单片机课程设计—四位数字温度计的设计

时间:2024.4.14

1   概述

 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。

   

2   系统总体方案设计

一.数字温度计设计方案论证

方案一

由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。

方案二

进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。

从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。

二.方案二的总体设计框图

温度计电路设计总体设计方框图如图1所示,控制器采用单片机STC89C52,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。

 

 

图1 总体设计方框图

3     数字温度传感器——DS18B20

1.DS18B20温度传感器

     DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下:

●独特的单线接口仅需要一个端口引脚进行通信;

●多个DS18B20可以并联在惟一的三线上,实现多点组网功能;

●无须外部器件;

●可通过数据线供电,电压范围为3.0~5.5V;

●零待机功耗;

●温度以9或12位数字;

●用户可定义报警设置;

●报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;

●负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;

DS18B20采用3脚PR-35封装或8脚SOIC封装,其内部结构框图如图2所示。 

 


                图2 DS18B20内部结构

64位ROM的结构开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。温度报警触发器TH和TL,可通过软件写入户报警上下限。

DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EERAM。高速暂存RAM的结构为8字节的存储器,结构如图3所示。头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。该字节各位的定义如图3所示。低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为0,用户要去改动,R1和R0决定温度转换的精度位数,来设置分辨率。



图3  DS18B20字节定义

由表1可见,DS18B20温度转换的时间比较长,而且分辨率越高,所需要的温度数据转换时间越长。因此,在实际应用中要将分辨率和转换时间权衡考虑。

高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。

当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625℃/LSB形式表示。

当符号位S=0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。表2是一部分温度值对应的二进制温度数据


       表1 DS18B20温度转换时间表

DS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较。若T>TH或T<TL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。因此,可用多只DS18B20同时测量温度并进行报警搜索。

在64位ROM的最高有效字节中存储有循环冗余检验码(CRC)。主机ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比较,以判断主机收到的ROM数据是否正确。

2.DS18B20的测温原理

DS18B20的测温原理是这这样的,器件中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1;高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入。器件中还有一个计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进行计数进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的一个基数分别置入减法计数器1、温度寄存器中,计数器1和温度寄存器被预置在-55℃所对应的一个基数值。

减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器计数到0时,停止温度寄存器的累加,此时温度寄存器中的数值就是所测温度值。其输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直到温度寄存器值大致被测温度值。表2 一部分温度对应值表

另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作按协议进行。操作协议为:初使化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。

3. DS18B20温度传感器与单片机的接口电路

DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。另一种是寄生电源供电方式,如图4 所示单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉。

图4  DS18B20与单片机的接口电路

当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。采用寄生电源供电方式时VDD端接地。由于单线制只有一根线,因此发送接口必须是三态的。

4   硬件设计

系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,上下限报警调整电路,显示数据刷新子程序等。

系统整体硬件电路

1. 主板电路

系统整体硬件电路包括,传感器数据采集电路,LED温度显示电路,上下限报警调整电路,单片机主板电路等,如图5 所示。

来自湘潭电校,图片就不传了自个做吧,这都不会的话。。。大学你们干了什么?????

图5系统整体硬件

2. 显示电路

图6显示电路图

5   软件设计及调试

本次课程设计采用的是proteus软件仿真,用Keil软件进行编译。Protues软件是英国Labcenter electronics公司出版的EDA工具软件。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。它是目前最好的仿真单片机及外围器件的工具,也是世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台。 由单片机STC90C52RC为核心而设计的数字温度计,对其进行软件程序的仿真时,我们采用单片机汇编语言来编写。系统程序主要包括主程序、读出温度子程序、显示数据子程序、报警子程序等等。 然而整个系统的功能是由硬件电路配合软件来实现的,当硬件基本定型后,软件的功能也就基本定下来了。 从软件的功能不同可分为两大类:一是监控软件(主程序),它是整个控制系统的核心,专门用来协调各执行模块和操作者的关系。二是执行软件(子程序),它是用来完成各种实质性的功能如测量、计算、显示、通讯等。每一个执行软件是一个小的功能执行模块。这里将各执行模块一一列出,并为每一个执行模块进行功能定义和接口定义。各执行模块规划好后,就可以规划监控程序了。首先要根据系统的总体功能选择一种最合适的监控程序结构,然后根据实时性的要求,合理地安排监控软件和各执行模块之间地调度关系。     

