X射线衍射实验报告

时间:2024.4.20

X射线衍射实验报告

                                            

摘要:

本实验通过了解到X射线的产生、特点和应用;理解X射线管产生连续X射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。

关键字:布拉格公式 晶体结构,X射线衍射仪,物相分析

引言

X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。 物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。

实验目的:1. 了解X射线衍射仪的结构及工作原理

2. 熟悉X射线衍射仪的操作

3. 掌握运用X射线衍射分析软件进行物相分析的方法

实验原理

(1)    X射线的产生和X射线的光谱

实验中通常使用X光管来产生X射线。在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。

对于特征X光谱分为

(1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ…

(2)L系谱线:外层电子填L层空穴产生的特征X射线Lα、Lβ…如下图1

                    图1 特征X射线

X射线与物质的作用

X射线与物质相互作用产生各种复杂过程。就其能量转换而言,一束X射线通过物质分为三部分:散射,吸收,透过物质沿原来的方向传播,如下图2,其中相干散射是产生衍射花样原因。

                      图2   X射线与物质的作用

 晶体结构与晶体X射线衍射

晶体结构可以用三维点阵来表示。每个点阵点代表晶体中的一个基本单元,如离子、原子或分子等。

空间点阵可以从各个方向予以划分,而成为许多组平行的平面点阵。因此,晶体可以看成是由一系列具有相同晶面指数的平面按一定的距离分布而形成的。各种晶体具有不同的基本单元、晶胞大小、对称性,因此,每一种晶体都必然存在着一系列特定的d值,可以用于表征不同的晶体。

X射线波长与晶面间距相近,可以产生衍射。晶面间距d和X射线的波长的关系可以用布拉格方程来表示

2dsinθ=nλ

根据布拉格方程,不同的晶面,其对X射线的衍射角也不同。因此,通过测定晶体对X射线的衍射,就可以得到它的X射线粉末衍射图。如下图3就是衍射仪的图谱。

                    图3  X射线衍射图谱

物相鉴定原理

任何结晶物质均具有特定晶体结构(结构类型,晶胞大小及质点种类,数目,分布)和组成元素。一种物质有自己独特的衍射谱与之对应,多相物质的衍射谱为各个互不相干,独立存在物相衍射谱的简单叠加。

衍射方向是晶胞参数的函数(取决于晶体结构);衍射强度是结构因子函数(取决于晶胞中原子的种类、数目和排列方式)。任何一个物相都有一套d-I特征值及衍射谱图。因此,可以对多相共存的体系进行全分析。也就是说实验测得的图谱与数据库中的已知X射线粉末衍射图对照,通过两者的匹配性就可以确定它的物相。

实验仪器

本实验中使用的是德国布鲁克公司D8 X射线衍射仪

其核心部件是:

1)高压发生器与X光管

2)精度测角仪与B-B衍射几何

3)光学系统及其参数选择对采

      集数据质量影响

4)探测器

5)控测、采集数据与数据处理

仪器设计原理:R1=R2=R ,试样转θ角,探测器转2θ角(2θ/θ偶合)或试样不动,光管转θ,探测器转θ( θ/ θ偶合),其基本结构原理图如下图4

                           图4 X射线衍射仪设计原理

聚焦圆随衍射角大小而变化,衍射角越大、聚焦圆半径越小,当2θ=0,聚焦圆半径r=∞;当2θ=1800时,r=R/2,且r = R/2sinθ。

实验步骤

一,样品制备

将待测粉末样品在试样架里均匀分布并用玻璃板压平实,使试样面与玻璃表面齐平,

二,D8 X射线衍射仪使用测量衍射图谱

1. 按照D8 X射线衍射仪操作规程开机。

(1)开总电源。

(2)开电脑。

(3)开循环水。

(4)开仪器电源(按绿色按钮,由4灯全亮变成ON和ALARM灯亮)。

(5) 开X-ray高压(右侧扳手顺时针向上扳45度保持3~5秒,直到Ready灯亮)。

(6)开BIAS(在前盖盘内)。

2,开软件XRD Commander。在XRD Commander里升电压和电流,每隔30秒加5kV直到40kV;然后加电流,每隔30秒加5mA直到40mA。如果停机2天以上最好做光管老化:点击D8 Tools主界面/X-ray generator,点击工具栏里的utilities/X-ray.../Tube condition ON/OFF,在右下角的状态栏出现Tube condition ON,电压和电流会逐步升到50kV-5mA。大概需要1小时,等电压和电流回到20kV-5mA,点击Tube condition ON/OFF老化结束。(老化过程可随时终止:点击Tube condition ON/OFF即可。)

