光磁共振实验预习报告

时间:2024.3.31

光磁共振实验预习报告

摘要:

本实验在加深对原子超精细结构的理解的基础上,掌握观测光抽运效应的条件和方法,观察和测量共振信号的扫场法,超精细结构的理解,掌握以光抽运为基础的光检测磁共振方法,学会使用DH807A型光磁共振实验装置来观察光抽运信号,进而测定铷原子两个同位素Rb87或Rb85的超精细结构塞曼子能级的朗德g因子的测量。

关键字:

卡斯特勒、光抽运、塞曼分裂、铷原子、朗德g因子

引言:

光磁共振由法国物理学家Kastler在1950年首创的。它的基本思想是利用光的抽运效应造成原子基态Zeeman能级上粒子布居的偏极化,即偏离热平衡时所遵循的Boltzmann分布。然后利用磁共振效应对这种偏极化布局进行扰动,使光的抽运速率变化。通过对抽运速率变化的探测来研究原子塞曼能级超精细结构。

    把光频跃迁和射频磁共振跃迁结合起来 ,由于气体原子塞曼子能级间的磁共振信号非常弱,用磁共振的方法难于观察。本实验中应用了光探测的方法,既保持了磁共振分辨率高的优点,同时将探测灵敏度提高了几个以至十几个数量级。此方法可用于基础物理研究,在量子频标、精确测定磁场等问题上也都有很大的实际应用价值。由于光磁共振的应用价值,Kastler获得了1966年的诺贝尔奖。

正文:

光泵磁共振利用光抽运效应来研究电子超精细结构塞曼子能级间的磁共振。光泵磁共振采用光探测方法,探测原子对光量子的吸收,而不是像一般的磁共振直接探测原子对射频量子的吸收,因而大大提高了探测灵敏度。光泵磁共振进一步加深人们对原子磁矩、g因子、能级结构、能级寿命、塞曼分裂、原子间相互作用等的认识,是研究原子结构的强有力的工具,而光抽运技术在激光、原子频标和弱磁场测量等方面也有重要应用。

本实验的目的是了解光抽运的原理,掌握光泵磁共振实验技术,并测量气体铷(Rb)原子的g因子和地磁场。

一、光磁共振的发展

    1966年诺贝尔物理学奖授予法国巴黎大学,高等师范学校的卡斯特勒(Alfred Kastler,1902—1984),以表彰他发现和发展了研究原子中赫兹共振的光学方法。   

    二十世纪上半叶,光谱学的研究提供了大量有关原子分子结构的实验数据。由于雷达技术的发展,在四十年代末兴起了射频和微波波谱学。这些频段的电磁波,其频率要比可见光小上千倍,所产生的光子能量比光频光子的能量小得多,因此可以直接测量到原子的精细能级和超精细塞曼子能级之间的共振跃迁。人们把这个频段的电磁波称为赫兹波,把微波或射频共振称为赫兹共振。光磁共振实际上是使原子、分子的光学频率的共振与射频或微波频率的磁共振同时发生的一种双共振现象。这种方法是卡斯特勒在巴黎提出并实现的。由于这种方法最早实现了粒子数反转,成了发明激光器的先导,所以卡斯特勒被人们誉为“激光之父”。

    卡斯特勒1902年5月3日出生于法国阿尔萨斯省的盖布维莱尔,1920年进法国高等师范学校学习。布洛赫教授教他量子物理学,对他的发展有深刻的影响。布洛赫还让他阅读索末菲的名著《原子结构和光谱线》。在读这本书的过程中,卡斯特勒对电磁辐射和原子相互作用中的角动量守恒特别感兴趣。他注意到用角动量守恒可以说明塞曼效应中磁量子数的选择定则和偏振规律,并深刻领会到角动量守恒定律可能是自然界的一条普遍法则,但是,这个结论必须是在广泛验证之后,而不能想当然。从此卡斯特勒铭记在光谱学研究中要注意应用角动量守恒定律。   

    1926年卡斯特勒从高等师范学校毕业,随后到外地当了五年中学教师。1931年波尔多大学的道利教授请他当实验室助手,于是他就成了一名实验研究人员。在实验中他主要从事荧光和拉曼光谱研究,在研究中系统地检验了光散射和荧光过程中角动量守恒定律的普适性。1936年他以《汞原子逐步受激》为题,通过了博士论文的答辩。1941年回到高等师范学校,负责实验室工作。   

