动力与电气工程学科发展研究报告20xx~20xx

时间:2024.4.14

动力与电气工程学科发展研究报告2009~2010(简本)

20xx年04月03日

动力与电气工程学科是研究和解决电能的生产、传输、分配与控制的科学机理、关键技术、工程方法和技术途径的学科。进入21世纪以来,随着我国经济的快速发展导致对能源需求的进一步增长、世界能源正在向可持续的能源生产与消费的方向发展以及地球生态环境形势的日益严峻,动力与电气学科的发展面临前所未有的机遇和挑战。一、本学科国内外发展现状

(一)清洁高效燃煤发电及先进环保技术

研究和发展清洁高效燃煤发电及先进环保技术,对于我国可持续发展和应对全球气候变化具有十分重大的意义。我国掌握了600 MW超临界机组的设计制造技术,已有制造1000 MW超超临界发电机组的业绩和能力并有初步的设计能力;已掌握300 MW循环流化床锅炉的设计制造技术,且已接近世界先进水平;能设计制造600 MW等级的热电联产和空冷机组;正在建设具有自主知识产权的气化工艺和自主设计的250 MW IGCC发电机组;研究了多种富氧燃烧技术并在小型装置上进行了实验;在大规模利用生物质发电方面进行了有益的探索(如在大机组上生物质和煤混烧);掌握了电除尘、布袋除尘,以及电袋复合除尘技术设备设计制造能力,并接近国际先进水平;掌握了石灰石—石膏湿法、循环流化床半干法、氨法、海水法以及活性焦(炭)法等脱硫技术的设计制造能力,循环流化床半干法烟气脱硫技术已达到国际先进水平;掌握了SCR脱硝催化剂设计制造技术;利多种污染物联合控制技术进行了大量工程应用;在烟气中CO2的捕集、合成共聚物等再利用技术方面也取得了突破,并建立了示范工程。

(二)智能电网的概念、功能构建

研究智能电网的概念、功能,构建符合我国国情的智能电网,对于指导和规划我国电网的未来发展具有重要的意义。智能电网可定义为:将先进的传感测量技术、先进的信息技术、先进的通信技术、先进的分析决策技术和自动控制技术与输、配电基础设施高度集成而形成的新型电网。主要具有自愈、兼容、经济、集成、互动、优化等特征。

其技术主要发展方向包括:先进的相量测量和广域测量系统;先进的动态、可视化电网调度自动化与高级配电运行自动化;用于输电、配电网的智能化网络元件和设备及智能化变电站;分布式电源和微电网运行;储能技术;基于状态和可靠性水平的设备维护检修;信息和通信技术(信息集成和共享)等。

(三)现代输变电新技术

深入研究现代输变电新技术,对于提高电力系统运行稳定可靠性、促进社会发展和经济建设具有积极的作用。20xx年1月6日,1000 kV晋东南—南阳—荆门特高压交流试验示范工程顺利完成168小时试运行,投入商业运行,这是目前世界上在运行电压等级最高的输变电工程。20xx年底,±800 kV云南小湾—广州特高压直流输电工程成功送电;向家坝—上海±800 kV特高压直流示范工程全线带电成功。这是世界上输送容量最大、送电距离最远、技术水平最先进、电压等级最高的直流输电工程,标志着我国直流输电技术、装备制造以及电网建设管理进入了世界领先行列。

电力电子装置在实际工程中得到应用。我国已在6座500kV变电站成功投运容量为105~170 Mvar的SVC装置。20xx年,我国第一个国产化可控串补工程(TCSC——甘肃碧口至成县220 kV可控串补投运。

我国电网调度自动化领域的国产EMS应用软件在采用国际标准、实现不同系统平台的信息交换和互操作等方面已进入国际先进行列,率先实现了国际领先的“图模库一体化”建模技术。