5.1主程序

主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量的当前温度值,温度测量每1s进行一次。这样可以在一秒之内测量一次被测温度,其程序流程见图7所示。

 

                                                                           

                                              

                             图7 主程序流程图

5.2读出温度子程序

读出温度子程序的主要功能是读出RAM中的9字节,在读出时需进行CRC校验,校验有错时不进行温度数据的改写。其程序流程图如图8示

 

      

                             

                       图8读温度流程图

5.3温度转换命令子程序

温度转换命令子程序主要是发温度转换开始命令,当采用12位分辨率时转换时间约为750ms,在本程序设计中采用1s显示程序延时法等待转换的完成。温度转换命令子程序流程图如上图,图9所示

                     图9 温度转换流程图       

5.4 计算温度子程序

计算温度子程序将RAM中读取值进行BCD码的转换运算,并进行温度值正负的判定,其程序流程图如图10所示。

流程图: 终止:   开始                                                                           

 

                       图10 计算温度流程图

5.5 显示数据刷新子程序

显示数据刷新子程序主要是对显示缓冲器中的显示数据进行刷新操作,当最高显示位为0时将符号显示位移入下一位。程序流程图如图11。

 

图11 显示数据刷新流程图

6   系统联调及操作说明

将程序生成HEX文件,下载到STC90C52R单片机上,开发板接上DS18B20温度传感器。则可以出现如图12所示,该图所示为用18B20调试数字温度计系统成功并测得该室温为34摄氏度。

湘潭电校电气信息学院自动化08级出品09、10、11的小伙子们悠着点别把文档COPY就交上去了哈你们懂的,图片就不传了自个做吧,这都不会的话。。。大学你们干了什么?????学长打工中。。。

这张图为给电路板通电源后显示的室内温度为34摄氏度

这张图是用吹风机对着18B20三极管吹热风,温度明显往上升,移开吹风机后温度有下降。

7        总结

这次的单片机课程设计分俩部分,板子的焊接还算顺利,开关能正常控制,

下载了俩首歌,歌曲可以正常播放。同学们遇到的开关不能正常工作,下载程序不成功的问题我的板子没出现。接下来的是重点。因为我的课题是四位数字温度计的设计,需要一个温度传感器18B20,拿到18B20后,下载程序到板子里,给板子通上电,板子显示了室内温度,但给18B20加热,数码显示灯那里示数没变化,重新检查了下,程序出了问题。修改好后,板子能够根据温度变化示数也变化。调试成功。

    

参考文献

附录程序清单

文件名:AD1405.ASM

 程序功能:数字温度计

       A_BIT   EQU  20H     ;存放个位数变量

       B_BIT   EQU  21H     ;存放十位数变量

       FLAG    EQU  38H     ;DS18B20是否存在标志

       DQ      EQU  P1.7    ;DQ引脚由P1.7控制 

  MAIN:                     ;主程序标号

       ACALL  RE_TEMP      ;对传感器设置及读取

       ACALL   TURN     ;转化温度子程序       

       ACALL DISPLAY        ;显示子程序

       JMP MAIN             ;循环                  

  RE_TEMP:         ;对DS18B20初始化及读取

       SETB   DQ          

       ACALL  RESET_1820    ;调用复位子程序

       JB   FLAG, ST        ;判断DS1820是否存在?

       RET                                          

  ST:                       ; DS18B20存在

       MOV   A,#0CCH        ;跳过ROM匹配

       ACALL WRITE_1820     ;写入数据

       MOV  A,#44H          ;发出温度转换命令

       ACALL WRITE_1820     ;写入数据

       ACALL  RESET_1820    ;准备读温度前先复位

       MOV  A,#0CCH         ;跳过ROM匹配

       ACALL WRITE_1820     ;写入数据

       MOV  A,#0BEH         ;发出读温度命令

       ACALL WRITE_1820     ;写入数据

       ACALL READ_1820      ;读出温度数据        

       RET                                         

  RESET_1820:  ;复位(有具体的时序要求)                      

