人教版高一数学必修一知识点总结大全

发表于:2021.9.20来自:www.fanwen118.com字数:2835 手机看范文

一 集合与函数

???确定性

?集合中元素的特征 ??互异性

???无序性

1 集合的含义及表示??? 集合与元素的关系 : ? ?

??列举法

? 集合的表示??

??描述法

??常见的数集 N N* Z Q R

??子集: A?B ,??A,A?A

2集合间的基本关系??集合相等: 1?定义:A=B

若A?B且B?A则A?B ? 2?

??真子集: 若A?B且 A?B,则A??B

空集?的特殊性: 空集是任何集合的子集,任何非空集合的真子集 *结论 含有n个元素的集合,其子集的个数为2n,真子集的个数为2n?1

?并集:A?B??x|x?A或x?

3集合的基本运算?B?

? 交集:A?B??x|x?A且x?B

??

?补集:CUA??x|x?U且x?A?

在集合运算中常借助于数轴和文氏图(*注意端点值的取舍)

*结论 (1)A?A?A A?A?A, A???A A????

(2)若A?B?B则A?B 若A?B?A则A? B

(3)A?(CUA)?? A?(CUA)?U

(4)若A?B?? 则A??或A??

1

?函数的定义 ??定义域??函数的三要素??对应法则??值域?? 4函数及其表示?

?区间的表示

??解析式法???函数的表示法?列表法

??图像法??

5 函数的单调性及应用

(1) 定义: 设x1?x2??a,b?,x1?x2那么:

x1?x2,f(x1)?f(x2)?(x1?x2)?f(x1)?f(x2)??0?

x1?x2,f(x1)?f(x2)?(x1?x2)?f(x1)?f(x2)??0?

?f(x1)?f(x2) ?0?f(x)在?a,b?上是增函数;x1?x2f(x1)?f(x2)?0 ?f(x)在?a,b?上是减函数. x1?x2(2) 判定方法:1定义法(证明题) 2图像法 3?复合法

(3) 定义法:证明函数单调性用

利用定义来证明函数单调性的一般性步骤:

1 设值:任取x1,x2为该区间内的任意两个值,且x1?x2

2 做差,变形,比较大小:做差f(x1)?f(x2),并利用通分,因式分解,配方,有理化等方法变形比较f(x1),f(x2)大小

3?下结论(说函数单调性必须在其单调区间上)

(4)常见函数利用图像直接判断单调性:一次函数,二次函数,反比例函数,指对数函数,幂函数,对勾函数

(5)复合法:针对复合函数采用同增异减原则

(6)单调性中结论:在同一个单调区间内:增+增=增: 增—减=增:减+减=减:减—增=增 若函数f(x)在区间?a,b?为增函数,则—f(x),???1)在?a,b?为减函数 f(x

(7)单调性的应用:1:利用函数单调性比较大小

2利用函数单调性求函数最值(值域)

重点题型:求二次函数在闭区间上的最值问题

2 ??

6 函数的奇偶性及应用

(1)定义:若f(x)定义域关于原点对称

1?若对于任取x的,均有f(?x)?f(x) 则f(x)为偶函数

2?若对于任取x的,均有f(?x)??f(x)则f(x)为奇函数

(2)奇偶函数的图像和性质

人教版高一数学必修一知识点总结大全

(3)判定方法:1定义法 (证明题) 2图像法 3?口诀法

(4)定义法: 证明函数奇偶性

步骤: 1 求出函数的定义域观察其是否关于原点对称(前提性必备条件)

2 由出发f(?x),寻找其与f(x)之间的关系

3? 下结论(若f(?x)?f(x)则f(x)为偶函数,若f(?x)??f(x)则f(x)为奇函数函数)

(4) 口诀法: 奇函数+奇函数=奇函数:偶函数+偶函数=偶函数

奇函数?奇函数=偶函数: 奇函数?偶函数=奇函数:偶函数?偶函数=偶函数

3 ????

二 指数函数与对数函数

1 指数运算公式

1?am?an?am?n 2?am?an?am?n 3? (ab)m?ambm 4?(am)n?amn 5? (aamm

m?b)?bm 6

人教版高一数学必修一知识点总结大全

an?7?