我国在数字化变电站设备领域的研究取得了长足进展。110 kV及以下的数字化变电站技术已经基本成熟,220 kV数字化变电站技术正在试点过程中。

(四)可再生能源利用技术

高度重视可再生能源利用技术的基础研究,以传统优势学科为基础,重点发展新能源与可再生能源学科。我国目前风资源评估研究大都依靠购买国外商业软件,正在积极开展反映我国地形特点的风场模拟计算流体力学研究,争取自主开发有中国风场特色的风资源评估技术。目前我国风电机组机组性能达到国际水平,成本降低,具有竞争优势的特点,但是不掌握核心技术。我国的风电具有大规模集中开发、远离负荷中心的特点,需开展超大规模风电输电模式的研究。在风力发电检测认证及标准方面,国内已经完成了风电机组控制系统、变流器相关国家标准。

太阳能光伏发电应用范围不断扩大,系统集成技术不断提高,从小型独立光伏电站和通信系统,发展到与建筑结合的光伏发电系统、大型并网光伏电站和光伏微网系统。

太阳能热发电具有技术相对成熟、发电成本低及对电网冲击小等优点。我国太阳能热发电还处于技术研发阶段,第一座并网示范电站将于20xx年底建设完成。建立国家级实验平

台,集成全国优势力量,对太阳能发电技术从材料、部件、单元到系统进行全面研究,是我们赶超国际水平和将技术推向商业化的有效步骤。

(五)核电方面

积极发展核电,是我国能源发展的战略选择。我国已经发展了完全的用于核燃料组件的铀探测、采冶、浓缩、提炼和装配工业。另外,高级铀分离技术,例如离心机、高燃耗燃料以及MOX燃料元件,也在不断研究和发展中。

在核反应堆技术方面,我国已经对二代、三代和四代反应堆以及聚变堆进行了相应的研究。在第四代反应堆技术方面,中国实验快堆(CEFR)预计20xx年实现首次临界及并网发电。高温气冷实验堆 (HTR10)已经于20xx年完成。两种具有200兆瓦输出的高温气冷实验堆正在建设中。“973”计划“超临界水堆关键科学问题的基础研究”项目正在进行中,取得很多技术上的突破。在聚变堆技术方面,国际热核聚变实验堆(ITER)计划正式启动,我国为参与成员之一。新一代热核聚变装置——“实验型先进超导托卡马克”已于20xx年投入运行。

在核燃料循环后段技术方面,我国已经发展了用于燃料处理、高放废液处理的完全的工业体系。已经建立了动力堆元件后处理中间试验厂。在高放废物深地质处置方面也进行了大量的研究。

(六)大型发电及输变电设备

我国大型发电及输变电设备制造经历了从低水平、低端产品研发、制造,到高水平、高端产品研发、制造的历程。近年来,我国常规火力发电设备制造技术连续登上了亚临界、超临界和超超临界参数三个台阶,并完成了国产化研制,达到了世界先进水平。我国混流式和转桨式水电机组的单机容量和最大转轮直径均居于世界领先地位。但是在高水头混流式机组、冲击式水电机组和可逆式抽水蓄能机组等方面,与国外先进水平之间还有一定差距。

我国高压开关设备的研发技术与国外无太大差距,产品可靠性还有待进一步验证。国产220 kV及以上电压等级变压器运行的可用系数要优于从国外进口的同类产品。国内套管、避雷器、互感器、电力电缆等制造技术发展整体水平与国外发达国家知名跨国公司仍有一定的差距。

二、近年来本学科的主要进展

整体煤气化联合循环发电关键技术取得突破,20xx年6月采用自主开发的气化工艺和自主设计的华能天津IGCC项目(250 MW)开工建设,以后将进行示范运行。在CO2捕集

及存储技术方面,已建成投产3000吨/年(食品级CO2)、1万吨/年CO2捕集试验示范装置,正在建设10万吨/年CO2捕集装置。

燃气轮机的高性能热—功转换科学技术问题研究、F级中低热值燃料燃气轮机关键技术与整机设计研究、巨型全空冷和蒸发冷却水轮发电机组关键技术突破及工程应用、分布式发电供能系统相关基础研究、大规模非并网风电系统的基础研究等取得丰硕成果。