       SETB  DQ      

       NOP

       CLR   DQ      

 ;————————————

 ;主机发出延时537微秒的复位低脉冲

       MOV  R1,#3

   DLY: MOV  R0,#107

       DJNZ R0,$

       DJNZ R1,DLY

 ;————————————

 ;然后拉高数据线

       SETB  DQ       

       NOP

       NOP

       NOP

 ;———————————— 

       MOV  R0,#25H       

   T2: JNB   DQ ,T3       ;等待DS18B20回应

       DJNZ  R0, T2

       JMP  T4         

 ;————————————

   T3: SETB  FLAG      ;置标志位,表示DS1820存在

       JMP  T5

 ;————————————

   T4: CLR   FLAG     ;清标志位,表示DS1820不存在    

       JMP  T7

  ;————————————

   T5: MOV  R0,#117

   T6: DJNZ R0,T6           ;时序要求延时一段时间

 ;————————————

   T7: SETB   DQ       

       RET                                          

 ;————————————

  WRITE_1820: ;写入DS18B20(有具体的时序要求)

       MOV  R2,#8           ;一共8位数据

       CLR  C

    WR1:

       CLR  DQ            ;总线低位,开始写入 

       MOV  R3,#7

       DJNZ R3,$            ;保持16微秒以上

       RRC  A  ;把字节DATA分成8个BIT环移给C

       MOV  DQ,  C        ;写入一个BIT

       MOV  R3,#23

       DJNZ R3,$            ;等待

       SETB  DQ           ;重新释放总线

       NOP

       DJNZ R2,WR1          ;写入下一个BIT

       SETB  DQ         

       RET                                           

   READ_1820: ;将温度高位和低位从DS18B20中读出

       MOV  R4,#2           ; 读出两个字节的数据

       MOV  R1,#29H     ;低位存入29H,高位存入28h

   RE0:

       MOV R2,#8           ;数据一共有8位

   RE1:                 

       CLR C

       SETB  DQ         

       NOP

       NOP                                

       CLR   DQ          ;读前总线保持为低              

       NOP

       NOP

       NOP

       SETB  DQ          ;开始读总线释放                

       MOV   R3,#9

   RE2:  

       DJNZ  R3,RE2        ;延时18微妙

      MOV C, DQ         ;从总线读到一个BIT                 

      MOV R3,#23

  RE3:                    ;

      DJNZ R3,RE3         ;等待100秒

      RRC  A              ;把读得的位价值环移给A

      DJNZ  R2,RE1        ;读下一个BIT

      MOV  @R1,A

      DEC  R1

      DJNZ R4,RE0

      RET                                        

  TURN:

      MOV  A,29H

      MOV  C,40H          ;将28中的最低位移入C

      RRC  A

      MOV  C,41H

      RRC  A

      MOV  C,42H

      RRC  A

      MOV  C,43H

      RRC  A

      MOV  29H,A

      RET                                          

  DISPLAY:   ;将29H中的十六进制数成10进制

      MOV  A,29H        

      MOV  B,#10             ;10进制/10=10进制

      DIV  AB

      MOV  B_BIT, A        ;十位在A

      MOV  A_BIT, B        ;个位在B

      MOV  DPTR,#TABLE     ;指定查表启始地址

      MOV  R0,#4

  DP1:

      MOV R1, #250          ;显示1000次

  LOOP:MOV  P2,0FFH

      MOV A,A_BIT          ;取个位数

      MOVC A,@A+DPTR       ;查个位数的7段代码

      MOV  P0,A            ;送出个位的7段代码

      CLR  P2.0           ;开个位显示

      ACALL DELAY          ;

      SETB  P2.0

      MOV A,B_BIT          ;取十位数

      MOVC  A,@A+DPTR      ;查十位数的7段代码

      MOV  P0,A            ;送出个十位的7段代码

      CLR  P2.1            ;开十位显示

      ACALL  DELAY         ;显示1MS

      SETB  P2.1

      DJNZ  R1,LOOP        ;250次没完循环

      DJNZ  R0,DP1         ;4个250次没完循环

      RET                                         

   DELAY:  ;1ms延时

      MOV  R7, #80

      DJNZ R7,$

      RET                                          

  TABLE:       ;数码管共阳极0~9代码

      DB 0C0H,0F9H,0A4H,0B0H,99H

      DB 92H,82H,0F8H,80H,90H                      

      END                                          

  

