篇一 :线性代数公式总结

线性代数公式总结

行列式

1.         行列式共有个元素,展开后有,可分解为行列式;

2.         代数余子式的性质:

①、的大小无关;

②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;

③、某行(列)的元素乘以该行(列)元素的代数余子式为

3.         代数余子式和余子式的关系:

4.         设行列式

上、下翻转或左右翻转,所得行列式为,则

顺时针或逆时针旋转,所得行列式为,则

主对角线翻转后(转置),所得行列式为,则

主副角线翻转后,所得行列式为,则

5.         行列式的重要公式:

①、主对角行列式:主对角元素的乘积;

②、副对角行列式:副对角元素的乘积

③、上、下三角行列式():主对角元素的乘积;

④、:副对角元素的乘积

⑤、拉普拉斯展开式:

⑥、范德蒙行列式:大指标减小指标的连乘积;

⑦、特征值;

6.         对于阶行列式,恒有:,其中阶主子式;

7.         证明的方法:

①、

②、反证法;

③、构造齐次方程组,证明其有非零解;

④、利用秩,证明

⑤、证明0是其特征值;

…… …… 余下全文

篇二 :A4 线性代数公式总结(20xx[1].12)

第1章、矩阵与行列式

1、 一个矩阵,总可经过初等行变换化为行阶梯矩阵或行最简形矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;对于同型矩阵,若

2、 行最简形矩阵:

①、只能通过初等行变换获得;②、每行首个非0元素必须为1;

③、非零行首个非0元素1(其列标严格随行标单调递增)所在列的其他元素必须为0;

3、 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)

①、若,则可逆,且

②、对矩阵做初等行变换,如果:;则为矩阵方程的解;

③、求解线形方程组:对于个未知数个方程,如果,则可逆,且

4、 矩阵秩的基本性质:

①、;②、;③、若,则

④、若可逆,则(可逆矩阵不影响矩阵的秩);

⑤、;⑥、;⑦、

⑧、如果矩阵,矩阵,且,则:

       Ⅰ、的列向量全部是齐次方程组解;Ⅱ、

⑨、若均为阶方阵,则

⑩、中有阶子式不为0,阶子式全部为0;(两句话)

5、阶可逆矩阵(是非奇异矩阵)(是满秩矩阵)

的行(列)向量组线性无关齐次方程组只有零解总有唯一解

等价可表示成若干个初等矩阵的乘积的特征值全不为0

6、 伴随矩阵:

①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、

④、对于阶矩阵 无条件恒成立;

7、       

8、 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,计算可用等号,求代数和;

9、 关于分块矩阵的重要结论,其中等均可逆:

①、若,则:Ⅰ、;Ⅱ、

②、;(主对角分块)③、;(副对角分块)

④、;⑤、;(拉普拉斯)

10、代数余子式的性质:

①、代数余子式和余子式的关系:

②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;

…… …… 余下全文

篇三 :大一线性代数公式总结

1、行列式

行列式共有个元素,展开后有,可分解为行列式;

代数余子式的性质:

①、的大小无关;

②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;

③、某行(列)的元素乘以该行(列)元素的代数余子式为

代数余子式和余子式的关系:

行列式

上、下翻转或左右翻转,所得行列式为,则

顺时针或逆时针旋转,所得行列式为,则

主对角线翻转后(转置),所得行列式为,则

主副角线翻转后,所得行列式为,则

行列式的重要公式:

①、主对角行列式:主对角元素的乘积;

②、副对角行列式:副对角元素的乘积

③、上、下三角行列式():主对角元素的乘积;

④、:副对角元素的乘积

⑤、拉普拉斯展开式:

⑥、范德蒙行列式:大指标减小指标的连乘积;

⑦、特征值;

对于阶行列式,恒有:,其中阶主子式;

证明的方法:

①、

②、反证法;

③、构造齐次方程组,证明其有非零解;

④、利用秩,证明

⑤、证明0是其特征值;

2、矩阵

阶可逆矩阵:

(是非奇异矩阵);

(是满秩矩阵)

的行(列)向量组线性无关;

齐次方程组有非零解;

总有唯一解;

等价;

可表示成若干个初等矩阵的乘积;

的特征值全不为0;

是正定矩阵;

的行(列)向量组是的一组基;

中某两组基的过渡矩阵;

对于阶矩阵 无条件恒成立;

矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;

关于分块矩阵的重要结论,其中均可逆:

,则:

Ⅰ、

Ⅱ、

②、;(主对角分块)

③、;(副对角分块)

④、;(拉普拉斯)

⑤、;(拉普拉斯)

3、矩阵的初等变换与线性方程组

一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:

等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;

…… …… 余下全文

篇四 :线性代数公式总结大全

线性代数公式

1、行列式

1.         行列式共有个元素,展开后有,可分解为行列式;

2.         代数余子式的性质:

①、的大小无关;

②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;

③、某行(列)的元素乘以该行(列)元素的代数余子式为

3.         代数余子式和余子式的关系:

4.         设行列式

上、下翻转或左右翻转,所得行列式为,则

顺时针或逆时针旋转,所得行列式为,则

主对角线翻转后(转置),所得行列式为,则

主副角线翻转后,所得行列式为,则

5.         行列式的重要公式:

①、主对角行列式:主对角元素的乘积;

②、副对角行列式:副对角元素的乘积

③、上、下三角行列式():主对角元素的乘积;

④、:副对角元素的乘积

⑤、拉普拉斯展开式:

⑥、范德蒙行列式:大指标减小指标的连乘积;

⑦、特征值;

6.         对于阶行列式,恒有:,其中阶主子式;

7.         证明的方法:

①、

②、反证法;

③、构造齐次方程组,证明其有非零解;

④、利用秩,证明

⑤、证明0是其特征值;

…… …… 余下全文

篇五 :线性代数公式总结

线性代数

①A?B?B?A

②?A?B??C?A??B?C?

