿其它两个方向把斜面上物体的重力进行分解。如:竖直挡板将一球挡在斜面上静止不动时,其重力产生的效果一是 ,二是 即应按这两个效果进行分解,请作出分解示意图,并写出两力G1= ,G2= 。

二:共点力作用下物体的平衡

一、平衡状态 物体保持 或 状态叫平衡状态。注意:静

止状态是指 和 都为零的状态。以下物体处于平衡状态的是: 。

A、竖直上抛物体达到最高点时;B、自由落体运动的初始状态;C、弹簧振子经过

平衡位置的状态;D、弹簧振子经过最大位移处时的状态;E、单摆的摆球经过平衡位置时的状态;F、单摆摆球经过最大位移处时的状态;G、做匀速圆周运动物体所处的状态。

二、共点力作用下物体的平衡条件

该条件是 。

1、如果物体在两个力的作用下处于平衡状态,这两个力必定大

小 ,方向 ,为一对 。

2、如果物体在三个力的作用下处于平衡状态,那么其中任意两个力的合力一定与第

三个力大小 ,方向 。

3、如果物体受多个力作用而处于平衡状态,其中任一力与其它力的合力大小 方向 。

三、三力汇交原理 如果一个物体受到三个非平行力的作用而平衡,这三个力的作

用线必定在同一平面内,而且为共点力。(作用线或反向延长线交于一点)。

答案:一:效果 效果 合力 分力 邻边 平行四边形 对角线 求几个力的合

力 越小 越大 二力和 最大值 根号下二力平方和 二力差的绝对值 最小值 二力差的绝对值 二力和 2N 12N 求一个已知力的分力 逆运算 无数 使物体下滑 使物体压紧斜面 GsinA GcosA 使球压紧竖起挡板 使球压紧斜面 GtanA G/cosA

二:匀速直线运动 静止 速度 加速度 C 合力为零 相等 相反 平衡力 相

等 相反 相等 相反

第三单元:描述运动的基本概念

一:机械运动

一、机械运动 一个物体相对另一个物体的 改变叫做机械运动,它包括 和 及 。

二、参考系 为了研究运动而假定为 的物体叫参考系。对于同一个物体

的运动,所选参考系不同,对它运动的描述就可能不同,通常以 为参考系研究物体的运动。

二:质点

一、定义 用来代替物体的 的点,它是理想化的物理模型。

二、把物体看成质点的条件是物体的 和 对研究物体运动无影响。

三:时刻与时间 时刻指的是某一瞬时,在时间轴上用一个 表示,对应是位

置、速度、动量、动能等状态量,时间是两个时刻的间隔,在时间轴上用一个 表

示,它对应的是位移、路程、冲量、功等过程量。

四:位移和路程:

一、路程:物体运动 的长度,是 量。

二、位移:物理意义:描述物体 的物理量,是 量。

表示方法:用由的带箭头的有向线段表示。

的距离;方向:。 五:速度和速率:

一、速度:是表示物体 的物理量,它等于 的比值。公式为 ,单位是 ,它是矢量,方向描述运动方向。

1、平均速度:变速直线运动中,运动物体的 V=s/t。它只能粗略描述物体的运动情况,它也是矢量,方向即这段时间内的位移方向。

2、瞬时速度:运动物体在变速运动的精确描述,大小描述物体在该时刻或在该位置运动的快慢;方向描述运动的方向。

二、速率:指的是速度的大小。不过要注意:平均速率指路程与时间的比值,是标量。它并不一定是平均速度的大小。而瞬时速度的大小就是瞬时速率。这点要注意区分。

六:加速度:

定义:速度的 跟发生这一改变所用时间的比值,表达式为a= 。 物理意义:描述 的物理量,是矢量。

方向:与 方向相同,当a与v方向 时,物体做加速运动;当a与v方向 时,物体做减速运动;a为恒量时为匀变速;a为变量时为非匀变速,也叫变加速。

单位: ;含义是:单位时间内速度的变化量。

答案:

一:位置 平动 转动 振动 不动 地球或相对地球不动的物体

二:质量 大小 形状

三:点 线段

四:轨迹 标 位置变动 矢 初位置 末位置 初位置 末位置 初位置 末位置

五:运动快慢 位移s与发生这段位移所用时间 v=s/t m/s 位移 时间 某一时刻

六:改变 (Vt-Vo)/ t 速度改变快慢 速度改变 相同 相反 m/s2

第四单元:匀速直线运动 匀变速直线运动

一:匀速直线运动

1、定义:物体在一条直线上运动,如果 ,这种运动就叫匀速直线运动。

2、特点:速度特点为和

位移特点为位移s跟发生这段位移s所用的时间t成 ,公式为 。

二:匀变速直线运动

1、定义:物体在一条直线上运动,如果在相等,这种运动即叫作匀变速直线运动。

2、特点:a为 。包括大小和方向两个方面。

3、规律:速度规律为律结合消去时间可得一个有用的推论为 ;另一个位移规律为 。

4、推论:

A 任意相邻两个连续相等的时间段内的位移之差是一个恒量,即△S= = 恒量。

B 某段时间内的平均速度,等于该时间段内的中间时刻的瞬时速度,即V=Vt/2。

C 某段位移中点的瞬时速度等于初速度和末速度平方和一半的平方根。即Vs/2

D 初速度为零的匀变速直线运动还具备以下几个特点:

① 1T内、2T内、3T内、……位移之比为 。 ② 1T末、2T末、3T末、……速度之比为 。 ③ 第一个T内、第二个T内、第三个T内、……的位移之比为 。④ 从静止开始通过连续相等的位移所用时间之比为 。

三:自由落体运动

1、定义:物体只在

2、特点:自由落体运动是初速度为零,加速度为g的匀加速直线运动。

3、规律:初速度为零的匀加速直线运动的规律就是自由落体运动的规律,且a = g。所以速度规律为 ;下落高度规律为 ;推论为 。从运动开始连续相等时间内的位移之比为 ;连续相等时间内位移的增加量均相等,即△S= =恒量。

四:竖直上抛运动

1、定义:物体以初速度 后,只在 作用下所做的运动即竖直上抛运动。

2、规律:取向上方向为正方向,则有速度规律为;高度规律为 。

二者结合消去时间的推论为 。

3、几个特征量

① 上升的最大高度为 。

② 上升到最大高度所用时间和从最高点处落回抛出点所用时间相等。均等于 。

五:追击和相遇问题

追和被追的两物体的 (同向运动)是能追上、追不上、两者距离有极值的临界条件。

1、速度大者减速(如匀减速直线运动)追速度小者(如匀速运动)

① 两者速度相等时追者位移仍小于被追者位移,则永远追不上,此时二者间有 。

② 若速度相等时有相同位移,则刚好能追上,也是二者相遇时避免碰撞的临界条件。 ③ 若位移相等时追者速度仍大于被追者的速度,则被追者还能有一次追上追者,二者速度相等时,二者间 。

2、速度小者加速(如初速度为零的匀加速直线运动)追速度大者(如匀速运动) ① 当两者速度相等时二者间有 。

② 当两者位移相等时,后者追上前者。

六:匀速直线运动的位移图象

s-t图象表示运动的 的直线,速度大小在数值上等于图象的 ,即v=k 。如图(略,请自己补画)。

七:直线运动的速度图象

v-t图象表示v、t的对应关系,即若给定时间t,则可以从图上找出相应的速度v,反之亦然。

1、匀速直线运动的速度图象

① 是与横轴时间轴平行的直线。

② 从图象上不仅可以找出速度的大小,而且可以利用“面积”求出 。(请自画图)

2、匀变速直线运动的速度图象

① 是一条倾斜的直线(可过可不过原点)(请自己补画图象)

② 直线斜率的大小等于加速度的大小,即a=tanθ=k。

③ 当Vo>0时,若直线的斜率大于零,则加速度也大于零,表示物体作 运动;若直线的斜率小于零,则加速度也小于零,表示物体作 运动。

④图象与坐标轴所围面积(0~t1段)表示该段时间内的位移,位移大小等于梯形的“面积”。

答案:

一:在相等的时间内位移相等 大小 方向 正比 s=vt

二:时间内速度变化 恒量 (略)

三:重力 静止 (略)

四:水平抛出 重力 (略)

五:速度相等 最小距离 距离最大 最大距离

六:位移 过原点的 斜率

七:运动的速度 位移的大小 匀加速直线 匀减速直线

第五单元 牛顿运动定律

一:牛顿第一定律

1、定律内容:一切物体总保持

态,直到有外力迫使它改变这种状态为止。

2、牛顿第一定律的理解注意以下几点:

① 牛顿第一定律反映了物体 时的运动状态。

② 牛顿第一定律说明一切物体都有 。

③ 牛顿第一定律说明 改变物体运动状态的原因,即力是产生 的原因。

3、惯性:物体保持原来的状态或性,是物体的固有属性。不能被消失,不能被克服,不能被抵消……等等。

是惯性大小的唯一量度,惯性与物体是否受力和受力大

小 ,与物体是否运动及运动速度大小 。

惯性的表现形式:① 物体在 或 时,惯性表现为使物体保持原来

的运动状态不变(匀速直线运动或静止)。② 物体受到外力时,惯性表现为运动状态改变的 程度。惯性大,物体运动状态难以改变;惯性小,物体运动状态容易改变。这里所述实质上是牛顿第二定律所反映的内容。(外力一定时,a大就是运动状态容易改变,a小则反之。)

4、牛顿第一定律是通过

二:牛顿第二定律

1、内容:物体的加速度跟物体所受的合外力成,跟物体的质量成 加速度的方向跟物体所受合外力的方向 。

2、公式F=ma在使用时,各量的单位必须使用 单位制中的单位。对力进

行正交分解时,加速度同样可以进行正交分解。

3、力的独立性原理:作用在物体上的每一个力都可以产生一个 ,物体的

加速度等于所有力产生的加速度的矢量和。

4、加速度和合外力是外力发生变化,加速度立刻也跟着变化,不需要时间。

三:牛顿第三定律

1、内容:两个物体之间的作用力和反作用力总是、、作用

在 。

2、关于作用力与反作用力,除了“等大、反向、共线”,还要注意以下几点:

① 同性质:一对作用力和反作用力必定是同种 的力。

② 同存亡:一对作用力和反作用力必定同时产生、同时消失、同时变化。

③ 异物性:分别作用在 物体上,因此不能抵消,不能合成,这是作用力与

反作用力跟一对平衡力的本质区别。

答案:

一:匀速直线运动 静止 不受外力 保持匀速直线运动状态或静止状态的性质 力 加速度 匀速直线运动 静止 质量 无关 匀速直线运动 静止 难易程度 理想实验

二:正比 反比 相同 国际 加速度 瞬时

三:大小相等 方向相反 同一直线上 性质 不同

四:合外力 加速度 地球

五:质量 长度 时间 导出单位 单位制

第六单元 动力学的两类问题

一:动力学的两类基本问题

1、已知力求运动,应用求出加速度,如果再知道物体的初始条件,应

用运动学公式就可以求出物体的运动情况:也就是任意时刻的位置和速度,以及运动的轨迹。

2、已知运动求力,应用运动学公式求出物体的加速度,再应用牛顿运动定律推断或

求出物体的受力情况。

3、求解以上两类问题的思路,可用下面所列来表示:

??运动的加速度??????物体的运动情况。 物体的受力情况?????

分析解决这两类问题的关键:就抓住受力情况和运动情况之间联系的桥梁……加速

度。

二:应用牛顿定律解题的一般步骤

1、审题,明确题意,清楚物理过程;

2、选取研究对象,可以是一个物体,也可以是几个物体组成的物体组;

3、运用隔离法对研究对象进行受力分析,画出受力的示意图;

4、建立坐标系,一般情况下可选择物体为下方向;

5、根据牛顿定律、运动学公式、题目给定的条件列方程;

6、解方程,对解进行分析、检验或讨论。

三:超重和失重

1、超重:物体对

2、失重:物体对

3、完全失重:物体对 (或对悬挂物的拉力) 的这种状态,叫完全

失重。

4、超重和失重产生的条件:当系统的加速度竖直向上(向上加速运动或向下减速运

动)时发生“超”重现象,超出的部分为ma;当系统的加速度竖直向下(向上减速运动或

向下加速运动)时发生“失”重现象,失去的部分为ma;当竖直向下的加速度正好等于 (自由落体运动或处在绕地球做匀速圆周运动的飞船里,也就是说只要物体具有重力加速度g)时就发生“完全失重”现象。此时会产生很多有趣的现象。(请你举出几例来)。

四:牛顿运动定律的适用范围

牛顿定律只适用于 的物体,它不适用于 。

答案:

一:牛顿运动定律

二:运动方向 加速度方向

三:支持物的压力 大于重力 支持物的压力 小于重力 支持物的压力 等于零 g

四:宏观低速 微观高速运动的粒子 牛顿顿运动定律运动学公式

第七单元 运动的合成与分解 平抛运动

一:曲线运动

1、物体做曲线运动的条件:运动物体所受的合力跟它的速度方向不在上。

2、曲线运动的特点:物体在某一点的速度方向,就是通过这一点的轨迹的 方

向;物体做曲线运动时,速度方向时刻改变,所以曲线运动一定是 ,但变速运动不一定是曲线运动。

二:运动的合成与分解

1、合运动与分运动的关系

① 等时性:合运动与分运动经历的 相等,即它们同进开始,同时结束。

② 独立性:一个物体同时参与两个或更多的运动时,其中任何一个运动都按照其自

身的规律进行,不会因其它运动的存在而受到影响。

③ 等效性:各分运动的叠加与合运动有完全相同的效果。

2、运动的合成、分解的法则

对运动进行合成或分解,实际上就是对描述运动的物理量即速度、加速度和位移进

行合成或分解,因它们都是 ,因此运动的合成和分解应遵循矢量运算法则即 定则。

三:平抛运动及其分解

1、平抛运动:水平抛出的物体仅在

2、分解方法:平抛运动可分解为水平方向的。 水平方向运动规律:速度为 ;位移为 ;

竖直方向运动规律:速度为 ;位移为 ;

而任一时刻速度大小为 ;任一时刻位移大小为 。任一

时刻速度、位移方向与水平方向的夹角α、θ可分别表示为:tanα=Vy/Vx;tanθ=Y/X。

答案:

一:同一直线 切线 变速

二:时间 矢量 平行四边形

三:重力 匀速直线 自由落体运动 Vo Vo t gt (略)

第八单元 圆周运动

一:描述圆周运动的物理量

1、线速度:

物理意义:描述质点沿圆周运动的 。大小:V=s/t(s是t内通过和弧长) 方向:质点在圆弧某点的线速度方向沿圆弧该点的 方向,与过该点的半

径 。

2、角速度:

物理意义:描述质点绕圆心转动的 。

大小:ω=φ/t(rad/s)φ是连接质点和圆心的半径在t时间内转过的角度,单位是弧

度。

3、周期T、频率f

做圆周运动的物体运动一周所用的时间叫周期。

做圆周运动物体单位时间内沿圆周绕圆心转过的圈数,叫频率,也叫转速。

4、V、ω、T、f的关系:(略,请自己补充)

注意:T、f、ω三个量中任一个确定,其余两个也就确定了。

5、向心加速度

① 物理意义:描述 改变的快慢。

② 大小:a=V/r=ωr=……

③ 方向:总是指向 ,所以不论a的大小是否变化,它都是个变化的量。

6、向心力:

① 作用效果:产生向心加速度,只改变线速度的 ,不改变线速度的 ,因此,向心力对圆周运动的物体 功。

② 大小:有多种不同的表达式,(从略)

③ 方向:总是沿半径指向圆心,向心力是个变力,圆周运动一定是非匀速性质的运动。

二:匀速圆周运动

1、特点:它是不变的运动,因此它的角速度、周期和频率都是。物体所受的合外力全部提供向心力。

2、质点作匀速圆周运动的条件:合外力大小 ,方向始终与速度方向 。 三:离心现象及其应用

1、离心运动:做匀速圆周运动的物体,在所受合外力突然消失或者不足以提供圆周运动所需 的情况下,就做逐渐远离圆心的运动,这种运动就叫离心运动。

2、离心运动的防止和利用:

① 利用离心运动制成各种离心机械,如 等。

② 防止离心运动的危害性,如 等。

答案:

一:快慢 切线 垂直 快慢 线速度方向 圆心 方向 大小 不做

二:线速度大小 定值 不变 垂直

三:向心力 离心干燥器 “棉花糖”制作机 摔干机…… 火车、汽车转变时速度不能过大 各种机器的转速也不能过大…… 22

第九单元 万有引力定律 人造地球卫星

一:开普勒行星运动定律

1、开普勒第一定律(又叫轨道定律):所有的行星分别在大小不同的轨道上围绕太阳运动,太阳处在这些椭圆的一个 上。

2、开普勒第二定律(又叫面积定律):行星与太阳的连线,在相等时间内扫过的面积相等。

3、开普勒第三定律(又叫周期定律):所有行星轨道半长轴的立方跟公转周期的 的比值是一个和行星无关而只和太阳有关的常数。即:R3/T2=K。(K只和太阳有关而和行星无关)

