导数题型归纳总结

时间:2023.11.3

  导数题型归纳总结[1]

  导数基础知识(课本+资料的)不用我多说

  导数题型(6种)

  1.导数与切线问题(正逆方向,下同:比如求切线与给切线求参)

  2.导数与单调性问题

  3.导数与恒成立有解问题

  4.导数与最值极值问题

  5.导数与不等式证明问题

  6.导数与方程根个数问题

  追问:

  这样需不需要抄题????我做题量很大,,,,能不能再举个数列的。。。谢谢

  追答:

  既然是题型就抄一个典型的就行了,其他类似的就不用抄了

  数列知识点:

  等差等比定义性质什么的就不用我说了

  数列题型:

  求通项(我们老师讲了8种,你按你们老师讲的总结)

  求和(公式求和,裂项求和,差比求和(也可裂项),二差二比求和)

  不等式证明(放缩,结合函数)

  导数题型归纳总结[2]

  一、函数

  1.函数的基本概念

  函数的概念,函数的单调性,函数的奇偶性,这些属于函数的基本概念,已经在高一数学必修一中有了详细的介绍,在此不再赘述。

  2.指数函数

  单调性是指数函数的重要性质,特别是函数图象的无限伸展性,x轴是函数图象的渐近线,当0 ∞,y->0;当a>1时,x->-∞,y->0;当a>1时,a的值越大,第一象限内图象越靠近y轴,递增的速度越快;

  3.对数函数

  对数函数的性质是每年高考的必考内容之一,其中单调性和对数函数的定义域是热点问题,其单调性取决于底数与“1”的大小关系.

  二、三角函数

  1.命题趋势

  2014年高考可能仍会将三角函数概念、同角三角函数的关系式和诱导公式作为基础内容,融于三角求值、化简及解三角形的考查中.由该部分知识的基础性决定这一部分知识可以和其他知识融合考查,高考中需要关注.

  2.三角函数式的化简要遵循“三看”原则

  (1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式.

  (2)二看”函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有”切化弦”

  (3)三看”结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”等.多做三角函数练习题会对更加熟悉的掌握三角函数有帮助,这里给大家推荐李老师教的三角函数解题法。

  三、导数

  1.导数的概念

  1)如果当Δx-->0时,Δy/Δx-->常数A,就说函数y=f(x)在点x0处可导,并把A叫做f(x)在点x0处的导数(瞬时变化率).记作f’(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率.瞬时速度就是位移函数s对时间t的导数.

  2)如果函数f(x)在开区间(a,b)内每一点都可导,其导数值在(a,b)内构成一个新的函数,叫做f(x)在开区间(a,b)内导数,记作f’(x).

  3)如果函数f(x)在点x0处可导,那么函数y=f(x)在点x0处连续.

  2.函数的导数与导数值的区别与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数.

  3.求导

  在高中数学导数求导过程中,要仔细分析函数解析式的结构特征,紧扣求导法则,联系基本函数求导公式,对于不具备求导法则结构形式的要适当恒等变形,对于比较复杂的函数,如果直接套用求导法则,会使求导过程繁琐冗长,且易出错,此时,可将解析式进行合理变形,转化为教易求导的结构形


第二篇:高中导数题型总结


  高中导数题型总结

  首先,关于二次函数的不等式恒成立的主要解法:

  1、分离变量;2变更主元;3根分布;4判别式法

  5、二次函数区间最值求法:(1)对称轴(重视单调区间)

  与定义域的关系(2)端点处和顶点是最值所在

  其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。

  最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础

  一、基础题型:函数的单调区间、极值、最值;不等式恒成立;

  1、此类问题提倡按以下三个步骤进行解决:

  第一步:令得到两个根;

  第二步:画两图或列表;

  第三步:由图表可知;

  其中不等式恒成立问题的实质是函数的最值问题,

  2、常见处理方法有三种:

  第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)

  第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);

  例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,

  (1)若在区间上为“凸函数”,求m的取值范围;

  (2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.

  解:由函数得

  (1)在区间上为“凸函数”,

  则在区间[0,3]上恒成立

  解法一:从二次函数的区间最值入手:等价于

  解法二:分离变量法:

  ∵当时,恒成立,

  当时,恒成立

  等价于的最大值()恒成立,

  而()是增函数,则

  (2)∵当时在区间上都为“凸函数”

  则等价于当时恒成立

  变更主元法

  再等价于在恒成立(视为关于m的一次函数最值问题)

  请同学们参看2010第三次周考:

  例2:设函数

  (Ⅰ)求函数f(x)的单调区间和极值;

  (Ⅱ)若对任意的不等式恒成立,求a的取值范围.

