数字温度计报告 含有设计原理图

时间:2024.4.13

摘要

随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研 、各

个领域,已经成为一种比较成熟的技术 , 本文主要介绍了一个基于 89S51 单片机

的测温系统,详细描述了利用数字温度传感器 DS18B20 开发测温系统的过程 ,重

点对传感器在单片机下的硬件连接 ,软件编程以及各模块系统流程进行了详尽分

析,特别是数字温度传感器 DS18B20 的数据采集过程 。对各部分的电路也一一进

行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定

上下限报警温度 ,它使用起来相当方便 ,具有精度高、量程宽、灵敏度高、体积

小、功耗低等优点 ,适合于我们日常生活和工 、农业生产中的温度测量 ,也可以

当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。

DS18B20 与AT89C51 结合实现最简温度检测系统 ,该系统结构简单 ,抗干扰能力强 ,适合于

恶劣环境下进行现场温度测量,有广泛的应用前景。

关键词: 单片机    DS18B20   温度传感器 数字温度计 AT89S52

目录

1 概述...................................................................................................................4

1.1 课程设计的意义 ..................................................................................4

1.2 设计的任务和要求 ..............................................................................4

2 系统总体方案及硬件设计 ..............................................................................5

2.1 数字温度计设计方案论证 ...................................................................5

2.1.1 方案一.........................................................................................5

2.1.2 方案二........................................................................................5

2.2 系统总体设计 ........................................................................................6

2.3 系统模块................................................................................................7

2.3.1 主控制器...................................................................................7

2.3.2 显示电路...................................................................................8

2.3.3 温度传感器................................................................................8

2.3.4 报警温度调整按键 ....................................................................9

3 系统软件算法分析 .........................................................................................10

3.1 主程序流程图 .....................................................................................10

3.2 读出温度子程序 .................................................................................10

3.3 温度转换命令子程序 .........................................................................11

3.4 计算温度子程序 ................................................................................11

3.5 显示数据刷新子程序 ........................................................................11

3.6 按键扫描处理子程序 .........................................................................12

4 实验仿真........................................................................................................13

5 总结与体会....................................................................................................14

查考文献............................................................................................................15

附 1 源程序代码 ...............................................................................................16