    1947年兰姆和雷瑟福用波谱学方法测定氢原子精细结构的兰姆位移,1949年美国的比特(F.Bitter)指出,可把射频波谱技术扩展到原子激发态的研究中。在这以前,磁共振实验一般是在凝聚态中粒子处于热平衡的状态下进行的,激发态的磁共振则从未有人做过。卡斯特勒认为这是一项很好的建议,但关键在于如何实现。他找到了一个有效方法,就是利用偏振光对恒定磁场中的气态原子或分子作用,有可能实现激发态塞曼子能级产生选择跃迁。卡斯特勒一方面派自己的学生布洛塞尔(J.Brossel)去美国向比特学习;另一方面加紧在实验室里开展独立研究。1950年布洛塞尔和比特按照卡斯特勒的思想做成了第一个光磁共振实验,不过还不能探测原子的定向。   

这一年卡斯特勒又提出,用圆偏振光激发原子,使原子的角动量发生变化,就可以使原子集中在基态的某一能级上,也就是改变原子在基态某一子能级的集居数。他把这种方法称为光抽运。   

不久,布洛塞尔从美国回来,师生两人合作研究光磁共振。他们用钠的D1谱线激发处于恒定磁场中的钠蒸气原子,探测其荧光辐射强度。卡斯特勒认识到,实验的成功与否取决于弛豫过程的速度。若弛豫过程太快,则只能观测到微弱的信号。于是改为用充有氢气的钠样品泡做实验。经过反复的试验,终于在1955年获得了强度足够的光抽运效应。之所以采用氢气,是因为氢气是几乎没有分子磁性的气体,可以起到缓冲的作用,使钠原子漂移到泡壁的速度大大减慢。接着他们又用射频场实现了超精细塞曼能级之间的跃迁,把光抽运和光磁双共振法结合在一起。   

    光磁共振方法很快就发展成为研究原子物理的一种重要的实验方法。它大大地丰富了我们对原子能级精细结构和超精细结构、能级寿命、塞曼分裂和斯塔克分裂、原子磁矩和g因子、原子与原子间以及原子与其它物质间相互作用的了解。   

利用光磁共振原理可以制成测量微弱磁场的磁强计,也可以制成高稳定度的原子频标。   

卡斯特勒的成就与法国的科学传统是分不开的。他扎根于法国巴黎的高等师范学校,但并不闭关自守,而是力促国际交流。他很注意发挥科研集体的智慧和青年的力量,建立起团结协作的风气。例如,为了研究光抽运,在布洛塞尔1951年回国后,他们立即组织了一个研究组,吸收巴黎高等师范的学生参加,共同研究一些关键问题。这个组的年轻人写了十几篇论文,在光磁共振方法的研究中作出了各自的贡献。他很注意实验研究与理论研究的结合,也很注意基础研究与应用研究的结合。在发现光抽运的过程中,他先在理论上充分探讨,后在实验上付诸实现;以后他们对缓冲气体和弛豫过程、多量子跃迁以及光频移效应的研究,始终坚持实验与理论相结合的方针。从1958年起,卡斯特勒还兼任法国科学研究中心原子钟实验室主任,直到1972年退休。

二、实验装置

DH807A光磁共振实验装置是根据高等院近代物理实验教学大纲的要求而研制的一套实验装置,可使学生了解到光学,电磁学及无线电电子学等方面的知识;能煊性或定量地了解到原子内部的很多信息。它是典型的波谱教学实验之一。光磁共振实验中使用了光泵及光电探测技术,其灵敏度比一般磁共振沉没技术高几个数量级。这一方法在基础物理学的研究,磁场的精确测量以及原子频奈技术等方面有广泛应用。

本实验总体系统由光泵磁共振实验仪主体单元、辅助源、射频信号发生器及示波器四部分组成。

三、实验设计

1.仪器的调节

在装置加电之前,先进行主体单元光路的机械调整。再用指南针确定地磁场方向,主体装置的光轴要与地磁场水平方向相平行。用指南针确定水平场线圈、竖直场线圈及扫场线圈产生的各磁场方向与地磁场水平和垂直方向的关系,并作详细记录。