电气信息学院课程设计评分表

                                  指导教师签名:________________

                              日        期:________________ 

注:①表中标*号项目是硬件制作或软件编程类课题必填内容;

    ②此表装订在课程设计说明书的最后一页。课程设计说明书装订顺序:封面、任务书、目录、正文、评分表、附件(非16K大小的图纸及程序清单)。   

更多相关推荐:
数字温度计的课程设计报告

单片机课程设计报告数字温度计1设计要求基本范围50110精度误差小于05LED数码直读显示2扩展功能实现语音报数可以任意设定温度的上下限报警功能数字温度计应教022李世朋摘要随着时代的进步和发展单片机技术已经普...

数字温度计课程设计报告

数字温度计课程设计报告1课题说明随着现代信息技术的飞速发展和传统工业改造的逐步实现能够独立工作的温度检测和显示系统应用于诸多领域传统的温度检测以热敏电阻为温度敏感元件热敏电阻的成本低但需后续信号处理电路而且可靠...

数字温度计设计与总结报告

数字温度计A2题设计与总结报告专科组陈春梁福鑫钟才莉摘要随着时代的进步和发展单片机技术已经普及到我们生活工作科研等各个领域已经成为一种比较成熟的技术本设计在参阅了大量前人设计的数字温度计的基础上利用单片机技术结...

数字温度计课程设计报告

目录1设计概述111设计目标和要求112设计思路12系统方案及硬件设计221设计方案222方案的硬件总体方框图323温度传感器DS18B20测温原理424硬件设计7241主控制器8242复位电路8243时钟振荡...

数字温度计设计报告

数字温度计设计报告姓名班级学号指导教师年62720xx月日数字温度计报警实训报告随着时代的进步和发展单片机技术已经普及到我们生活工作科研各个领域已经成为一种比较成熟的技术本文主要介绍了一个基于89c51单片机的...

数字温度计设计报告

单片机原理与应用技术课程设计报告论文基于单片机控制的数字温度计专业班级应教121姓名董镇玉时间20xx19指导教师宋长源李晓娟20xx年01月09日单片机课程设计项目系列基于单片机控制的数字温度计一设计要求一基...

数字温度计设计报告

数字温度计设计报告课程名称院别专业班级姓名指导教师时间20xx电子课程设计武警工程学院指挥自动化二队一区队王凯03田腾浩邹涛年1月12日23主要内容设计一个数字温度计测量范围0100C温度的实时LED数字显示测...

数字温度计课程设计

辽宁工程技术大学电子技术课程设计摘要在日常生活及工业生产过程中经常要用到温度的检测及控制温度是生产过程和科学实验中普遍而且重要的物理参数之一在生产过程中为了高效地进行生产必须对它的主要参数如温度压力流量等进行有...

基于单片机数字温度计开题报告

毕业设计论文开题报告课题名称基于单片机数字温度计设计院系专业学号学生姓名指导教师职称20xx年9月6日一选题依据二研究设计实施方案三前期工作四研究基础条件五指导教师意见六开题小组意见七系意见

DS18B20数字温度计设计实验报告

湖北科技学院单片机原理及应用课程设计报告书题目:DS18B20数字温度计的设计姓名:指导老师:设计时间:20##年12月1日12月20日电子与信息工程学院目录1.引言....11.1.设计意义...11.2.系…

数字温度计设计

数字温度计单片机原理与接口技术学院系年级专业学号学生姓名指导教师课程设计任务书学生姓名专业班级指导教师工作单位题目基于51单片机的数字温度计的设计初始条件1运用所学的单片机原理与接口技术知识和数字电路知识251...

基于ARM7与DS18B20的数字温度计的设计

东北林业大学综合电子课程设计总结报告设计项目基于ARM7与DS18B20的数字温度计的设计项目完成人指导教师学院信息与计算机工程学院专业电子信息工程20xx级3班20xx年7月7日综合电子课程设计任务书2数字温...

数字温度计课程设计报告(31篇)