1.1   课程设计的意义

1  概述

本次课程设计是在我们学过单片机后的一次实习,可增加我们的动手能力。特别是对

单片机的系统设计有很大帮助 。本课程设计由两个人共同完成 ,在锻炼了自己的同时也增强

了自己的团队意识和团队合作精神。

1.2   设计的任务和要求

1、基本范围-50℃-110℃

2、精度误差小于 0.5℃

3、LED 数码直读显示

4、可以任意设定温度的上下限报警功能

2 系统总体方案及硬件设计

2.1 数字温度计设计方案论证

2.1.    方案一

由于本设计是测温电路 ,可以使用热敏电阻之类的器件利用其感温效应 ,在将随被测温

度变化的电压或电流采集过来 ,进行 A/D 转换后,就可以用单片机进行数据的处理 ,在显示

电路上,就可以将被测温度显示出来 ,这种设计需要用到 A/D 转换电路,其中还涉及到电阻

与温度的对应值的计算,感温电路比较麻烦 。而且在对采集的信号进行放大时容易受温度的

影响出现较大的偏差。

2.1 2   方案二

进而考虑到用温度传感器 ,在单片机电路设计中 ,大多都是使用传感器 ,所以这是非常

容易想到的,所以可以采用一只温度传感器 DS18B20,此传感器,可以很容易直接读取被测

温度值,进行转换,电路简单,精度高,软硬件都以实现,而且使用单片机的接口便于系统

的再扩展,满足设计要求。

从以上两种方案,很容易看出,采用方案二,电路比较简单,费用较低,可靠性高,软件设

计也比较简单,故采用了方案二。

2.2 系统总体设计

温度计电路设计总体设计方框图如图       1 所示,控制器采用单片机 AT89S51,温度传感器

采用 DS18B20,用 3 位 LED 数码管以串口传送数据实现温度显示。

数字温度计报告含有设计原理图

图 2.2—1   总体设计方框图

图 2.2—2 系统仿真图

2.3 系统模块

系统由单片机最小系统、显示电路、按键、温度传感器等组成。

2.3.     主控制器

单片机 AT89S51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电

路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。

晶振采用 12MHZ。复位电路采用上电加按钮复位。

图 2.3.1—1 晶振电路

图 2.3.1—2 复位电路

2.3.     显示电路

显示电路采用 4 位共阴极 LED 数码管,P0 口由上拉电阻提高驱动能力 ,作为段码输出

并作为数码管的驱动。P2 口的低四位作为数码管的位选端。采用动态扫描的方式显示。

图 2.3.2 数码管显示电路

2.3.    温度传感器

DS18B20 温度传感器是美国 DALLAS 半导体公司最新推出的一种改进型智能温度传感

器,与传统的热敏电阻等测温元件相比 ,它能直接读出被测温度,并且可根据实际要求通过

简单的编程实现9~12位的数字值读数方式。 DS18B20 的性能特点如下:

1、独特的单线接口仅需要一个端口引脚进行通信;

2、多个 DS18B20 可以并联在惟一的三线上,实现多点组网功能

3、无须外部器件;

4、可通过数据线供电,电压范围为 3.0~5.5V;

5、零待机功耗;

6、温度以9或12位数字;

7、用户可定义报警设置;

8、报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;

9、负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;