我国制订了智能电网的总体建设路线、关键技术研究框架和实施方案。在PMU技术领域的研究和应用非常迅速,装置实现国产化。自主开发的CC2000A、 OPEN3000电网调度自动化系统均获得了国家级科技进步一等奖,应用了先进的三维、动态、可视化电网调度自动化技术和先进的保护和控制、模型和模拟工具;“基于行波原理的电力线路在线故障测距技术”获得国家技术发明二等奖,在世界上率先利用故障电流行波实现了线路故障的精确定位。

我国已解决了特高压发展的三大技术壁垒:特高压电晕效应,特高压绝缘及要求,电磁场及其影响。同时,我国在电压标准选择、潜供电流限制、无功电压控制、主接线、主设备参数、防雷技术、输电线路和变电站设计等方面取得了重要成果,并已具备建设大规模特高压工程的全部技术。我国设计单位已具备国际先进的直流工程成套设计能力,并建立了自有的直流工程技术标准、设计规范、试验标准等。

在FACTS技术中,SVC、STATCOM、TCSC、TSSC已在实际工程中得到应用,并可商用供货。开发成功Bi系高温超导带材,高温超导限流器投入试验运行,研制成功35 kJ/7kW直接冷却高温超导磁储能系统,研制成功26 kVA/400 V/16 V高温超导变压器样机和630 kVA/10.5 kV/0.4 kV三相高温超导变压器。我国着眼于国际主流风力发电机组产品和风力发电机组设计、制造关键技术。光伏并网逆变技术研究进展较快。

先进超导托卡马克实验装置EAST于20xx年9月28日首次投入运行,是世界上第一个同时具有全超导磁体和主动冷却结构的核聚变实验装置。目前,中国实验快堆已完成安装,于 20xx年10月实现首次临界。大型先进压水堆核电站重大专项示范工程——CAP1400核电站预计于20xx年开工。高温气冷堆商用示范电站预计20xx年正式开工建设。中国先进研究堆完成综合调试工作,预计20xx年达到临界。

三、本学科国内外发展状况比较

虽然我国在超(超)临界机组的设计制造技术上已有长足进展,但在超超临界机组设计方面还有一定差距,在关键材料方面差距较大。600 MW超临界CFB锅炉尚处于研制开发过程中,CFB锅炉的整体技术研发和设计水平已接近世界先进水平。20xx年自主设计制造

首座600 MW级空冷岛主要设备,但在直接空冷技术方面还有差距。我国在IGCC发电技术的研究和开发上取得了重要进展(如开发了有自主知识产权的气流床气化工艺),但在关键设备——燃气轮机上存在很大差距。富氧(O2/CO2)燃烧技术研究起步稍晚,主要在进行基础研究和比较小型的工业试验研究。传统燃煤机组混燃生物质已在欧美各国进行了大量试验研究并已得到应用,我国虽已在一台300 MW机组上成功进行了生物质和煤的混烧试验,但应进一步研究、推广大规模生物质发电技术。

在多种污染物联合脱除技术方面,我国科研机构已开展了长期的研究并取得了可商业化的成果,与国外先进水平相差不大。我国已建立了CO2捕集与回收实验研究基地,CO2聚合技术取得重大突破,CO2捕集试验示范装置已于20xx年7月16日建成投产。

我国自主开发的电网调度自动化系统CC2000A和OPEN3000总体技术达到国际先进水平,在自动电压控制、继电保护和安全稳定控制装置、在线稳定分析和预警、动态稳定控制等方面有明显优势,基于行波的电力线路故障测距技术也处于国际领先地位。数字化变电站所涵盖的各项技术我国基本上均能自主开发研制,但从实施的程度和总体水平而言,与发达国家和技术先进的公司等还存在一定的差距。FACTS技术研究和应用方面整体水平已处于世界先进水平。国外关于大规模可再生能源的接入和并网技术也刚刚起步。德国、丹麦等专在海上风电场的建设和运行方面已具备一定的经验,技术领先于我国。我国具有国际互认可资质的风电、太阳能光伏发电的检测机构还很少,亟待加强。国外在分布式电源、微网系统接入的具体技术和设备研发及实施上领先于我国。