人教版高一数学必修一知识点总结大全

a?m

n? 8

人教版高一数学必修一知识点总结大全

????a,当n为偶数时 ?a,当n为奇数时

2 对数运算公式

(1)对数恒等式

当a?0,a?1时 ,ax?N?x?logaN loga1?0 logaa?1 alogaN?N

(2)对数的运算法则(a?0且a?1,M?0,N?0)

1? logaM(?N?)laogM?laoN g

2? logM

aN?)laoMg?laNo g

3? logaM(n?)nlaoMg

(3)换底公式及推论

loglogcb

ab?log (a?0且a?1,c?且0c?1,b?

ca

推论 1? logn

amb?nmloagb

2? logaN?1

log

Na

3? logablobgc?laoc g

4 0

人教版高一数学必修一知识点总结大全

4 指数与对数中的比较大小问题

(1)指数式比较大小

1?

人教版高一数学必修一知识点总结大全

am ,an

人教版高一数学必修一知识点总结大全

2? am ,bn

(2)对数式比较大小

1

人教版高一数学必修一知识点总结大全

?

人教版高一数学必修一知识点总结大全

logam ,logan

2? logam ,logbn

5 指数与对数图像

6 幂函数:一般地,函数y?x?叫做幂函数,其x中为自变量,?是常数

几种幂函数的图象:

5

函数零点及二分法

一 函数零点的判定

(一) 函数有实数根

?函数的图像与轴有交点

?函数有零点

(二) 函数的零点的判定定理

如果函数y?f(x)在区间?a,b?上的图像时连续不断的一条曲线,并且有f(a)f(b)?0,那么,函数y?f(x)在区间?a,b?内有零点,即存在c??a,b?,使得f(c)?0,这个c也就是方程的根

二 函数二分法的应用

(一)函数二分法:对于在区间上连续不断且的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法。

给定精确度?,用二分法求函数f(x)零点近似值的步骤如下:

1确定区间?a,b?,验证f(a)f(b)?0,给定精确度?

2求区间的中点c

3计算f(c)

(1) 若f(c)?0,则c就是函数的零点

(2) 若f(a)f(c)?0,则令b?c(此时零点x??(a,c))

(3) 若f(c)f(b)?0,则令a?c(此时零点x??(c,b))

4判定是否达到精确度?:即若a?b??,则得到零点近似值a(或b):否则重复2(二)函数二分法及精度计算 L?()?? (L?a?b)

4 12n

6




第二篇:高一数学必修一,二知识点总结 11900字

高中高一数学必修1各章知识点总结

第一章 集合与函数概念

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素

2、集合的中元素的三个特性:

1.元素的确定性; 2.元素的互异性; 3.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}

4、集合的分类:

1.有限集 含有有限个元素的集合

2.无限集 含有无限个元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

① 任何一个集合是它本身的子集。A?A

②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)

③如果 A?B, B?C ,那么 A?C

④ 如果A?B 同时 B?A 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,

A∪φ= A ,A∪B = B∪A.

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

记作: CSA 即 CSA ={x | x?S且 x?A}

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ

二、函数的有关概念

1函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.

定义域补充

能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.

(又注意:求出不等式组的解集即为函数的定义域。)

构成函数的三要素:定义域、对应关系和值域

再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)

(见课本21页相关例2)

值域补充

(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.

(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

3. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.

C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }

图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。

(2) 画法

A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.

B、图象变换法(请参考必修4三角函数)

常用变换方法有三种,即平移变换、伸缩变换和对称变

(3)作用:

1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。发现解题中的错误。

4.快去了解区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.

5.什么叫做映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映像。记作“f:A B”

给定一个集合A到B的映像,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

常用的函数表示法及各自的优点:

1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.

注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值

补充一:分段函数 (参见课本P24-25)

在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

补充二:复合函数

如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。

例如: y=2sinX y=2cos(X2+1)

7.函数单调性

(1).增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间(睇清楚课本单调区间的概念)

如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

2 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) 。

(2) 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(A) 定义法:

1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 变形(通常是因式分解和配方);4 定号(即判断差f(x1)-f(x2)的正负);5 下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)_

(C)复合函数的单调性

函数的单调性

注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?

