牛顿环曲率半径的测定

时间:2024.4.2

牛顿环曲率半径的测定

一、实验目的

     1. 通过实验加深对等厚干涉现象的理解。

2. 掌握用牛顿环测定透镜曲率半径的方法。

3. 通过实验熟悉读数显微镜的使用方法。

二、实验仪器

读数显微镜

1、调节显微目镜,使分划板(叉丝)成像清晰。

2、调节显微镜境管的升降和水平位置,使物镜对准物体的待测部分,并使境管上的水平标尺与叉丝、底座平行。

3、调节物镜的升降,使物体的成像清晰。

钠光灯

通电一段时间发光稳定后,钠光灯发出589.3nm的单色光。

三、实验原理

 当一束单色光入射到透明薄膜上时,通过薄膜上下表面依次反射而产生两束相干光。如果这两束反射光相遇时的光程差仅取决于薄膜厚度,则同一级干涉条纹对应的薄膜厚度相等,这就是所谓的等厚干涉。

本实验研究牛顿环和劈尖所产生的等厚干涉。

1. 等厚干涉

如图1所示,玻璃板A和玻璃板B二者叠放起来,中间加有一层空气(即形成了空气劈尖)。设光线1垂直入射到厚度为d的空气薄膜上。入射光线在A板下表面和B板上表面分别产生反射光线2和2´,二者在A板上方相遇,由于两束光线都是由光线1分出来的(分振幅法),故频率相同、相位差恒定(与该处空气厚度d有关)、振动方向相同,因而会产生干涉。我们现在考虑光线2和2´的光程差与空气薄膜厚度的关系。显然光线2´比光线2多传播了一段距离2d。此外,由于反射光线2´是由光密媒质(玻璃)向光疏媒质(空气)反射,会产生半波损失。故总的光程差还应加上半个波长,即

根据干涉条件,当光程差为波长的整数倍时相互加强,出现亮纹;为半波长的奇数倍时互相减弱,出现暗纹。

因此有:                  

光程差取决于产生反射光的薄膜厚度。同一条干涉条纹所对应的空气厚度相同,故称为等厚干涉。

2. 牛顿环

当一块曲率半径很大的平凸透镜的凸面放在一块光学平板玻璃上,在透镜的凸面和平板玻璃间形成一个上表面是球面,下表面是平面的空气薄层,其厚度从中心接触点到边缘逐渐增加。离接触点等距离的地方,厚度相同,等厚膜的轨迹是以接触点为中心的圆。

如图2所示,当透镜凸面的曲率半径R很大时,在P点处相遇的两反射光线的几何程差为该处空气间隙厚度d的两倍,即2d。又因这两条相干光线中一条光线来自光密媒质面上的反射,另一条光线来自光疏媒质上的反射,它们之间有一附加的半波损失,所以在P点处得两相干光的总光程差为:

                               (1)

当光程差满足:              =0,1,2…时,为暗条纹

                     =1,2,3…时,为明条纹

设透镜L的曲率半径为R,r为环形干涉条纹的半径,且半径为r的环形条纹下面的空气厚度为d,则由图3-17-2中的几何关系可知:

因为远大于d,故可略去项,则可得:            (2)

这一结果表明,离中心越远,光程差增加愈快,所看到的牛顿环也变得越来越密。将(2)式代入(1)式有:              

则根据牛顿环的明暗纹条件:

                           =0,1,2… (暗纹)

              =1,2,3… (明纹)

由此可得,牛顿环的明、暗纹半径分别为:

                                     (暗纹)

                           (明纹)

式中m为干涉条纹的级数,rm为第m级暗纹的半径,rm′为第m级亮纹的半径。

以上两式表明,当已知时,只要测出第m级亮环(或暗环)的半径,就可计算出透镜的曲率半径R;相反,当R已知时,即可算出

观察牛顿环时将会发现,牛顿环中心不是一点,而是一个不甚清晰的暗或亮的圆斑。其原因是透镜和平玻璃板接触时,由于接触压力引起形变,使接触处为一圆面;又镜面上可能有微小灰尘等存在,从而引起附加的程差。这都会给测量带来较大的系统误差。

我们可以通过测量距中心较远的、比较清晰的两个暗环纹的半径的平方差来消除附

加程差带来的误差。假定附加厚度为a,则光程差为:

 将其代入(3-17-1)可得:

取第m、n级暗条纹,则对应的暗环半径为:   

将两式相减,得。由此可见与附加厚度无关。

由于暗环圆心不易确定,故取暗环的直径替换,因而,透镜的曲率半径为:

                                             (3)

由此式可以看出,半径R与附加厚度无关,且有以下特点:

 (1)R与环数差m-n有关。

   (2)对于()由几何关系可以证明,两同心圆直径平方差等于对应弦的平方差。因此,测量时无须确定环心位置,只要测出同心暗环对应的弦长即可。

  本实验中,入射光波长已知(λ=589.3 nm),只要测出(),就可求的透镜的曲率半径。

四、实验内容及步骤

(1)调节读数显微镜

先调节目镜到清楚地看到叉丝且分别与X、Y轴大致平行,然后将目镜固定紧。调节显微镜的镜筒使其下降(注意,应该从显微镜外面看,而不是从目镜中看)靠近牛顿环时,再自下而上缓慢地再上升,直到看清楚干涉条纹,且与叉丝无视差。

(2)借助室光用眼睛直接观察牛顿环,调节螺丝使干涉环呈圆形,并位于透镜中心。

(3)测量牛顿环的直径

转动测微鼓轮使载物台移动,使主尺读数准线居主尺中央。旋转读数显微镜控制丝杆的螺旋,使叉丝的交点由暗斑中心向右移动,同时数出移过去的暗环环数(中心圆斑环序为0),当数到23环时,再反方向转动鼓轮(注意:使用读数显微镜时,为了避免引起螺距差,移测时必须向同一方向旋转,中途不可倒退,至于自右向左,还是自左向右测量都可以)。使竖直叉丝依次对准牛顿环右半部各条暗环,分别记下相应要测暗环的位置:X20、X19、X18、直到X10(下标为暗环环序)。当竖直叉丝移到环心另一侧后,继续测出左半部相应暗环的位置读数:由直到


第二篇:牛顿环测量曲率半径实验报告


牛顿环测量曲率半径实验报告

实验目的

1 观察等厚干涉现象,理解等厚干涉的原理和特点

2 学习用牛顿环测定透镜曲率半径

3 正确使用读数显微镜,学习用逐差法处理数据

实验仪器

读数显微镜,钠光灯,牛顿环仪,入射光调节架

实验内容

1.  观察牛顿环

将牛顿环放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的角度,使通过显微镜目镜观察时视场最亮。

调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近牛顿环仪然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。

2.  测牛顿环半径

使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行(与显微镜移动方向平行)。记录标尺读数。

转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第N环相切为止(N根据实验要求决定)。记录标尺读数。

3.  重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R和R的标准差

数据处理及结果

下图为在系统提供的表格内记录了相应的实验数据后由系统计算的结果

下图为在仿真实验中先后调节好入射光调节架,显微镜镜筒,牛顿环位置及目镜位置后从目镜中观察到的衍射图样(牛顿环处于正中位置)

实验小结

1 实验中所用牛顿环半径为1.646m,标准差为38.79mm。

2 误差主要来源于读数时产生的误差。

在仿真实验中,由于实验系统设计的问题,无法对标尺进行连续的不间断的调节(模拟试验中,鼠标点击旋钮时,每次的转动幅度较大,使叉丝无法准确地与条纹相切),所以记录数据不准确。

3 建议对该仿真实验系统进行完善,使得调节旋钮能连续进行,更接近实际,使仿真实验更有实际意义。

思考题

1.牛顿环产生的干涉属于薄膜干涉,在牛顿环中薄膜在什么位置?

牛顿环的薄膜是介于牛顿环下表面(凸面)与下面的平面玻璃之间的一层空气薄膜。

2.为什么牛顿环产生的干涉条纹是一组同心圆环?

干涉时薄膜等厚处光程差相等,产生的干涉现象也相同。而牛顿环的薄膜等厚处相连在空间上是一个圆形,其圆心在凸面与平面的接触点上,所以干涉条纹是一组同心圆。

3.牛顿环产生的干涉条纹在什么位置上?相干的两束光线是哪两束?

条纹产生在凸面的表面上。相干的两束光线分别是入射光射到凸透镜的下表面时产生的反射光和被平面镜反射回来照射到凸透镜下表面的光。

4.在牛顿环实验中,如果直接用暗纹公式 测平凸透镜凸面的曲率半径,有什么问题?

直接用暗纹公式计算曲率半径需要确定某条纹对应的级数。而在实际情况下,由于玻璃的弹性形变及接触处不干净等因素,透镜和玻璃板之间不可能是一个理想的点接触。这样一来,干涉环的圆心就很难确定,而且在接触处,到底包含了几级条纹也难以知道,这样级数k也无法确定,所以该公式无法运用。

5.在使用读数显微镜时,怎样判断是否消除了视差?使用时最主要的注意事项是什么?