二:万有引力定律

1、定律内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小,跟它们

的质量的乘积成 比,跟它们距离的平方成 比。

2、表达式为:。其中G为万有引力恒量,单位

说明:此式子对于能视为质点的两个物体,距离就是两个质点间的距离。

对于两个质量分布均匀的球体,距离就是两个球心的距离。

而对于不属于上述两种情况以外的其它情况,万有引力仍然成立。

三:万有引力定律的应用 人造地球卫星

1、应用万有引力定律分析天体运动的基本方法:把天体的运动看成是其所需向心力由中心天体对运动天体的 提供。写成式子,有多个表达。(自己补写)应用时就根据题目的具体要求,选用适当的一个表达式进行分析和计算。

2、中心天体质量M、密度ρ的估算方法:

① 是利用天体表面的重力加速度及天体的半径,用黄金代换来估算。(请补写式子)

222② 是测出卫星绕天体做匀速圆周运动的半径R及周期T,利用GMm/R=4mπR/T

得到此天体的质量M= 。而密度ρ=M/V=3M/4πR0=3πR/GTR0(R0为天体的半径)。当卫星绕天体的表面运行时,R=R0,此时密度ρ=3π/GT2。

3、三种宇宙速度

① 第一宇宙速度(也叫 ):大小 ,是人造地球卫星的 发射速度;也是人造地球卫星绕地球做匀速圆周运动的最大环绕速度。

② 第二宇宙速度(也叫 ):大小 ,是物体挣脱地球引力束缚

的 。

③ 第三宇宙速度(也叫 ):大小 ,是物体挣脱太阳引力束缚

的 。

4、地球同步卫星:是指相对于地面静止的,和地球自转具有相同周期的卫星,T为

24小时。(35800km)处。

答案:

一:椭圆 焦点 平方

二:正 反 GMm/R2

232 三:匀速圆周运动 万有引力定 M=4πR/GT 环绕速度 最小 脱离速度 最

小发射速度 逃逸速度 最小发射速度 上空 3323

第十单元 功 功率

一:功

1、一个物体受到力的作用,并在知了功。

2、做功的两个必不可少的因素是的作用,在力的。

3、功的计算公式:,式中θ是的夹角,此式主要用于求 和F随s做线性变化时的变力的功(此时F要取平均值)。

4、功是标量,正、负表示是动力做功还是阻力做功,当θ=90°时,力对物体当θ<90°时,力对物体 ;当θ>90°时,力对物体 。功的单位是 。

5、合力的功等于各个力做功的,即W合=W1+W2+W3+W4+……

7、功是过程量,与能量的转化相联系,谈到功,必须明确是哪个力在哪个过程中做的功。同时,还要明白A对B的功实质上指的是A对B的作用力做的功。

二:功率

1、功跟 的比值叫功率,它是表示 的物理量。

2、计算功率的公式有若求瞬时功率,则要用

3、发动机铭牌上的额定功率,指的是该机器正常工作时的最大输出功率,并不是任何时候发动机的功率都等于额定功率,实际输出功率可在 之间取值。

发动机的功率即是 的功率,P=FV,在功率一定的条件下,发动机产生的牵引力跟运行速度成 比。

答案:

一:力的方向 力 方向上发生的位移 FSCOSθ 力和位移 恒力做功

不做功 做正功 做负功 焦耳 代数和

二:做这些功所用时间 做功快慢 P=W/t P=FVCOSθ

P=FVCOSθ 牵引力 反

第十一单元 动能定理 机械能守恒定律

一:动能

1、物体由于 而具有的能量叫动能。

公式是 ,单位是 ,符号是 。

2、动能具有相对性,其的大小与参照物的选取有关。中学物理中,一般选取地球为参照物。

3、物体的动能的变化,指末动能与初动能之差,即△Ek=Ekt一Eko,若△Ek>0,表示物体的动能 ;若△Ek<0,表示物体的动能 。

二:动能定理

1、内容:外力对物体做功的代数和等于。

2、公式:W合=△Ek。

三:势能

1、重力势能

①、概念:物体由于被举高而具有的能量叫 。

②、表达式:Ep= .

③、单位: 。

④、矢标性:它是 ,但有正负,正负的意义是表示比零势能参考面上的势能大还是小。

⑤、重力势能的变化与重力做功的关系:重力对物体做多少正功,物体的重力势能就 多少;重力对物体做多少负功,物体的重力势能就 多少。重力对物体所做的功等于物体 的减小量。即WG=一△Ep=一(Ep2一Ep1)=Ep1一Ep2.