将“垂直场”、“水平场”、“扫场幅度”旋钮调至最小,按下辅助源的池温开关,接通电源开关。开射频信号发生器、示波器电源。电源接通约三十分钟后,铷光谱灯点燃并发出紫红色光,池温灯亮,吸收池正常工作,实验装置进入工作状态。

主体装置的光学元件应调成等高共轴。调整准直透镜以得到较好的平行光束,通过铷样品泡并射到聚光透镜上。铷灯因不是点光源,不能得到一个完全平行的光束,但仔细调节,在通过聚光透镜即可使铷灯到光电池上的总光量为最大,便可得到良好的信号。


调节偏振片及1/4波片,使1/4波片的光轴与偏振光偏振方向的夹角为π/4以获得圆偏振光。

2.光抽运信号的观察

扫场方式选择“方波”,调大扫场幅度。再将指南针置于吸收池上边,设置扫场方向与地磁场方向相反,然后拿开指南针。预置 垂直场电流为0.07A左右。用来抵消地磁场分量。然后旋转偏振片的角度、调节扫场幅度及垂直场大小和方向,使光抽运信号幅度最大。再仔细调节光路聚焦,使光抽运信号幅度最大。

铷样品泡开始加上方波扫场的一瞬间,基态中各塞曼子能级上的粒子数接近热平衡,即各子能级上的粒子数大致相等。 因此这一瞬间有总粒子数7/8的粒子在吸收光,对光的吸收最强。随着粒子逐渐被抽运到MF=+2子能级上,能吸收σ+的光粒子数减少,透过铷样品泡的光逐渐增强。当抽运到MF=+2子能级上的粒子数达到饱和时,透过铷样品泡的光达到最大且不再变化。当磁场扫过零(指水平方向的总磁场为零)然后反向时,各塞曼子能级跟随着发生简并随即再分裂。能级简并时铷的子分布由于碰撞等导致自旋方向混杂而失去了偏极化,所以重新分裂后各塞曼子能级上的粒子数又近似相等,对光的吸收又达到最大值,这样就观察到了光抽运信号。

3.磁共振信号的观察

扫场方式选择“三角波”,将水平场电流预置为0.7A左右,并使水平磁场方向与地磁场水平分量和扫场方向相同(由指南针判断)。垂直场的大小和偏振镜的角度保持前面的状态不变。调节射频信号发生器,频率可以观察到共振信号如图2,对应波形,可读出频率V1及对应的水平场电流I。再按动水平场方向开关,使水平场方向与地磁场水平分量和扫场方向相反。同样可以得到V2。这样水平磁场排除了地磁场水平分量及扫场直流分量的影响。

用三角波扫场法观察磁共振信号时,当磁场B0值与射频频率V0满足共振条件式时,铷原子分布的偏极化被破坏,产生新的光抽运。因此,对于确定的频率,改变磁场值可以获得Rb87或Rb85的磁共振。可得到磁共振信号的图像。对于确定的磁场值(例如三角波中的某一场值),改变频率同样可以获得Rb87或Rb85的磁共振。实验中要求在选择适当频率(600KHz)及场强的条件下,观察铷原子两种同位素的共振信号并详细记录所有参量。

4.测量g因子

   为了研究原子的超精细结构,测准g因子时很有用的。我们用的亥姆霍兹线圈轴线中心处的磁感强度为式中N为线圈匝数,r为线圈有效半径(米),I为直流电流(安)。B为磁感强度(特斯拉),普朗克常数h=6.626×10-34焦耳秒,玻尔磁子uB=9.274×10-24焦耳/特斯拉。利用两式可以测出g因子值。要注意,引起塞曼能级分裂的磁场是水平方向的总磁场(地磁场的竖上分量已抵消),可视为B=B水平+ B地+ B扫,而B地、B扫的直流部分和可能还有的其它杂散磁场,所有这些都难以测定。这样给直接测量g因子带来困难,但只要参考霍尔效应实验中用过的换向方法,就不难解决了。测量g因子实验的步骤自己拟定。

有实验测量的结果计算出 Rb87或Rb85的g因子值。计算理论值并与测量值进行比较。

5.注意事项

(1)实验时必须先预热,待池温、灯温指示灯点亮后,方可进行实验。

(2)在观察磁共振信号,测量g因子和地磁场时应该尽量减小扫场的大小。

参考文献:

①胡训美 中国科技信息20##年第18期 《光泵磁共振测地磁场垂直分量的改进方法》;

②李潮锐 中山大学物理系 “中国知网”第24卷第7期 20##年7月 《光磁共振实验的数据拟合方法》;

③南京理工大学应用物理系 近代物理实验ppt;

④金泽渊 王亚妮  湖南理工学院学报(自然科学版)第4期《光磁共振中光抽运的原理及对共振现象的影响》。


第二篇:光磁共振 预习报告


光磁共振 预习报告

摘要:

光磁共振(光泵磁共振)利用光抽运效应来研究原子超精细结构塞曼子能级间的磁共振。研究的对象是碱金属原子铷。本实验在加深对原子超精细结构的理解的基础上,掌握以光抽运为基础的光检验测磁共振的方法,学会使用 DH807A 光程实验装置来观察光抽运信号,进而测定铷原子 两个同位素的超精细结构塞曼子能级的朗德 g 因子的测量。气体原子塞曼子能级间的磁共振信号非常弱,用磁共振的方法难于观察。本实验应用光抽运、光探测的方法,既保持了磁共振分辨率高的优点。

关键词:

光抽送,塞曼能级分裂,偏极化,光磁共振

引言:

光磁共振由法国物理学家 Kastler 在 1950 年首创的.它的基本思想是利用光的抽运效应造 成原子基态 Zeeman 能级上粒子布居的偏极化,即偏离热平衡时所遵循的 Boltzmann 分布. 然后利用磁共振效应对这种偏极化布局进行扰动, 使光的抽运速率变化. 通过对抽运速率变化的探测来研究原子塞曼能级超精细结构. 把光频跃迁和射频磁共振跃迁结合起来 ,由于气体原子塞曼子能级间的磁共振信号非 常弱,用磁共振的方法难于观察.本实验中应用了光探测的方法,既保持了磁共振分辨率高 的优点,同时将探测灵敏度提高了几个以至十几个数量级.此方法可用于基础物理研究,在 量子频标,精确测定磁场等问题上也都有很大的实际应用价值.由于光磁共振的应用价值, Kastler 获得了 1966 年的诺贝尔奖. 通过实验我们可以了解光泵磁共振的实验原理,加深对铷原子(Rb)超精细结构、光抽运及磁共振的理解。测量铷(Rb)原子的gF因子及地磁场的大小。

正文:

1、铷原子基态和最低激发态的能级:

铷(Z=37)是一价金属元素,天然铷有两种稳定的同位素: 85Rb和87Rb,二者的比例接近2比1。在LS耦合下,铷原子的最低激发态仅由价电子的激发所形成,其轨道量子数L=1,自旋量子数S=1/2,电子的总角动量J=L+SL-S,即J=3/21/2,形成双重态:52P1/252P3/2,这两个状态的能量不相等,产生精细分裂。因此,从5P到5S的跃迁产生双线,分别称为D1和D2线,它们的波长分别是794.8nm和780.0nm

原子的价电子在LS耦合中,其总角动量与电子总磁矩的关系为:

                                         (                      

是郎德因子,J是电子总角动量量子数,L是电子的轨道量子数,S是电子自旋量子数。

 核具有自旋和磁矩。核磁矩与上述电子总磁矩之间相互作用造成能级的附加分裂。这附加分裂称为超精细结构。铷的两种同位素的自旋量子数I是不同的。核自旋角动量与电子总角动量耦合成原子的总角动量, 有。J—I耦合形成超精细结构能级,由F量子数标记,F=I+J、…,|I-J|。的I=3/2,它的基态J=1/2,具有F=2和F=1两个状态。的I=5/2,它的基态J=1/2,具有F=3和F=2两个状态。

          整个原子的总角动量与总磁矩之间的关系可写为

                                         

其中的因子可按类似于求因子的方法算出。 考虑到核磁矩比电子磁矩小约3个数量级,实际上为方向上的投影,从而得

                          