打开XRD Commander,先初始化(点击两个轴上面的选项Requested,选定两个轴,使Tube为20,Detector为20,点击菜单里的初始化图标进行初始化)。做物相分析在Scantype中选Locked Coupled,并且在Detail中将探测器改为1D。在XRD Commander中选择各参数(起始角、终止角、步长等)开始测量。即可获得一张衍射图谱,将其保存为*.raw文件。对于未知的样品:首先,扫描范围0.10~900,步长大些,快速扫描。然后,参照第前面的谱线,把扫描起始角放在第一个峰前一点,把终止角放在最后一个峰后一点。对于一般定性分析用连续扫描。对于定量分析(例如无标样定量相分析等)对强度要求高,就用步进扫描。

3. 按照D8 X射线衍射仪操作规程关机。

(1)在软件里降高压。在软件XRD Commander里将高压调到20kV~5mA,点击“Set”。

(2)关软件XRD Commander。

(3)关X-ray高压(右侧扳手逆时针向上扳45度),再等5分钟。

(4)关仪器电源(按红色按钮)。

(5)关循环水(关仪器电源后迅速关水)。

(6)关BIAS(在前盖盘内)。

(7)关电脑。

(8)关总电源。

三,Eva软件对图谱处理进行物相分析

(1)    将待处理的数据文件导入。点击File/Import/Scan调入原始数据文件*.raw进行处

(2)在ToolBox框内进行数据处理。

i)                    扣背景:点击Backgnd/点击Default/点击Replace,显示扣背景处理后的数据(也可以点击Backgnd,把门槛threshold改为“0”,上下移动滑块,调整至合适背景,点击“Replace”,显示扣背景处理后的数据)。

ii)                  删除k:点击Strip k/点击Default/点击Replace,显示处理后的数据(也可以上下移动滑块调整至合适,单击Replace,显示处理后的数据)。

iii)                平滑处理:单击Smooth/点击Default/点击Replace,显示处理后的数据(也可以设定需要平滑的参数,左右或上下移动滑块进行调整,合适后单击Replace,显示处理后的数据)。

iv)                寻峰:点击Peak Search,设定寻峰参数(门槛threshold与峰宽Width标定,可以上下移动滑块进行调整)。点击“Append to list”标定全谱衍射d值(标定漏峰只需按左键将“↓”拖移至峰顶点击即可,删除峰可点击删除峰与“×”即可),此时数据在peak状态列于框内。

(2)    选定所有的峰,单击Made DIF生成DIF文件。

(4)物相的定性分析:点击Search/Match。在Search/Match框内选择前三个Quality Marks,选择可能的元素,并选择Pattern,点击Search进行检索/匹配。(先选Toggle All/点击左上角的元素“H”可以将所有的元素变为红色,即肯定没有。/选择肯定有的点成绿色。/选择可能有的点成灰色。红色肯定没有。)。最后根据列表给出的可能物质通过比较卡片内的谱线和实际测量出谱线的吻合程度来确定组成成分,也就完成了X射线衍射的初步分析工作。

实验数据处理:

(1)对Fe和Cu样品,其中可能氧化有氧,实验初步测量结果图如下

图5  样品1的测量谱线

通过实验软件,定性分析出其中有Fe2O3,,CU2+1O,以及alpha Fe2O3,。其图谱与测量的匹配性如下;

对于alpha Fe2O3,其谱线与测量谱线的吻合度如下图6,蓝色线为alpha Fe2O3的谱线

             图6 alpha Fe2O3谱线与测量谱线的匹配

 可以看出有几个明显的峰吻合,可以判断样品中含有alpha Fe2O3

对于Fe2O3,其蓝色谱线与测量谱线的吻合度如下图7;