我国特高压交流试验基地在多方面的技术处于世界领先水平,电气设备和器材的制造技术较差。我国在HVDC工程建设、设计制造、运行管理、系统分析控制技术等方面均居于世界领先水平,并已经成为世界上HVDC技术应用最广泛的国家。

我国超导电力技术的发展水平与国际前沿相当,目前已实现并网运行的超导电缆、超导限流器、超导变压器等装置均处于产业化前期,在规模和示范研究进度上差距较大。我国高温超导材料技术相比国际先进水平也有较大差距,还未形成第二代高温超导带材的规模化制造能力。

风电主流机型整机和关键部件设计技术大多来自国外,风况研究、风力机空气动力设计技术、结构设计技术和控制系统设计技术还不扎实,控制系统、变频器、变桨器和轴承还主要依赖进口,叶片设计基本参照国外技术。大规模风电接入电网研究正在进行。目前我国光伏技术发展水平仍有较大差距,太阳能热发电技术在系统集成和电站运行方面缺乏经验。

我国已完全掌握了铀的离心分离技术,但我国铀分离离心机设备的国产化水平与国外还有一定距离。我国已具备自主生产小规模MOX燃料的能力,但没有大规模生产为快堆或热

堆所实用的商业化MOX燃料厂。通过消化吸收,三代核电的设计能力迅速达到了国际水平,三代核电的重大装备制造技术水平也得到了快速提升。快堆、高温气冷堆、超临界水冷堆、聚变堆等四代技术基本已赶上国际上快堆发达国家的水平。

我国常规火力发电设备制造技术达到了当代世界水平,但是部分关键技术、关键软件还不能完全自主开发;某些关键材料国内无法提供或不能完全满足需要;某些特殊工艺我国还未掌握或实现工业生产。我国混流式和转桨式水电机组的单机容量和最大转轮直径均居于世界领先地位,中国在巨型水轮发电机空冷和蒸发冷却方面已走在世界前面。但是,在高水头混流式机组、大中型定桨式水电机组、冲击式水电机组和抽水蓄能机组等方面与国外先进水平之间还有一定差距。

我国高压开关设备、变压器的研发、制造技术方面与国外差距不大,但1100 kV套管跟国外相比依然存在很大差距。我国目前电线电缆生产水平,产品质量无法与先进工业国家竞争。在高端技术上与国外的大厂商仍有较大差距,产品技术将成为制约我国电线电缆产品发展的一个瓶颈。

四、本学科的建设与人才培养

目前,我国130多所高校围绕动力与电气工程建立了涵盖大专、本科、硕士、博士各层次人才的培养体系。

在动力工程及工程热物理专业,有一级学科博士点19个、二级学科博士点26个,建立了20余个国家级实验室、工程中心和研发中心。在清洁高效燃煤发电技术和先进环保技术领域近3年获国家自然科学奖2项、国家技术发明奖4项、国家科技进步奖7项。

可再生能源发电学科承担“九五”国家科技攻关计划项目2项,“十五”国家科技攻关计划项目2项、“863”项目9项,“十一五”国家能源领域科技支撑计划重大项目1项、重点项目1项、“863”计划重点项目2项,国家科技部“973”计划项目2项。国家重点实验室2个、省部级重点实验室6个、省部级工程研究中心1个。

先进核能发电技术学科方面:一级重点学科核科学与技术有博士点9个,博士后流动站7个;二级重点学科有博士点13个,博士后流动站13个。国家重点实验室9个、国家工程技术研究中心1个、国家工程实验室1个、省部级重点实验室3个。先进核能发电技术学科承担“973”项目7项、“863项”目4项、支撑计划2项,获国家级奖励6项。