  (二次函数区间最值的例子)

  解:(Ⅰ)

  令得的单调递增区间为(a,3a)

  令得的单调递减区间为(-,a)和(3a,+)

  ∴当x=a时,极小值=当x=3a时,极大值=b.

  (Ⅱ)由||≤a,得:对任意的恒成立①

  则等价于这个二次函数的对称轴(放缩法)

  即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。

  上是增函数.(9分)

  ∴

  于是,对任意,不等式①恒成立,等价于

  又∴

  点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系

  第三种:构造函数求最值

  题型特征:恒成立恒成立;从而转化为第一、二种题型

  例3;已知函数图象上一点处的切线斜率为,

  (Ⅰ)求的值;

  (Ⅱ)当时,求的值域;

  (Ⅲ)当时,不等式恒成立,求实数t的取值范围。

  解:(Ⅰ)∴,解得

  (Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减

  又

  ∴的值域是

  (Ⅲ)令

  思路1:要使恒成立,只需,即分离变量

  思路2:二次函数区间最值

  二、题型一:已知函数在某个区间上的单调性求参数的范围

  解法1:转化为在给定区间上恒成立,回归基础题型

  解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;

  做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集

  例4:已知,函数.

  (Ⅰ)如果函数是偶函数,求的极大值和极小值;

  (Ⅱ)如果函数是上的单调函数,求的取值范围.

  解:.

  (Ⅰ)∵是偶函数,∴.此时,,

  令,解得:.

  列表如下:

  (-∞,-2)

  -2

  (-2,2)

  2

  (2,+∞)

  +

  0

  -

  0

  +

  递增

  极大值

  递减

  极小值

  递增

  可知:的极大值为,的极小值为.

  (Ⅱ)∵函数是上的单调函数,

  ∴,在给定区间R上恒成立判别式法

  则解得:.

  综上,的取值范围是.

  例5、已知函数

  (I)求的单调区间;

  (II)若在[0,1]上单调递增,求a的取值范围。子集思想

  (I)

  1、

  当且仅当时取“=”号,单调递增。

  2、

  单调增区间:

  单调增区间:

  (II)当则是上述增区间的子集:

  1、时,单调递增符合题意

  2、,

  综上,a的取值范围是[0,1]。

  三、题型二:根的个数问题

  题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题

  解题步骤

  第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;

  第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;

  第三步:解不等式(组)即可;

  例6、已知函数,,且在区间上为增函数.

  求实数的取值范围;

  若函数与的图象有三个不同的交点,求实数的取值范围.

  解:(1)由题意∵在区间上为增函数,

  ∴在区间上恒成立(分离变量法)

  即恒成立,又,∴,故∴的取值范围为

  (2)设,

  令得或由(1)知,

  ①当时,,在R上递增,显然不合题意…

  ②当时,,随的变化情况如下表:

  —

  ↗

  极大值

  ↘

  极小值

  ↗

  由于,欲使与的图象有三个不同的交点,即方程有三个不同的实根,故需,即∴,解得

  综上,所求的取值范围为

  根的个数知道,部分根可求或已知。

  例7、已知函数

  (1)若是的极值点且的图像过原点,求的极值;

  (2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。高1考1资1源2网

  解:(1)∵的图像过原点,则,

  又∵是的极值点,则

  (2)设函数的图像与函数的图像恒存在含的三个不同交点,

  等价于有含的三个根,即:

  整理得:

  即:恒有含的三个不等实根

  (计算难点来了:)有含的根,

  则必可分解为,故用添项配凑法因式分解,

  十字相乘法分解:

  恒有含的三个不等实根

  等价于有两个不等于-1的不等实根。

  题2:切线的条数问题====以切点为未知数的方程的根的个数

  例7、已知函数在点处取得极小值-4,使其导数的的取值范围为,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取值范围.