8.函数的奇偶性

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. 注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .

9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)

10.函数最大(小)值(定义见课本p36页)

1 利用二次函数的性质(配方法)求函数的最大(小)值2 利用图象求函数的最大(小)值3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

第二章 基本初等函数

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *. 当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand)

当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。

注意:当 是奇数时, ,当 是偶数时,

2.分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

(二)指数函数及其性质

1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

图象特征

函数性质

1.向x、y轴正负方向无限延伸

函数的定义域为R

2.图象关于原点和y轴不对称

非奇非偶函数

3.函数图象都在x轴上方

4.函数的值域为R+

5.函数图象都过定点(0,1)

6.自左向右看图象逐渐上升自左向右看,图象逐渐下降

图象上升趋势是越来越陡

图象上升趋势是越来越缓

函数值开始增长较慢,到了某一值后增长速度极快;

函数值开始减小极快,到了某一值后减小速度较慢;

注意:利用函数的单调性,结合图象还可以看出:

(1)在[a,b]上, 值域是 或 ;

(2)若 ,则 ; 取遍所有正数当且仅当 ;

(3)对于指数函数 ,总有 ;

(4)当 时,若 ,则 ;

二、对数函数

(一)对数

1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)

两个重要对数:

1 常用对数:以10为底的对数 ;

2 自然对数:以无理数 为底的对数的对数 .

(二)对数函数

1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞). 注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

图象特征,函数性质

1.函数图象都在y轴右侧

函数的定义域为(0,+∞)

2.图象关于原点和y轴不对称

非奇非偶函数

3.向y轴正负方向无限延伸

函数的值域为R

4.函数图象都过定点(1,0)

自左向右看,图象逐渐上升,自左向右看,图象逐渐下降

(三)幂函数

1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);

(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;

(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.

第三章 函数的应用

、方程的根与函数的零点

1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。

2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即: 方程 有实数根 函数 的图象与 轴有交点 函数 有零点.

3、函数零点的求法:

求函数 的零点:

1 (代数法)求方程 的实数根;

2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数 .

1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.

2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.

高一数学必修4

?正角:按逆时针方向旋转形成的角?1、任意角?负角:按顺时针方向旋转形成的角 3)△<0,方程 无?零角:不作任何旋转形成的角?

2、角?的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称?为第几象限角.

??

第二象限角的集合为??k?360?90?k?360?180,k???

第三象限角的集合为??k?360?180???k?360?270,k???

第四象限角的集合为??k?360?270???k?360?360,k???

终边在x轴上的角的集合为???k?180,k???

终边在y轴上的角的集合为????k?180?90,k???

终边在坐标轴上的角的集合为????k?90,k???

3、与角?终边相同的角的集合为????k?360??,k??? 第一象限角的集合为?k?360???k?360?90,k?? ????????????????????

4、已知?是第几象限角,确定?n???所在象限的方法:先把各象限均分n等份,再从?n*

x轴的正半轴的上方起,依次将各区域标上一、二、三、四,则?原来是第几象限对应的

?标号即为终边所落在的区域. n

5、长度等于半径长的弧所对的圆心角叫做1弧度.

6、半径为r的圆的圆心角?所对弧的长为l,则角?的弧度数的绝对值是??l. r

?180??7、弧度制与角度制的换算公式:2??360,1?,1??. ?57.3?180???????

8、若扇形的圆心角为???为弧度制?,半径为r,弧长为l,周长为C,面积为S,则

11l?r,C?2r?l,S?lr??r2. 22

9、设?是一个任意大小的角,?的终边上任意一点?的坐标是?x,y?,它与原点的距离是rr??0,则sin????yxy,cos??,tan???x?0?. rrx

10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.

11、三角函数线:sin????,cos????,tan????.

12、同角三角函数的基本关系:?1?sin2??cos2??1

?sin2??1?cos2?,cos2??1?sin2??;?2?

sin???sin??tan?cos?,cos????. tan???

13、三角函数的诱导公式: sin??tan? cos?

?1?sin?2k?????sin?,cos?2k?????cos?,tan?2k?????tan??k???. ?2?sin???????sin?,cos???????cos?,tan??????tan?.