              图7  Fe2O3谱线与测量谱线的吻合

同样可以看出。有几个小峰与测量谱线重合,样品中存在Fe2O3

对于CU2+1O的蓝色谱线与测量谱线的吻合度如下图8

               图8   CU2+1O的谱线与测量谱线的吻合

可以看出,几个特别强的峰均与CU2+1O吻合,可以说样品中含有CU2+1O。

综上和三者谱线之和与测量谱线的吻合度,可以看出,三种样品的图谱基本上把所有的峰都匹配了,如下图9

由此基本上可以定性分析出样品中的物质是Fe2O3,,CU2+1O,以及alpha Fe2O3

(2)Mg和Si样品,其中可能氧化有O,其实验测量的谱线图如下

图10  样品2的测量谱线

同样通过分析软件,可以分析出样品中只含Mg和Si两种物质,其各自的匹配性如下:

Mg的蓝色谱线与测量谱线的吻合度:

2.Si的蓝色谱线与测量谱线的吻合度:

3.综合Si和Mg两者谱线和与测量谱线的吻合度如下图,可以基本看出,测量谱线所有的峰都被匹配了。

从此图可以基本上定性分析出该样品中只含有Mg和Si.

实验讨论

物相鉴定方法特点与注意点

不是单纯的元素分析,能确定组元所处的化学状态(式样属何物质,那种晶体结构,并确定其化学式)。

可区别同素异构物相,尤其是对多型、固体有序-无序转变的鉴别。

样品由多组份构成时,可区别是固溶体或是混合相(多组份物相)。

可分析粉末状、块状、线状试样。样品易得,耗量少,与实体系相近,应用非常广泛。

物相必是结晶态,可检出非晶物。

微量相(如<1%wt)物相鉴定可利用物理化学电解分离萃取富集办法,如无法萃取可加大辐射功率,使有可能出现3条衍射峰,即可鉴定物相,如辅之以其它方法更有利判定物相。

对分析模棱两可的物相分析,借助试样的历史(如试样来源、化学组分、处理情况等),或者借助其它分析手段如化学分析、金相、电镜等)进行综合判断是绝对必要的。最终人工判断才能得出正确结论

实验思考

(1)X射线在晶体上产生衍射的条件是什么?

由Bragg 公式                               

可以知道,n最小取1,因而2d>=λ,也就是说满足2d>=λ 时,X射线在晶体上产生衍射。

(2)为什么衍射仪记录的始终是平行于试样表面的衍射?

对一些(hkl)晶面满足布拉格方程产生对于粉末多晶体试样,在任何方位上总会反射,而且反射是向四面八方的。但是那些平行于试样表面的(hkl)晶面满足入射角=衍射角=θ的条件,此时衍射线夹角为(π-2θ),(π-2θ)正好为聚焦圆的圆周角,由平面几何可知,位于同一圆弧上的圆周角相等,所以,位于试样不同部位平行于试样表面的(hkl)晶面,可以把各自的衍射线会聚到F点(由于S是线光源,所以F点得到的也是线光源),这样便达到了聚焦的目的。由此可以看出,衍射仪的衍射花样均来自与试样表面相平行的那些反射面的反射。

(3)不平行表面的晶面有无衍射产生?

对于不平行于表面的晶面有衍射产生,只是不被接受器接受到,因而实验中观测不到。

(4)实验中使用的样品的颗粒度有无要求?为什么

对于实验中样品,粉晶、块状样均可,表面平整,但是小颗粒可改善强度再现性。粒的大小影响着样品衍射的最大相对强度及其对峰位的变化,对衍射峰位影响不是很大

晶粒的粒径越小,衍射峰的峰高强度就越低,但过小粒径的晶粒不能再近似看成具有无限多晶面的理想晶体,因其对X射线的弥散现象严重,表现在峰强变弱,峰变宽。

(5)用衍射仪如何区分单晶、多晶和非晶

   对于非晶体,X射线衍射仪不产生衍射光谱,而对于单晶,产生的是一些不连续光谱,多晶产生的是连续性光谱,由此可以区分出单晶,多晶和非晶。

参考文献

《近代物理实验》 第二版  黄润生


第二篇:光栅衍射实验报告


实验报告

涂李傲 软01

2010013234

【实验名称】

光栅衍射

【实验目的】

1:熟悉分光计的调整与使用

2:学习利用衍射光栅测定光波波长及光栅常数的原理和方法

3:理解光栅衍射公式及其成立条件

【实验原理】

Ⅰ测定光栅常数和光波波长

当一束单色光垂直照射在光栅上时,各狭缝的光线因衍射而向各方向传播,经透镜会聚相互产生干涉,并在透镜的焦平面上形成一系列明暗条纹。

如右图所示,有一束平行光与光栅的法线成角,入射到光栅上产生衍射;出射光夹角为。从点引两条垂线到入射光和出射光。如果在处产生了一个明条纹,其光程差必等于波长的整数倍,即