  (1)由题意得:

  ∴在上;在上;在上

  因此在处取得极小值

  ∴①,②,③

  由①②③联立得:,∴

  (2)设切点Q,

  过

  令,

  求得:,方程有三个根。

  需:

  故:;因此所求实数的范围为:

  题3:已知在给定区间上的极值点个数则有导函数=0的根的个数

  解法:根分布或判别式法

  例8、

  解:函数的定义域为(Ⅰ)当m=4时,f(x)=x3-x2+10x,

  =x2-7x+10,令,解得或.

  令,解得

  可知函数f(x)的单调递增区间为和(5,+∞),单调递减区间为.

  (Ⅱ)=x2-(m+3)x+m+6,

  要使函数y=f(x)在(1,+∞)有两个极值点,=x2-(m+3)x+m+6=0的根在(1,+∞)

  根分布问题:

  则,解得m>3

  例9、已知函数,(1)求的单调区间;(2)令=x4+f(x)(x∈R)有且仅有3个极值点,求a的取值范围.

  解:(1)

  当时,令解得,令解得,

  所以的递增区间为,递减区间为.

  当时,同理可得的递增区间为,递减区间为.

  (2)有且仅有3个极值点

  =0有3个根,则或,

  方程有两个非零实根,所以

  或

  而当或时可证函数有且仅有3个极值点

  其它例题:

  1、(最值问题与主元变更法的例子).已知定义在上的函数在区间上的最大值是5,最小值是-11.

  (Ⅰ)求函数的解析式;

  (Ⅱ)若时,恒成立,求实数的取值范围.

  解:(Ⅰ)

  令=0,得

  因为,所以可得下表:

  0

  +

  0

  -

  ↗

  极大

  ↘

  因此必为最大值,∴因此,,

  即,∴,∴

  (Ⅱ)∵,∴等价于,

  令,则问题就是在上恒成立时,求实数的取值范围,

  为此只需,即,

  解得,所以所求实数的取值范围是[0,1].

  2、(根分布与线性规划例子)

  (1)已知函数

  (Ⅰ)若函数在时有极值且在函数图象上的点处的切线与直线平行,求的解析式;

  (Ⅱ)当在取得极大值且在取得极小值时,设点所在平面区域为S,经过原点的直线L将S分为面积比为1:3的两部分,求直线L的方程.

  解:(Ⅰ).由,函数在时有极值,

  ∴

  ∵∴

  又∵在处的切线与直线平行,

  ∴故

  ∴…………………….7分

  (Ⅱ)解法一:由及在取得极大值且在取得极小值,

  ∴即令,则

  ∴∴故点所在平面区域S为如图△ABC,

  易得,,,,,

  同时DE为△ABC的中位线,

  ∴所求一条直线L的方程为:

  另一种情况设不垂直于x轴的直线L也将S分为面积比为1:3的两部分,设直线L方程为,它与AC,BC分别交于F、G,则,

  由得点F的横坐标为:

  由得点G的横坐标为:

  ∴即

  解得:或(舍去)故这时直线方程为:

  综上,所求直线方程为:或.…………….………….12分

  (Ⅱ)解法二:由及在取得极大值且在取得极小值,

  ∴即令,则

  ∴∴故点所在平面区域S为如图△ABC,

  易得,,,,,

  同时DE为△ABC的中位线,∴所求一条直线L的方程为:

  另一种情况由于直线BO方程为:,设直线BO与AC交于H,

  由得直线L与AC交点为:

  ∵,,

  ∴所求直线方程为:或

  3、(根的个数问题)已知函数的图象如图所示。

  (Ⅰ)求的值;

  (Ⅱ)若函数的图象在点处的切线方程为,求函数f(x)的解析式;

  (Ⅲ)若方程有三个不同的根,求实数a的取值范围。

  解:由题知:

  (Ⅰ)由图可知函数f(x)的图像过点(0,3),且=0

  得

  (Ⅱ)依题意=–3且f(2)=5

  解得a=1,b=–6

  所以f(x)=x3–6x2+9x+3

  (Ⅲ)依题意f(x)=ax3+bx2–(3a+2b)x+3(a>0)

  =3ax2+2bx–3a–2b由=0b=–9a①

  若方程f(x)=8a有三个不同的根,当且仅当满足f(5)<8a

  由①②得–25a+3<8a<7a+3

  所以当

  4、(根的个数问题)已知函数

  (1)若函数在处取得极值,且,求的值及的单调区间;

  (2)若,讨论曲线与的交点个数.