?3?sin??????sin?,cos?????cos?,tan??????tan?.

?4?sin??????sin?,cos???????cos?,tan???????tan?.

口诀:函数名称不变,符号看象限. ?5?sin??????????cos?,cos?????sin?. ?2??2?

????????cos?,cos??????sin?. ?2??2???6?sin???

口诀:奇变偶不变,符号看象限.

14、函数y?sinx的图象上所有点向左(右)平移?个单位长度,得到函数y?sin?x???的图象;再将函数y?sin?x???的图象上所有点的横坐标伸长(缩短)到原来的1

?倍(纵

坐标不变),得到函数y?sin??x???的图象;再将函数y?sin??x???的图象上所有点的纵坐标伸长(缩短)到原来的?倍(横坐标不变),得到函数

y??sin??x???的图象.

函数y?sinx的图象上所有点的横坐标伸长(缩短)到原来的

(纵坐标不变),得到函数 1?倍

高一数学必修一二知识点总结

高一数学必修一二知识点总结

y?sin?x的图象;再将函数y?sin?x的图象上所有点向左(右)平移?个单位长度,?

得到函数y?sin??x???的图象;再将函数y?sin??x???的图象上所有点的纵坐标伸长(缩短)到原来的?倍(横坐标不变),得到函数y??sin??x???的图象. 函数y??sin??x??????0,??0?的性质:

①振幅:?;②周期:??2?

?;③频率:f?1??;④相位:?x??;⑤初相:?. ?2?

函数y??sin??x?????,当x?x1时,取得最小值为ymin ;当x?x2时,取得最大值为ymax,则??11??ymax?ymin?,???ymax?ymin?,?x2?x1?x1?x2?. 222

y?tanx 15、正弦函数、余弦函数和正切函数的图象与性质: 函 y?cosx 数 y?sinx 性 质

域 R R ????xx?k??,k??? 2??R ??1,1?

当x?2k??

时,??1,1? ?k???当x?2k??k???时, ?2最

值 ymax?1;当ymax?1;当x?2k??? 既无最大值也无最小值

x?2k???

2 ?k???时,ymin??1.

2? ?k???时,ymin??1. 周

性 2? ? 奇函数 偶函数 奇函数

高一数学必修一二知识点总结

高一数学必修一二知识点总结

高一数学必修一二知识点总结

在?2k??

??

?

2

,2k??

??

?2?

单?k???上是增函数;在

?3??性 ?2k??,2k????

在?2k???,2k???k???上是增函数;在?2k?,2k????

在?k??

?

?

?

2

,k??

??

? 2?

?

2

2?

?k???上是减函数.

?k???上是增函数.

?k???上是减函数.

对称中心?k?,0??k??? 对

对称称

?

性 x?k???k???

???k??,0??k??? ?

2??

对称轴x?k??k???

?k??

,0??k??? ?2??

无对称轴

2

16、向量:既有大小,又有方向的量.

数量:只有大小,没有方向的量.

有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.

单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:

⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.

??????

⑶三角形不等式:a?b?a?b?a?b.

??????????

⑷运算性质:①交换律:a?b?b?a;②结合律:a?b?c?a?b?c;③

????

?????a?0?0?a?a.

C

????

⑸坐标运算:设a??x1,y1?,b??x2,y2?,则a?b??x1?x2,y1?y2?.

18、向量减法运算:

⑴三角形法则的特点:共起点,连终点,方向指向被减向量.

?a

b

?

?

高一数学必修一二知识点总结

高一数学必修一二知识点总结

????

⑵坐标运算:设a??x1,y1?,b??x2,y2?,则a?b??x1?x2,y1?y2?. ????设?、?两点的坐标分别为?x1,y1?,?x2,y2?,则???

??x1

x2y,1?y2

?.

??????????????

a?b??C?????C

19、向量数乘运算: ??⑴实数?与向量a的积是一个向量的运算叫做向量的数乘,记作?a. ①?a??a;

???②当??0时,?a的方向与a的方向相同;当??0时,?a的方向与a的方向相反;当???

????0时,?a?0.

?????????⑵运算律:①???a??????a;②?????a??a??a;③?a?b??a??b. ??