③c?A?B??cA?cB ?c?d?A?cA?dA ④c?dA???cd?A

⑤cA?0?c?0或A?0。 AT??T?A

T ?A?B??AT?BT

?cA?T

T?cAT。 ?? ?AB??BTAT

??n?n?1??21??Cn2?n?n?1? 2

D?a21A21?a22A22???a2nA2n T转置值不变A?A 逆值变A?1?1 A

?cnA

,?1??2,??,?1,??,?2,? A???1,?2,?3?,3阶矩阵

B???1,?2,?3?

A?B?A?B

A?B???1??1,?2??2,?3??3?

A?B?1??1,?2??2,?3??3 A?A0??AB 0B?B

E?i,j?c??1

有关乘法的基本运算

Cij?ai1b1j?ai2b2j???ainbnj

线性性质 ?A1?A2?B?A1B?A2B,

A?B1?B2??AB1?AB2

?cA?B?c?AB??A?cB?

结合律 ?AB?C?A?BC?

?AB??BTAT T

?AB

AA?A

Akklk?l ??l?Akl

k ?AB??AkBk不一定成立!

AE?A,EA?A

A?kE??kA,?kE?A?kA

AB?E?BA?E

与数的乘法的不同之处:?AB??AkBk不一定成立! k

无交换律 因式分解障碍是交换性

一个矩阵A的每个多项式可以因式分解,例如 A?2A?3E??A?3E??A?E? 2

无消去律(矩阵和矩阵相乘)

当AB?0时??A?0或B?0

由A?0和AB?0??B?0

由A?0时AB?AC??B?C(无左消去律)

特别的 设A可逆,则A有消去律。

…… …… 余下全文

篇六 :线性代数知识点总结

线性代数知识点总结

第一章            行列式

第一节:二阶与三阶行列式

把表达式称为所确定的二阶行列式,并记作

结果为一个数。(课本P1)

同理,把表达式称为由数表所确定的三阶行列式,记作

=

二三阶行列式的计算:对角线法则(课本P2,P3)

注意:对角线法则只适用于二阶及三阶行列式的计算。

利用行列式计算二元方程组和三元方程组:

对二元方程组

(课本P2)

对三元方程组

。(课本上没有)

注意:以上规律还能推广到n元线性方程组的求解上。

第二节:全排列及其逆序数

全排列:把个不同的元素排成一列,叫做这个元素的全排列(或排列)

n个不同的元素的所有排列的总数,通常用Pn (或An)表示。(课本P5)

逆序及逆序数:在一个排列中,如果两个数的前后位置与大小顺序相反,即前面的数大于后面的数,那么称它们构成一个逆序,一个排列中,逆序的总数称为这个排列的逆序数

排列的奇偶性:逆序数为奇数的排列称为奇排列;逆序数为偶数的排列称为偶排列。(课本P5)

计算排列逆序数的方法:

方法一:分别计算出排在 前面比它大的数码之和即分别算出这n个元素的逆序数,这个元素的逆序数的总和即为所求排列的逆序数。

方法二:分别计算出排列中每个元素前面比它大的数码个数之和,即算出排列中每个元素的逆序数,这每个元素的逆序数之总和即为所求排列的逆序数。(课本上没有)

第三节:n阶行列式的定义

定义:n阶行列式等于所有取自不同行、不同列的n个元素的乘积

的代数和,其中p1 p2 pn是1, 2, … ,n的一个排列,每一项的符号由其逆序数决定。也可简记为,其中为行列式D的(i,j元)。(课本P6)

…… …… 余下全文

篇七 :线性代数公式总结

线性代数公式总结

行列式

1.         行列式共有个元素,展开后有,可分解为行列式;

2.         代数余子式的性质:

①、的大小无关;

②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;

③、某行(列)的元素乘以该行(列)元素的代数余子式为

3.         代数余子式和余子式的关系:

4.         证明的方法:

①、

②、反证法;

③、构造齐次方程组,证明其有非零解;

④、利用秩,证明

⑤、证明0是其特征值;

矩阵

1.         阶可逆矩阵:

(是非奇异矩阵);

(是满秩矩阵)

的行(列)向量组线性无关;

齐次方程组有非零解;

总有唯一解;

等价;

可表示成若干个初等矩阵的乘积;

的特征值全不为0;

是正定矩阵;

2.         对于阶矩阵 无条件恒成立;

3.        

4.         矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;

5.         关于分块矩阵的重要结论,其中均可逆:

…… …… 余下全文

篇八 :线性代数公式总结1

1、行列式

1.         行列式共有个元素,展开后有,可分解为行列式;

2.         代数余子式的性质:

①、的大小无关;

②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;

③、某行(列)的元素乘以该行(列)元素的代数余子式为

3.         代数余子式和余子式的关系:

4.         设行列式

上、下翻转或左右翻转,所得行列式为,则

顺时针或逆时针旋转,所得行列式为,则

主对角线翻转后(转置),所得行列式为,则

主副角线翻转后,所得行列式为,则

5.         行列式的重要公式:

①、主对角行列式:主对角元素的乘积;

②、副对角行列式:副对角元素的乘积

③、上、下三角行列式():主对角元素的乘积;

④、:副对角元素的乘积

⑤、拉普拉斯展开式:

⑥、范德蒙行列式:大指标减小指标的连乘积;

⑦、特征值;

6.         对于阶行列式,恒有:,其中阶主子式;

7.         证明的方法:

①、

②、反证法;

③、构造齐次方程组,证明其有非零解;

④、利用秩,证明

⑤、证明0是其特征值;

2、矩阵

…… …… 余下全文