  解:(1)

  ………………………………………………………………………2分

  令得

  令得

  ∴的单调递增区间为,,单调递减区间为…………5分

  (2)由题得

  即

  令……………………6分

  令得或……………………………………………7分

  当即时

  -

  此时,,,有一个交点;…………………………9分

  当即时,

  +

  —

  ,

  ∴当即时,有一个交点;

  当即时,有两个交点;

  当时,,有一个交点.………………………13分

  综上可知,当或时,有一个交点;

  当时,有两个交点.…………………………………14分

  5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数.

  (Ⅰ)若函数在处有极值,求的解析式;

  (Ⅱ)若函数在区间上为增函数,且在区间上都成立,求实数的取值范围.

更多相关推荐:
20xx年三八妇女节学校升旗仪式主持词、发言稿范文大全

20xx年三八妇女节学校升旗仪式主持词、发言稿范文大全尊敬的各位老师,亲爱的同学们:大家早上好!春回大地,万象更新,在这生机盎然的季节里,我们又迎来了三八妇女节,在这里,让我衷心地向所有的女性,尤其是女老师们说…

20xx年最新新东方四级写作班背诵范文大全

20xx年新东方英语习作背诵范文大全1、留学Nowadays,goingabroadforstudiesisenjoyingastrikingpopularityamongadolescents.Importa…

各种范文大全 带链接

各种范文都有,到时不用找了。(值得收藏,CTRL+单击找到链接)工作总结单位总结个人总结半年总结述职报告工作汇报调研报告工作计划实习报告考察报告工作报告总结月工作总结班主任总结工作总结年终总结工作总结个人总结半…

个人年度考核 范文大全

个人年度考核范文大全年度个人考核范文大全(公务员、失业单位、司法系统、农业局、护士、教师)目录1、公务员年度个人考核2、事业单位年度个人考核3、司法系统年度个人考核4、农业局干部年度个人考核5、护士年度个人考核…

范文大全-优秀财务工作者先进事迹材料

范文大全-优秀财务工作者先进事迹材料优秀财务工作者先进事迹材料XX,女,19xx年x月x日出生,中共党员,大专学历,师,现任XX服饰有限公司副总经理。19xx年x月至19xx年,在XX市青年时装厂工作;19xx…

范文大全

范文大全|简历|教案下载|课件中心|优秀作文|试题库|考试辅导|诗词鉴赏|国学|散文|实用工具|高校|手机/风景图片|手抄/黑板报|美食菜谱工作总结|班主任工作总结|教学工作总结|党团工作总结|个人工作总结|财…

范文大全

范文大全|个人简历|教案下载|课件中心|优秀作文|试题库|考试辅导|诗词鉴赏|散文|实用工具|高校大全|风景图片|手抄报|黑板报|美食菜谱入党申请书入团申请书入党转正申请书非主流手机图片手机待机图片彩信图片教学…

范文大全

范文大全|简历|教案下载|课件中心|优秀作文|试题库|考试辅导|诗词鉴赏|国学|散文|实用工具|高校|手机/风景图片|手抄/黑板报|美食菜谱自查报告|情况报告|事迹材料|申报材料|实习报告|述职报告|述廉报告|…

范文大全

范文大全|简历|教案下载|课件中心|优秀作文|试题库|考试辅导|诗词鉴赏|国学|散文|实用工具|高校|手机/风景图片|手抄/黑板报|美食菜谱工作总结|班主任工作总结|教学工作总结|党团工作总结|个人工作总结|财…

资料员工作总结范文大全

资料员工作总结范文一20xx年x月x日星期六下午07:1620xx年x月我来到佛山市业兴建筑工程有限公司为期一个月的实习。我在这一个月的实习中学到了很多在课堂上学不到的知识,使我受益非浅。现在我就对这一个月…

资料员工作总结范文大全-免费版-phisky

资料员工作总结范文大全资料员工作总结范文一20xx年x月x日星期六下午07:1620xx年x月我来到佛山市业兴建筑工程有限公司为期一个月的实习。我在这一个月的实习中学到了很多在课堂上学不到的知识,使我受益非…

20xx年工程部年终总结范文

工程部年终总结范文转眼间,20xx年已经过去,现从以下几个方面将一年来工程部的工作情况做一总结汇报。一、进度控制按照年初公司制定的工程进度要求,主体工程应在10月底完成,实际截止到年底,主体工程全部完成,砌体工…

范文(95篇)