           (2.1.1)

为衍射光谱的级次,.由这个方程,知道了中的三个量,可以推出另外一个。

若光线为正入射,,则上式变为

                       (2.1.2)

其中为第级谱线的衍射角。

【讨论】三个量中只需要知道两者就可以通过上式求出另外一个。比(2.1.1)式更简洁,免去了测量带来的麻烦和不准确,代价是需要精心调整入射光线使之正入射。

Ⅱ用最小偏向角法测定光波波长

如右图。入射光线与级衍射光线位于光栅法线同侧,(2.1.1)中应取加号。若记,则由三角形公式得

                        (2.2.1)

     可见,当时,最小,记,则(2.2.1)变为

                (2.2.2)

     【讨论】和(2.1.2)相比,这个公式将对的测量变成了对最小偏向角的测量。之所以做这种变换,是因为人眼对大小的变化感知更明显,因此测量可以做的更精确,避免了测量时由于谱线不够窄、肉眼识别误差以及入射光不严格垂直光栅平面等等造成的不准确。


【实验仪器】

Ⅰ分光计

为实现平行光入射并测准光线方位角,分光计的调整应满足如下基本操作:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。

Ⅱ 光栅

在实验中应使光栅刻线与分光计主轴平行。

因为如果光栅刻线不平行于分光计主轴,衍射光谱将会是倾斜的并且倾斜方向垂直于光栅刻痕的方向(而非分光计水平方向),但谱线本身仍平行于狭缝(因为保持狭缝的形状)。由于衍射谱线的倾斜,而分光计刻度线只能水平移动,难以测量其真实间距(需要将测得间距除以倾斜角的余弦才能得到真实间距,而这显然是难以做到的)。

通过调整小平台,可使光栅刻痕平行于分光计主轴。为调节方便,放置光栅时应使光栅平面垂直于小平台的两个调水平螺钉的连线。

Ⅲ水银灯

水银灯谱线的波长

注意事项

? 水银灯在使用中必须与扼流圈串接,不能直接接220V电源,否则要烧毁。

? 水银灯在使用过程中不要频繁启闭,否则会降低其寿命。

? 水银灯的紫外线很强,不可直视。

【实验任务】

共有四个主要内容。

1:调节分光计和光栅以满足要求

2:在时测定光栅常数和光波波长

3:在时测定水银灯光谱中波长较短的黄线波长

4:用最小偏向角法测定波长较长的黄线波长

着重解释后三个任务:

1:在时测定光栅常数和光波波长

Ø  调整光栅平面与平行光管光轴垂直

将望远镜对准零级谱线的中心,读出入射光方位。再测出左右两侧同一级的衍射谱线的方位角,分别计算其与入射光的夹角,若两者相差不超过,则近似认为已经调整垂直。

【讨论】首先粗调,这样才能节省时间,更重要的是,只有保证光栅平面与平行光管光轴几乎垂直的情况下,才可能在法线两侧都看到谱线;其次,当发现两者相差超过时,应当判断零级谱线更接近哪一侧的谱线,若接近左侧谱线,则光栅应顺时针旋转(从分光计上方看),反之应该逆时针旋转,再次测量。

Ø  推导的不确定度

Ø  的不确定度:

重写(2.1.2)式如下

                       (4.1.1)

由于本实验在测量时的为给定值,为常数,所以只需看的关系。

                 (4.1.2)

                (4.1.3)

      (4.1.4)

可见,在不变的情况下,选择大一些的谱线比较好,但是级次大的谱线能量较小,因而可能难以分辨,所以实际操作时要灵活操作。

Ø  的不确定度:

                       (4.1.5)

                (4.1.6)

测量时的是前一步实验得出来的,所以不能看做定值,需要考虑其不确定度的影响。

,               (4.1.7)

                (4.1.8)