DS18B20 可以采用两种方式供电 ,一种是采用电源供电方式 ,此时 DS18B20 的 1 脚接地,

2 脚作为信号线,3 脚接电源。另一种是寄生电源供电方式 ,如图 4 所示单片机端口接单线

总线,为保证在有效的 DS18B20 时钟周期内提供足够的电流,可用一个 MOSFET 管来完成对

总线的上拉。

当 DS18B20 处于写存储器操作和温度 A/D 转换操作时,总线上必须有强的上拉 ,上拉开

启时间最大为 10us。采用寄生电源供电方式时 VDD 端接地。由于单线制只有一根线,因此

发送接口必须是三态的。

2.3.4 报警温度调整按键

图 2.3.3 温度传感器与单片机的连接

本系统设计三个按键,采用查询方式,一个用于选择切换设置报警温度和当前温度 ,另

外两个分别用于设置报警温度的加和减。均采用软件消抖。

图 2.3.4 按键电路

数字温度计报告 含有设计原理图

3 系统软件算法分析

系统程序主要包括主程序 ,读出温度子程序,温度转换命令子程序,计算温度子程序 ,

显示数据刷新子程序,按键扫描处理子程序 等。

3.1 主程序流程图

主程序的主要功能是负责温度的实时显示 、读出并处理 DS18B20 的测量的当前温度值,

温度测量每 1s 进行一次。这样可以在一秒之内测量一次被测温度,其程序流程见图 3.1 所

示。

数字温度计报告 含有设计原理图

图 3.1 主程序流程图

3.2 读出温度子程序

读出温度子程序的主要功能是读出 RAM 中的 9 字节,在读出时需进行 CRC 校验,校验

有错时不进行温度数据的改写。其程序流程图如图 3.2 示

3.3 温度转换命令子程序

温度转换命令子程序主要是发温度转换开始命令 ,当采用 12 位分辨率时转换时间约 为

750ms,在本程序设计中采用 1s 显示程序延时法等待转换的完成 。温度转换命令子程序流程

图如上图,图 3.3 所示

数字温度计报告 含有设计原理图

3.4   计算温度子程序

计算温度子程序将 RAM 中读取值进行 BCD 码的转换运算,并进行温度值正负的判定,

其程序流程图如图 3.4 所示。

3.5   显示数据刷新子程序

显示数据刷新子程序主要是对 分离后的温度 显示数据进行刷新操作,当 标志位 位为 1

时将符号显示位移入第一位。程序流程图如图 3.5。

数字温度计报告 含有设计原理图

3.6 按键扫描处理子程序

按键采用扫描查询方式,设置标志位,当标志位为 1 时,显示设置温度,否则显示当前温度。

如下图 3.6 示。

数字温度计报告 含有设计原理图

图 3.6 按键扫描处理子程序

4  实验仿真

进入 protuse 后,连接好电路,并将程序下载进去。将       DS18B20 的改为 0.1,数码管显

示温度与传感器的温度相同。

图 4—1 温度显示仿真

当按下 SET 键一次时,进入温度报警上线调节,此时显示软件设置的温度报警上线 ,按 ADD

或 DEC 分别对报警温度进行加一或减一。

当再次按下 SET 键时,进入温度报警下线调节,此时显示软件设置的温度报警下线 ,按 ADD

或 DEC 分别对报警温度进行加一或减一。

图 4—2 温度调试仿真

当第三次按下 SET 键时,退出温度报警线设置。显示当前温度。

5  总结与体会

通过这次对数字温度计的设计与制作 ,让我了解了设计电路的程序 ,也让我了解了关于

数字温度计的原理与设计理念,要设计一个电路总要先用仿真仿真成功之后才实际接线的 。

但是最后的成品却不一定与仿真时完全一样 ,因为,再实际接线中有着各种各样的条件制约

着。而且,在仿真中无法成功的电路接法 ,在实际中因为芯片本身的特性而能够成功 。所以,

在设计时应考虑两者的差异,从中找出最适合的设计方法。

通过这次学习,让我对各种电路都有了大概的了解 ,所以说,坐而言不如立而行 ,对于

这些电路还是应该自己动手实际操作才会有深刻理解。

在焊接过程中我曾将温度传感器的电源 、地焊反啦,导致温度传感器急剧发热 ,后经观

察和查询资料才得以改正。

从这次的课程设计中,我真真正正的意识到,在以后的学习中,要理论联系实际 ,把我

们所学的理论知识用到实际当中 ,学习单机片机更是如此 ,程序只有在经常的写与读的过程

中才能提高,这就是我在这次课程设计中的最大收获。

查考文献

【1】马忠梅,张凯,等 . 单片机的 C 语言应用程序设计(第四版)             北京航空航天大学

出版社

【2】薛庆军,张秀娟,等 .单片机原理实验教程

【3】廖常初.现场总线概述[J].电工技术,1999.

北京航天航空大学出版社

1 源程序代码

//DS18B20 的读写程序,数据脚 P2.7

//

//温度传感器 18B20 汇编程序,采用器件默认的 12 位转化  //

//最大转化时间 750 微秒,显示温度-55 到+125 度,显示精度               //

//为 0.1 度,显示采用 4 位 LED 共阳显示测温值

//

//P0 口为段码输入,P34~P37 为位选

/***************************************************/

#include "reg51.h"

//

#include "intrins.h"

#define    dm P0

//_nop_();延时函数用

//段码输出口

#define    uchar unsigned char

#define    uint    unsigned int

sbit DQ=P2^7;

sbit w0=P2^0;

sbit w1=P2^1;

sbit w2=P2^2;

sbit w3=P2^3;

sbit beep=P1^7;

sbit set=P2^6;

sbit add=P2^4;

sbit dec=P2^5;

int temp1=0;

uint h;

uint temp;

uchar r;

//温度输入口

//数码管 4

//数码管 3

//数码管 2

//数码管 1

//蜂鸣器和指示灯

//温度设置切换键

//温度加

//温度减

//显示当前温度和设置温度的标志位为 0 时显示当前温度

uchar high=35,low=20;

uchar sign;

uchar q=0;

uchar tt=0;

uchar scale;

//**************温度小数部分用查表法***********//

uchar code ditab[16]={0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x04,0x05,0x06,0x06,0x07,0x08,0x08,0x09,0x09};

//小数断码表

uchar code table_dm[12]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x40};

//共阴 LED 段码表

"0"    "1"    "2"    "3"    "4"    "5"    "6"    "7"    "8"    "9" "不亮" "-"

uchar table_dm1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef};     //个位带小数点的断码表

uchar data temp_data[2]={0x00,0x00};

uchar data display[5]={0x00,0x00,0x00,0x00,0x00};

//读出温度暂放

//显示单元数据,共 4 个数据和一个运算暂用

/*****************11us 延时函数*************************/

void delay(uint t)

{

for (;t>0;t--);

}

void scan()

{

int j;

for(j=0;j<4;j++)

{

switch (j)

{

case 0: dm=table_dm[display[0]];w0=0;delay(50);w0=1;//xiaoshu

case 1: dm=table_dm1[display[1]];w1=0;delay(50);w1=1;//gewei

case 2: dm=table_dm[display[2]];w2=0;delay(50);w2=1;//shiwei

case 3: dm=table_dm[display[3]];w3=0;delay(50);w3=1;//baiwei

//       else{dm=table_dm[b3];w3=0;delay(50);w3=1;}

}

}

}

//***************DS18B20 复位函数************************/

ow_reset(void)

{

char presence=1;

while(presence)

{

while(presence)

{

DQ=1;_nop_();_nop_();//从高拉倒低

DQ=0;

delay(50);