是对应于关系的郎德因子。以上所述都是没有外磁场条件下的情况。

 如果处在外磁场中,由于总磁矩与磁场的相互作用,超精细结构中的各能级进一步发生塞曼分裂形成塞曼子能级。用磁量子数来表示,则=F, F-1,…,-F, 即分裂成2F+1个子能级,其间距相等。的相互作用能量为:

      

式中为玻耳磁子。各相邻塞曼子能级的能量差为:

                                      

2. 驰豫过程

      在热平衡条件下,任意两个能级上的粒子数之比都服从玻耳兹曼分布,式中是两个能级之差,分别是两个能级上的原子数目,k是玻耳兹曼常数。由于能量差极小,近似地可以认为各子能级上的粒子数是相等的。光抽运增大了粒子布居数的差别,使系统处于非热平衡分布状态。

     系统由非热平衡分布状态趋向于平衡分布状态的过程称为驰豫过程。促使系统趋向平衡的机制是原子之间以及原子与其它物质之间的相互作用。在实验过程中要保持原子分布有较大的偏极化程度,就要尽量减少返回玻耳兹曼分布的趋势。但铷原子与容器壁的碰撞以及铷原子之间的碰撞都导致铷原子恢复到热平衡分布,失去光抽运所造成的碰撞(偏极化)。铷原子与磁性很弱的原子碰撞,对铷原子状态的扰动极小,不影响原子分布的偏极化。因此在铷样品泡中冲入10托的氮气,它的密度比铷蒸气原子的密度大6个数量级,这样可减少铷原子与容器以及与其它铷原子的碰撞机会,从而保持铷原子分布的高度偏极化。此外,处于的原子须与缓冲气体分子碰撞多次才能发生能量转移,由于所发生的过程主要是无辐射跃迁,所以返回到基态中八个塞曼子能级的几率均等,因此缓冲气体分子还有利于粒子更快的被抽运到子能级的过程。

3 塞曼子能级之间的磁共振

因光抽运而使原子分布偏极化达到饱和以后,铷蒸气不再吸收光,从而使透过铷样品泡的光增强。这时,在垂直于产生塞曼分裂的磁场的方向加一频率为的射频磁场,当之间满足磁共振条件时,在塞曼子能级之间产生感应跃迁,称为磁共振。

                                     

跃迁遵守选择定则△F=0, 原子将从的子能级向下跃迁到各子能级上,即大量原子由的能级跃迁,以后又跃迁到等各子能级上。这样,磁共振破坏了原子分布的偏极化,而同时,原子又继续吸收入射的光而进行新的抽运,透过样品泡的光就变弱了。随着抽运过程的进行,粒子又从各能级被抽运到的子能级上。随着粒子数得偏极化,透射再次变强。光抽运与感应磁共振跃迁达到一个动态平衡。光跃迁速率比磁共振跃迁速度大几个数量级,因此光抽运与磁共振的过程就可以连续地进行下去。也有类似的情况,只是光将抽运到基态的子能级上,在磁共振时又跳回到等能级上。

射频(场)频率和外磁场(产生塞曼分裂的)两者可以固定一个,改变另一个以满足磁共振条件。改变频率称为扫频法(磁场固定),改变磁场称为扫场法(频率固定)。本实验装置是采用扫场法。

4 光探测

投射到铷样品泡上的光,一方面起光抽运作用,另一方面,透射光的强弱变化反映样品物质的光抽运过程和磁共振过程的信息,用光照射铷样品,并探测透过样品泡的光强,就实现了光抽运—磁共振—光探测。在探测过程中射频(Hz)光子的信息转换成了频率高的光频(Hz)光子的信息,这就使信号功率提高了8个数量级。

样品中都存在,都能被光抽运而产生磁共振。为了分辨是还是参与磁共振,可以根据它们的与偏极化有关能态的因子的不同加以区分。对于,由基态中F=3态的因子可知MHz/Gs. 对于,由基态中F=2态的因子可知Vo/Bo=0.700MHz/Gs.