2、弹性势能

①、定义:物体由于发生 而具有的能量叫 。

②、大小:弹性势能的大小与 及 有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能就越大。

四:机械能守恒定律

1、机械能:和称机械能,即E=Ep+Ek,其中势能包括 和 。

2、机械能守恒定律:

①、内容:在物体系内只有 做功时,动能和势能可以转化,总的机械能保持不变。

②、表达式:(略)

答案:

一:运动 焦耳 J 增加 减少

二:物体动能的变化

三:重力势能 mgh 焦耳 标量

弹性势能 劲度系数 形变量

四:动能 势能 重力势能 弹性势能

减少 增加 重力势能 弹性形变

更多相关推荐:
高一物理力学知识点总结

定义:力是物体之间的相互作用。理解要点:(1)力具有物质性:力不能离开物体而存在。说明:①对某一物体而言,可能有一个或多个施力物体。②并非先有施力物体,后有受力物体(2)力具有相互性:一个力总是关联着两个物体,…

高一物理力学 知识点归纳

高一物理物理期末复习力学知识点归纳高一上物理期末知识点复习专题一运动学知识要点1质点A1没有形状大小而具有质量的点2质点是一个理想化的物理模型实际并不存在3一个物体能否看成质点并不取决于这个物体的大小而是看在所...

高中物理力学知识点总结与归纳(1)

高中物理力学知识点总结与归纳11力的作用分类及图示力是物体对物体的作用其特点有一下三点成对出现力不能离开物体而独立存在力能改变物体的运动状态产生加速度和引起形变力是矢量力的大小方向作用点是力的三要素力的分类按力...

高一物理力学知识点总结(具体)

高一物理力学知识点总结(具体),内容附图。

高中物理力学部分知识点归纳

高中物理力学部分知识点归纳1基本概念力合力分力力的平行四边形法则三种常见类型的力力的三要素时间时刻位移路程速度速率瞬时速度平均速度平均速率加速度共点力平衡平衡条件线速度角速度周期频率向心加速度向心力动量冲量动量...

高一物理力学知识点总结

一定义力是物体之间的相互作用理解要点1力具有物质性力不能离开物体而存在说明对某一物体而言可能有一个或多个施力物体并非先有施力物体后有受力物体2力具有相互性一个力总是关联着两个物体施力物体同时也是受力物体受力物体...

高中物理力学知识点整理

高中物理力学知识点整理一重力1重力的公式Gmg单位牛顿简称牛符号N重力是由于地球的吸引而使物体受到的力2重力的方向总是竖直向下的3重力不仅有大小还有方向从效果上看我们可以认为各部分受到的重力作用于一点这一点叫做...

高中 物理 必修一 高一 知识梳理 高一物理知识点归纳 高一物理复习资料 力学知识点归纳

高中物理必修一高一知识梳理高一物理知识点归纳高一物理复习资料力学知识点归纳第一章运动的描述第一节认识运动机械运动物体在空间中所处位置发生变化这样的运动叫做机械运动运动的特性普遍性永恒性多样性参考系1任何运动都是...

高中物理选修3-3知识点总结

第1课时分子动理论一要点分析1命题趋势本部分主要知识有分子热运动及内能在09年高考说明中本课时一共有五个考点分别是1物质是由大量分子组成的阿伏加德罗常数2用油膜法估测分子的大小实验探究3分子热运动布朗运动4分子...

高中物理选修3-3知识点总结

第1课时分子动理论一要点分析1命题趋势本部分主要知识有分子热运动及内能在09年高考说明中本课时一共有五个考点分别是1物质是由大量分子组成的阿伏加德罗常数2用油膜法估测分子的大小实验探究3分子热运动布朗运动4分子...

高中物理知识点总结(完整版 )

一质点的运动1直线运动1匀变速直线运动1平均速度V平st定义式2有用推论Vt2Vo22as3中间时刻速度Vt2V平VtVo24末速度VtVoat5中间位置速度Vs2Vo2Vt22126位移sV平tVotat22...

高中物理知识点总结大全

高中物理知识点总结大全一质点的运动1直线运动1匀变速直线运动1平均速度V平st定义式2有用推论Vt2Vo22as3中间时刻速度Vt2V平VtVo24末速度VtVoat5中间位置速度Vs2Vo2Vt22126位移...

高中物理力学知识点总结(34篇)