DQ=1;

delay(6);

presence=DQ;

}

delay(45);

presence=~DQ;

}

DQ=1;

}

//550 us

//66 us

//presence=0   复位成功,继续下一步

//延时 500 us

//拉高电平

/****************DS18B20 写命令函数************************/

//向 1-WIRE 总线上写 1 个字节

void write_byte(uchar val)

{

uchar i;

for(i=8;i>0;i--)

{

DQ=1;_nop_();_nop_();

//从高拉倒低

DQ=0;_nop_();_nop_();_nop_();_nop_();    //5 us

}

DQ=val&0x01;

delay(6);

val=val/2;

}

DQ=1;

delay(1);

//最低位移出

//66 us

//右移 1 位

/****************DS18B20 读 1 字节函数************************/

//从总线上取 1 个字节

uchar read_byte(void)

{

uchar i;

uchar value=0;

for(i=8;i>0;i--)

{

DQ=1;_nop_();_nop_();

value>>=1;

}

DQ=0;_nop_();_nop_();_nop_();_nop_();

DQ=1;_nop_();_nop_();_nop_();_nop_();

if(DQ)value|=0x80;

delay(6);

//4 us

//4 us

//66 us

DQ=1;

return(value);

}

/*****************读出温度函数************************/

read_temp()

{

ow_reset();

delay(200);

write_byte(0xcc);

write_byte(0x44);

ow_reset();

delay(1);

write_byte(0xcc);

write_byte(0xbe);

//总线复位

//发命令

//发转换命令

//发命令

temp_data[0]=read_byte();         //读温度值的第字节

temp_data[1]=read_byte();         //读温度值的高字节

temp=temp_data[1];

temp<<=8;

temp=temp|temp_data[0];

return temp;

}

//  两字节合成一个整型变量。

//返回温度值

/****************温度数据处理函数************************/

//二进制高字节的低半字节和低字节的高半字节组成一字节,这个

//字节的二进制转换为十进制后,就是温度值的百、十、个位值,而剩

//下的低字节的低半字节转化成十进制后,就是温度值的小数部分

/********************************************************/

work_temp(uint tem)

{

uchar n=0;

if(tem>6348)

{tem=65536-tem;n=1;}

display[4]=tem&0x0f;

//  温度值正负判断

//  负温度求补码,标志位置 1

//  取小数部分的值

display[0]=ditab[display[4]];     //  存入小数部分显示值

display[4]=tem>>4;

display[3]=display[4]/100;

display[1]=display[4]%100;

display[2]=display[1]/10;

display[1]=display[1]%10;

//  取中间八位,即整数部分的值

//  取百位数据暂存

//  取后两位数据暂存

//  取十位数据暂存

//个位数据

r=display[1]+display[2]*10+display[3]*100;

/////符号位显示判断/////

if(!display[3])

{

{

}

}

display[3]=0x0a;

if(!display[2])

display[2]=0x0a;

}

if(n){display[3]=0x0b;}

//最高位为 0 时不显示

//次高位为 0 时不显示

//负温度时最高位显示"-"

void BEEP()

{

if((r>=high&&r<129)||r

{

beep=!beep;

}

else

}

{

}

beep=0;

//*********设置温度显示转换************//

void xianshi(int horl)

{

int n=0;

if(horl>128)

{

horl=256-horl;n=1;

}

display[3]=horl/100;

display[3]=display[3]&0x0f;

display[2]=horl%100/10;

display[1]=horl%10;

display[0]=0;

if(!display[3])

{

}

display[3]=0x0a;

if(!display[2])

{

display[2]=0x0a;

}

if(n)

{

//最高位为 0 时不显示

//次高位为 0 时不显示

}

}

display[3]=0x0b; //负温度时最高位显示"-"

//*********按键查询程序**************//

void keyscan()

{

int temp1;       //最高温度和最低温度标志位

if(set==0)

{

while(1)

{

delay(500);//消抖

if(set==0)

{

temp1++;

}

while(!set)

scan();

}

if(temp1==1)

{

xianshi(high);

scan();

if(add==0)

{

while(!add)

scan();

high+=1;

}

if(dec==0)

{

while(!dec)

scan();

high-=1;

}

}

if(temp1==2)

{

xianshi(low);

if(add==0)

{

while(!add)

scan();

low+=1;

}

if(dec==0)

{

while(!dec)

scan();

low-=1;