⑶坐标运算:设a??x,y?,则?a???x,y????x,?y?. ??

??????20、向量共线定理:向量aa?0与b共线,当且仅当有唯一一个实数?,使b??a. ??

????????abb?0设a??x1,y1?,其中b?0,则当且仅当x1y2?x2y1?0时,向量、b??x2,y2?,??

共线.

?????21、平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面

????????????内的任意向量a,有且只有一对实数?1、?2,使a??1e1??(不共线的向量e1、e2作2e2.

为这一平面内所有向量的一组基底)

22、分点坐标公式:设点?是线段?1?2上的一点,?1、?2的坐标分别是?x1,y1?,?x2,y2?,?????????x??x2y1??y2?当?1?????2时,点?的坐标是?1,?. 1??1????

23、平面向量的数量积: ??????????⑴a?b?abcos?a?0,b?0,0???180.零向量与任一向量的数量积为0. ??

????????????a?b?ab;⑵性质:设a和b都是非零向量,则①a?b?a?b?0.②当a与b同向时,

???2?

高一数学必修一二知识点总结

2???????????当a与b反向时,a?b??ab;a?a?a?a或a?.③a?b?ab.

?????????????????⑶运算律:①a?b?b?a;②??a??b??a?b?a??b;③a?b?c?a?c?b?c. ??????

⑷坐标运算:设两个非零向量a??x1,y1?,b??x2,y2?,则a?b?x1x2?y1y2.

22若a??x,y?,则a?x?y,或a???????

高一数学必修一二知识点总结

2?

????设a??x1,y1?,b??x2,y2?,则a?b?x1x2?y1y2?0.

??????a设a、b都是非零向量,a??x1,y1?,b??x2,y2?,?是与b的夹角,则

??

cos??a

a?b

b?

24、两角和与差的正弦、余弦和正切公式:

⑴cos??????cos?cos??sin?sin?;

⑵cos??????cos?cos??sin?sin?;

⑶sin??????sin?cos??cos?sin?;

⑷sin??????sin?cos??cos?sin?;

⑸tan??????tan??tan?

1?tan?tan?(tan??tan??tan??????1?tan?tan??);

⑹tan??????tan??tan?

1?tan?tan?(tan??tan??tan??????1?tan?tan??).

25、二倍角的正弦、余弦和正切公式:

⑴sin2??2sin?cos?.

⑵cos2??cos2??sin2??2cos2??1?1?2sin2?(cos2??cos2??1

2

sin2??1?cos2?

2). ⑶tan2??2tan?

1?tan2?.

26

高一数学必修一二知识点总结

、?sin???cos???????,其中tan???

?.

实根,二次函数的图象与 轴无交点,二次函数无零点.

高一数学必修一二知识点总结

更多类似范文
┣ 更多高一数学必修一知识点总结人教版
┗ 搜索类似范文

更多相关推荐:
人教版高中数学必修一各章知识点总结5900字

新课标人教版高中数学必修1知识点导学一集合1集合的含义某些指定的对象集在一起就成为一个集合每一个对象叫集合的一个元素2元素的三个特性1确定性对于一个给定的集合集合中的元素是确定的任何一个对象或者是或者不是这个给...

高一数学必修1各章知识点总结7200字

金太阳新课标资源网高一数学必修1各章知识点总结第一章集合与函数概念一集合有关概念1集合的含义2集合的中元素的三个特性1元素的确定性如世界上最高的山2元素的互异性如由HAPPY的字母组成的集合HAPY3元素的无序...

高中数学 人教版 必修一 知识点总结梳理3100字

一集合1集合的含义集合为一些确定的不同的对象的全体2集合的中元素的三个特性确定性互异性无序性3集合的表示1用大写字母表示集合AB2集合的表示方法a列举法将集合中的元素一一列举出来abcb描述法集合中元素的公共属...

高一数学各章知识点总结人教版必修一2300字

高一数学必修1各章知识点总结第一章集合与函数概念一集合有关概念1集合的含义2集合的中元素的三个特性3集合的表示注意常用数集记法非负整数集自然数集正整数集整数集有理数集实数集二集合间的基本关系1如果A是B的子集则...

专栏推荐
大家在关注

地图地图CC