所以,越大,的不确定度越小。

综合的情况,在可能看清的情况下,级次越大,测得的值误差越小。

Ø  测定

为了提高精度,一般是测量零级左右两侧各对应级次的衍射线的夹角2。

Ø 

已知,由测出的求出。再用测定水银灯的两条黄线和一条最亮的紫线波长,计算的不确定度。

2:在时测定波长较短的黄线波长

Ø  使光栅平面发现与平行光管光轴夹角为,记下入射光方位和光栅平面的法线方位。

Ø  测定波长较短的黄线的衍射角。与光线垂直入射时的情况不同,在斜入射的情况下,对于同一波长的光,其分居入射光两侧且属同一级次的谱线的衍射角并不相等。实际上,若设左右两侧夹角分别为,有

   (4.2.1)

因此,其只能分别测出。

Ø  根据上述读数,由(4.2.1)容易判断衍射光线和入射光线位居光栅平面法线同侧还是异侧。

Ø  确定的符号并用已求出的计算出水银灯光谱中波长较短的黄线的波长

3:用最小偏向角法测定波长较长的黄线的波长

改变入射角,则谱线将随之移动,找到黄光某一条谱线与零级谱线的偏离为最小的方位后,就可由该谱线的方位及零级谱线的方位(即入射光的方位)测出最小偏向角

实际测量时,为提高测量精度,可测2。方法是:先找到黄光中与入射线位居光栅平面法线同侧的某一条谱线,改变入射角,当其处于最小偏向角位置时,记下该谱线的方位;然后,以平行光管的光轴为对称轴,通过转动小平台,使光栅平面的法线转到对称位置上,在入射线的另一侧,对应级次的衍射线亦同时处于最小偏向角位置,记下其方位,前后两种情况下衍射线的夹角即为2

利用已测出的和式(2.2.2)求出水银灯光谱中波长较长的黄线的波长,并与实验任务2中得到的实验结果相比较。

【数据处理】

1i=0时,测定光栅常数和光波波长

光栅编号:   18    ;           1' 

入射光方位 268 o04'      88 o06' 

1)    先由绿光的λ求d;

                                 ——————①

=29 o20',λ=546.1nm,m=3代入,可以求得

d=3.344μm

由预习中的推导可知:

 

∴Δd=3.344*(10^-6)*2π/(360*60*0.562)=1.73nm

∴d=(3.344±0.002) μm      ——————②

2)    再由d求其它光的λ;

对黄1:将=20 o13',m=2,d=3.344μm代入①式,可以求得

    λ=577.1nm

      由预习中的推导可知:

        ——————③

代入数据可知:Δλ=0.422nm

∴λ=(577.1±0.4)nm        ——————④

对黄2:将=20 o10',m=2,d=3.344μm代入①式,可以求得

    λ=576.4nm

      由预习中的推导可知:

        ——————⑤

代入数据可知:Δλ=0.421nm

∴λ=(576.4±0.4)nm        ——————⑥

对紫光:

=23 o025',m=3,d=3.344μm代入①式,可以求得

    λ=435.6nm

      由预习中的推导可知:

        ——————⑦

代入数据可知:Δλ=0.32nm

∴λ=(435.6±0.3)nm        ——————⑧

2:i=15时,测量波长较短的黄线的波长

光栅编号: 18 ;光栅平面法线方位  268 o04  88 o06 

由课件中给出的公式:

可以求得,在同侧时:λ=569.7nm

           在异侧时:λ=580.9nm

3:最小偏向角法

由课件中给出的公式:

    

可以求得:

       λ=679.8nm        可以看出误差还是比较大的

【思考题】

1)d时,实验要保证什么条件?如何实现?