}

scan();

}

if(temp1>=3)

{

temp1=0;

break;

}

}

}

/****************主函数************************/

void main()

{

dm=0x00;

w0=0;

w1=0;

w2=0;

w3=0;

for(h=0;h<4;h++)

{

display[h]=0;

}

ow_reset();

write_byte(0xcc);

write_byte(0x44);

for(h=0;h<100;h++)

{

scan();

}

while(1)

{

if (temp1==0)

{

//初始化端口

//开机显示"0000"

//开机先转换一次

//Skip ROM

//发转换命令

//开机显示"0000"

}

}

}

work_temp(read_temp());

BEEP();

scan();

keyscan();

else

keyscan();

//处理温度数据

//显示温度值

//***********************结束**************************//

更多相关推荐:
数字温度计设计报告

数字温度计设计报告课程名称院别专业班级姓名指导教师时间20xx电子课程设计武警工程学院指挥自动化二队一区队王凯03田腾浩邹涛年1月12日23主要内容设计一个数字温度计测量范围0100C温度的实时LED数字显示测...

数字温度计设计报告

数字温度计设计报告姓名班级学号指导教师年62720xx月日数字温度计报警实训报告随着时代的进步和发展单片机技术已经普及到我们生活工作科研各个领域已经成为一种比较成熟的技术本文主要介绍了一个基于89c51单片机的...

数字温度计设计与总结报告

数字温度计A2题设计与总结报告专科组陈春梁福鑫钟才莉摘要随着时代的进步和发展单片机技术已经普及到我们生活工作科研等各个领域已经成为一种比较成熟的技术本设计在参阅了大量前人设计的数字温度计的基础上利用单片机技术结...

单片机数字温度计设计报告

单片机课程设计报告数字温度计学号班级姓名指导教师20xx年9月3日1设计要求基本范围50110精度误差小于05LED数码直读显示2扩展功能实现语音报数可以任意设定温度的上下限报警功能2数字温度计摘要随着时代的进...

数字温度计设计实验报告

数字电子综合性实验报告题目数字温度计学院电气工程与自动化班级姓名学号指导教师一实验任务温度计是工农业生产及科学研究中最常用的测量仪表本课题要求用中小规模集成芯片设计并制作一数字式温度计即用数字显示被测温度具体要...

数字温度计设计报告

单片机原理与应用技术课程设计报告论文基于单片机控制的数字温度计专业班级应教121姓名董镇玉时间20xx19指导教师宋长源李晓娟20xx年01月09日单片机课程设计项目系列基于单片机控制的数字温度计一设计要求一基...

数字温度计设计报告

常熟理工学院电气与自动化工程学院课程设计用纸前言根据在常熟理工这半年对于自动化专业的学习尤其是电工学自动控制原理以及电力电子技术等专业课程的学习让我对于设计数字温度计打下了基础对于我们自动化专业来讲这个专业对于...

数字温度计课程设计报告

数字温度计课程设计报告1课题说明随着现代信息技术的飞速发展和传统工业改造的逐步实现能够独立工作的温度检测和显示系统应用于诸多领域传统的温度检测以热敏电阻为温度敏感元件热敏电阻的成本低但需后续信号处理电路而且可靠...

数字温度计设计实训报告

西安航空职业技术学院小系统设计实训报告论文题目智能温度计所属系部电子工程系指导教师潘晶莹学生姓名谭晓辉学号0920xx26程创学号0920xx04专业电子信息工程技术西安航空职业技术学院制智能温度计西安航空职业...

数字温度计设计报告【C语言】

1设计概况11设计概述本设计所介绍的数字温度计与传统的温度计相比具有读数方便测温范围广测温准确其输出温度采用数字显示主要用于对测温比较准确的场所或科研实验室使用该设计控制器使用单片机AT89C52测温传感器使用...

简易数字温度计设计报告

24V交流单相在线式不间断电源摘要本文设计了一款输出24V交流单相在线式不间断电源设计中采用正弦波单相逆变电源控制芯片U3990F650作为主控芯片采用Boost升压电路对输入电压升压使逆变之前的电压维持在40...

数字温度计课程设计报告

目录1设计概述111设计目标和要求112设计思路12系统方案及硬件设计221设计方案222方案的硬件总体方框图323温度传感器DS18B20测温原理424硬件设计7241主控制器8242复位电路8243时钟振荡...

数字温度计设计报告(38篇)