从目镜观测时,前后左右调整眼与目镜的位置,若看到的叉丝与图像之间没有相对移动,则视察消除。

使用时最主要的注意事项是为避免损坏目镜,先让物镜靠近牛顿装置的上表面,然后用眼睛看着显微镜,同时由下向上调节筒身。

6.在光学中有一种利用牛顿环产生的原理来判断被测透镜凹凸的简单方法:用手轻压牛顿环装置中被测透镜的边缘,同时观察干涉条纹中心移动的方向,中心趋向加力点者为凸透镜,中心背离加力点者为凹透镜。请想一想,这是什么道理

根据干涉的原理可知,条纹的位置取决于该位置对应的薄膜厚度,而条纹中心应该是厚度为0的地方。所以,当在某点挤压凸透镜时,凸透镜产生形变,该点空气薄膜厚度减小,且厚度为0处会向该点方向移动,所以条纹中心会趋向加力点。凹透镜现象正好与此相反,所以可以根据这一现象来判断凹凸透镜。

更多相关推荐:
牛顿环测量曲率半径实验报告

大学物理仿真实验报告实验名称牛顿环测量曲率半径实验1实验目的1观察等厚干涉现象理解等厚干涉的原理和特点2学习用牛顿环测定透镜曲率半径3正确使用读数显微镜学习用逐差法处理数据2实验仪器读数显微镜钠光灯牛顿环入射光...

用牛顿环测量透镜的曲率半径实验报告

一实验名称用牛顿环测量透镜的曲率半径二实验目的1观察光的等厚干涉现象了解干涉条纹特点2利用干涉原理测透镜曲率半径3学习用逐差法处理实验数据的方法三实验仪器牛顿环装置其中透镜的曲率未知钠光灯波长为5893nm读数...

牛顿环测量曲率半径---大学物理仿真实验报告

牛顿环测量曲率半径仿真实验报告实验日期教师审批签字实验人审批日期一实验目的1观察等厚干涉现象了解等厚干涉的原理及特点2学习使用利用干涉法测量平凸透镜的曲率半径的方法3正确使用读数显微镜镜学习用逐差法处理实验数据...

实验八 用牛顿环测透镜的曲率半径(实验报告)

实验八用牛顿环测透镜曲率半径实验目的1观察光的等厚干涉现象了解干涉条纹特点2利用干涉原理测透镜曲率半径3学习用逐差法处理实验数据的方法实验原理牛顿环条纹是等厚干涉条纹由图中几何关系可得rk2R2Rdk22Rdk...

牛顿环测凸透镜的曲率半径实验完整报告含数据

沈阳城市学院物理实验室制请认真填写请认真填写请在两周内完成交教师批阅附件实验曲线请附在本页

用牛顿环测曲率半径实验报告

用牛顿环测曲率半径实验目的1学习用牛顿环测量球面曲率半径的原理和方法2学会使用测量显微镜和钠光灯实验仪器读数显微镜钠光灯牛顿环入射光调节架实验原理如图所示在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACBC...

牛顿环测量曲率半径实验

牛顿环测量曲率半径实验一实验目的1观察等厚干涉现象理解等厚干涉的原理和特点2学习用牛顿环测定透镜曲率半径3正确使用读数显微镜学习用逐差法处理数据二实验仪器牛顿环装置其中透镜的曲率未知纳光灯波长为5893nm读数...

牛顿环测量曲率半径实验

实验日期20xx1113实验者袁开闻班级能动91学号0920xx59实验名称牛顿环测量曲率半径实验一实验目的1观察等厚干涉现象了解等厚干涉的原理和特点2学习用牛顿环测量透镜曲率半径3正确使用测量微镜学习逐差法处...

牛顿环测量曲率半径实验

西安交通大学物理仿真实验报告课程大学物理仿真实验实验名称牛顿环法测曲率半径第1页共5页一实验目的和简介光的干涉现象表明了光的波动的性质干涉现象在科学研究与计量技术中有着广泛的应用在干涉现象中不论何种干涉相邻干涉...

实验二 用牛顿环测平凸透镜的曲率半径

实验二用牛顿环测平凸透镜的曲率半径目的1通过对牛顿环图象的观察和测量加深对等厚干涉的理解2学习通过牛顿环法测量透镜曲率半径的方法要求学会使用读数显微镜并通过牛顿环法测量透镜的曲率半径仪器牛顿环仪钠光灯读数显微镜...

实验十 用牛顿环测透镜的曲率半径

实验十用牛顿环测透镜的曲率半径利用透明薄膜上下表面对入射光的依次反射入射光的振幅将分解成有一定光程差的几部分若两束反射光在相遇时的光程差取决于产生反射光的薄膜厚度则同一干涉条纹所对应的薄膜厚度相同这就是所谓的等...

大学物理仿真实验报告--牛顿环法测曲率半径

大学物理仿真实验报告实验名称牛顿环法测曲率半径共6页系别实验日期专业班级组别实验报告日期姓名学号报告退发订正重做一实验目的1学会用牛顿环测定透镜曲率半径2正确使用读书显微镜学习用逐差法处理数据二实验仪器牛顿环装...

牛顿环曲率半径的测定实验报告(14篇)