答 要求条件1:分光计望远镜适合观察平行光,平行光管发出平行光,并且二者光轴均垂直于分光计主轴。

实现:先用自准法调节望远镜,再用调节好的望远镜观察平行光管发出的平行光,调节缝宽和平行光管的高度,使得狭缝的象最清晰而且正好被十字叉丝的中间一根横线等分,分光计就调节好了。

要求条件2:光栅平面与平行光管的光轴垂直。

实现:如本文4.1所述,首先粗调,然后,当发现两者相差超过时,应当判断零级谱线更接近哪一侧的谱线,若接近左侧谱线,则光栅应顺时针旋转(从分光计上方看),反之应该逆时针旋转,再次测量。

2)分析的关系

答 如4.1小节(P4)所述。

3)在实验中,如何保证入射角

答 借助光栅平面也具有反射性进行调整。在垂直入射且已知垂直入射方向方位角的基础上,移动望远镜使得游标的示数比垂直入射时的示数偏移,此时再转动小平台,使得光栅平面反射回来的十字叉丝与望远镜叉丝在水平方向上重合,即可保证入射角为

4)利用光栅分光和棱镜分光,产生的光谱有和区别?

光栅衍射光谱

Ø  利用不同波长的光具有不同的衍射角进行分光

Ø  得到的谱线中有零级谱线,其余谱线在零级谱线两边按照波长从小到大依次排开

Ø  同一波长的光,可得到不同级次的谱线

棱镜衍射光谱

Ø  利用了频率不同的光在相同介质中的折射率不同进行分光

Ø  没有零级谱线,或者说没有级次之分

Ø  得到的谱线中每种颜色的谱线只有一条,且按光的波长的顺序依次排列。

【实验小结】

这回的实验总体来说还是很顺利的,我应该是第一个做完基本实验,第一个做完附加实验的。但是这回的附加实验做得比较急躁,而且对于“最小”的判断用肉眼的话也比较粗糙,以后还要继续加油^-^

更多相关推荐:
X射线衍射实验报告

X射线衍射实验报告姓名XXX专业有机化学学号3120xx303004时间20xx1205一实验目的1了解X射线衍射仪的结构2熟悉X射线衍射仪的工作原理3掌握X射线衍射仪的基本操作二实验原理X射线是原子内层电子在...

X射线实验报告

X射线衍射物相分析天文与空间科学学院081211004陈升一实验目的1学习了解晶体的结构性质了解了X射线衍射分析物相的原理2利用德国的D8X射线衍射仪获得了衍射图谱用EVA软件处理数据分析样品中所含的物质二实验...

X射线衍射实验报告

华东理工大学实验报告实验名称X射线衍射实验姓名陈维学号030100890专业化学工程班级工程105班X射线衍射实验报告实验目的1学习了解X射线衍射仪的结构和工作原理2掌握X射线衍射物相定性分析的方法和步骤3给定...

X射线衍射实验报告

X射线衍射实验报告一实验目的1掌握X射线衍射仪的工作原理操作方法2掌握X射线衍射实验的样品制备方法3掌握运用X射线衍射分析软件进行物相分析的原理和实验方法4熟悉PDF卡片的查找方法和物相检索方法二实验仪器X射线...

X射线衍射晶体结构分析实验报告

近代物理实验报告X射线衍射晶体结构分析学院数理与信息工程学院班级物理091姓名陈孝章学号09180120时间20xx年11月06日X射线衍射晶体结构分析摘要本实验通过采用与X射线波长数量级接近的物质即晶体这个天...

晶体X射线衍射实验报告

晶体X射线衍射实验报告,内容附图。

X射线衍射晶体结构分析实验报告

近代物理实验报告X射线衍射晶体结构分析学院数班级姓名学号时间20xx年10月12日X射线衍射晶体结构分析摘要本实验通过采用与X射线波长数量级接近的物质即晶体这个天然光栅来作狭缝从而研究X射线衍射由布拉格公式以及...

晶体X射线衍射实验报告

晶体X射线衍射实验报告,内容附图。

X射线衍射实验报告

X射线衍射实验报告专业物理化学姓名冯小芳学号313070304007指导老师廖运文时间20xx12241实验目的1结合X射线衍射仪实物了解X射线衍射仪的原理结构2选用合适的样品运用X射线衍射仪进行样品测试获得样...

X射线衍射实验报告

实验报告X射线衍射一实验原理X射线衍射分析技术是一种十分有效的材料分析方法在众多领域的研究和生产中被广泛应用X射线衍射分析法是研究物质的物相和晶体结构的主要方法当某物质晶体或非晶体进行衍射分析时该物质被X射线照...

晶体X射线衍射实验报告

晶体X射线衍射实验报告,内容附图。

晶体X射线衍射实验报告

晶体X射线衍射实验报告,内容附图。

x射线衍射实验报告(40篇)