扫场的斜率与抽运信号的关系——铷泡对光的吸收强度仅在磁场过零点附近很灵敏的相应的磁场变化,故当磁场过零处的斜率很大时磁场迅速变向,系统在短时间内处于非平衡状态,伴随着对左旋偏振光的强烈吸收,出现较尖锐较强的吸收峰;而当磁场斜率过零很缓,相当于磁场正以很缓的速度在零点附近变化,此时出现的吸收峰强度较小,出现吸收退化为平缓的下降。

三、实验仪器

实验采用的是DH807A 光磁共振仪器,包括主体单元和辅助源两部分,其主体元简图见图1 。铷光灯发出的光经干涉滤光片后得D1 光,再经透镜L1汇聚成平行光照到偏振片上,其平行光为平面偏振光,经1/ 4 波片得圆偏振光,从而使D1 光作用于样品,用透镜L2 把穿过样品的光汇聚到光电池器件上,经示波器显示光强的变化。3 组线圈分别用于产生水平场、垂直场射频场。辅助设备主要用于记录水平场和垂直场的大小,以及控制主体单元中恒温槽和铷光灯的温度。

更多相关推荐:
光磁共振实验报告

近代物理实验报告光磁共振实验学院班级姓名学号时间20xx年3月22日光磁共振实验实验报告摘要本实验以光抽运的方法来研究气态原子基态及激发态的精细结构和超精细结构塞曼能级间的磁共振在加深对原子超精细结构的理解的基...

光泵磁共振 实验报告

光泵磁共振1近代物理实验报告指导教师得分实验时间20xx年05月19日第12周周三第58节实验者班级材料0705学号20xx67025姓名童凌炜同组者班级学号姓名实验地点综合楼407实验条件室内温度相对湿度室内...

光磁共振实验报告

近代物理实题目学院数理与信息工程学院班级学号姓名指导教师验浙江师范大学实验报告实验名称光磁共振班级物理071姓名骆宇哲学号07180132同组人实验日期100415室温气温光磁共振摘要光磁共振光泵磁共振利用光抽...

实验报告_光磁共振(样例)

实验一实验目的1加深原子超精细结构的理解了解光泵磁共振的基本原理2了解光抽运的物理过程掌握以光抽运为基础的光检测磁共振方法3掌握消除地磁场影响测定气态铷原子g因子的方法二实验仪器光磁共振实验系统型号DH807A...

近代物理实验报告—铷原子的光泵磁共振

近代物理实验报告铷原子的光泵磁共振摘要本实验利用DH807型光泵磁共振的实验装置研究了铷原子的光泵磁共振现象通过示波器观察了光抽运信号和光泵磁共振信号根据实验所得的数值分别算出了87Rb和85Rb的gF因子的大...

光泵磁共振实验报告1

广东第二师范学院学生实验报告1234

光磁共振实验报告

光磁共振实验报告摘要:本实验以光抽运的方法来研究气态原子基态及激发态的精细结构和超精细结构塞曼能级间的磁共振。在加深对原子超精细结构的理解的基础上,使用DH807A型光磁共振实验装置观察光抽运信号,以此来测定铷…

光泵磁共振实验报告

10物理小彬连摘要光泵磁共振实验在实现观测气体中原子超精细结构塞曼子能级跃迁的磁共振信号上有突破使用探测磁共振信号的光探测方法大大提高了灵敏度此实验中利用光抽运现象将微小的塞曼能级跃迁信号转换为能量数千倍于它的...

磁共振技术实验报告

磁共振技术实验报告摘要磁共振指磁矩不为零的物质处于恒定磁场中由于射频或微波电磁场引起磁能级之间的共振跃迁现象本实验主要涉及到磁共振技术中的三个实验分别为顺磁共振核磁共振光磁共振实验讨论影响实验信号的因素并分析三...

铷原子的光泵磁共振实验报告

铷原子的光泵磁共振实验报告摘要本实验利用光泵磁共振技术实现了对Rb原子能级结构的探测用光探测的方法在示波器上观察并记录核磁共振时光抽运信号从而计算出了Rb和Rb的朗德g因子并对地磁场进行了测量关键词光泵磁共振R...

近代物理实验_光磁共振实验深圳大学

深圳大学实验报告课程名称实验名称学院组号实验地点实验报告提交时间

光磁共振实验原理

光磁共振实验原理一实验目的1掌握光抽运磁共振的原理和实验方法2研究原子超精细结构塞曼子能级间的磁共振3测定铷同位素87Rb和85Rb的gF因子4测定地磁场二实验原理光抽运或称光泵技术巧妙地将光抽运磁共振和光探测...

光磁共振实验报告(39篇)