大型发电设备与输变电设备制造技术学科有电气工程一级学科重点学科5个,具有“博士一级”授权的单位22个,具有“博士点”授权的单位17个。有国家重点实验室3个、国家

工程技术研究中心2个、国家工程研究中心2个、国家工程实验室4个。博士后工作站(大电机)3个、博士后流动站(大电机)11个。承担“973”项目6项,“863”项目6项,获国家级奖励5项。

五、对本学科的展望与建议

1.推进清洁高效燃煤发电技术和先进环保技术发展

为应对我国一次能源和发电能源以煤为主所带来的严峻挑战和促进可持续发展,国家应加大支持力度,积极推进清洁高效燃煤发电技术和先进环保技术的发展。需要开展超(超)临界机组关键部件材料、检测方法和老化规律以及运行技术研究,大容量以及更高参数的燃用劣质煤和褐煤CFB锅炉的研制和关键技术研究,250 MW等级IGCC机组的建设和示范,O2/CO2燃烧技术的基础研究,生物质在大容量机组混燃对燃烧排放的研究,污染物的系统化脱除技术、资源化利用技术、联合脱除技术研究。

建议进一步加大对基础研究、应用研究和技术示范的支持力度。国家应支持科研单位、大专院校、大型企业建设相应的洁净煤发电技术、燃煤发电先进环保技术研究中心和工程中心。

2.构建智能电网,满足多样化的用电需求

开发WAMS高级分析、控制功能,实现智能化的决策,以对系统实施更有效的控制。电网调度自动化技术中人工智能技术的应用。实施高级配电自动化技术与微网技术。推进智能化一次设备的研制。充电快速化、智能化、集成化,电能转换高效化,电动汽车不同的充放电运行模式。探索智能家居和智能用电小区的应用模式。研究支撑智能电网的信息支持技术、通信支持技术、信息通信融合技术。研究智能电网互操作标准。

需高度关注配电、用电侧的智能电网技术。加强有关我国智能电网建设相关标准的研究和建立。加强研究手段的建设,并建设先进的智能配电网模拟和优化实验室。

3.加强现代输变电技术研究

进一步加强特高压交流输电、直流输电的主设备和控制保护系统的自主研发、制造技术,整体设计和试验技术等。利用最新的电力电子技术和实时控制及通讯技术提高输电系统的可靠性、可控性和运行效率。开展智能化决策技术、仿真建模技术、可感知化技术、新能源模拟技术、智能电网调度运行模拟系统的研究。研制智能化变电站主要一次设备,建立数字化变电站的全景数据。推进我国超导电力的研究和开发,使我国保持与国外同步发展并实现超

越。

4.可再生能源发电及其并网技术

尽快掌握拥有自主知识产权的风力发电总体设计和核心技术,开展风电机组优化设计技术、风电机组关键分部件核心技术、海上风电技术、风力发电电网适应性技术及风电机组整机测试技术等的研究。加快风资源分布及评估相关技术的发展,加强太阳光、能热发电特有技术和设备的研究。

加快建设风电机组整机及分部件公共测试平台,加快推进我国风电机组的检测和认证工作。加快国家级太阳能发电系统研究平台与示范基地建设。

5.先进核能发电技术

实现铀离心机的全部国产化。加强新型燃料组件的设计和制造工作,力争形成具有我国自主知识产权的新型压水堆燃料组件生产技术。尽快启动大型MOX燃料制造厂的基础科学问题研究,及早开展核电站退役技术的研究工作。继续推进四代技术的研究,保持研究优势,加快示范电站的建设。

抓住“ITER计划”这一机遇,组织科研力量参与到这项重大科学工程当中,培养大批创新型人才,开发各种创新技术,为我国抢占这一核心战略制高点积蓄能量。

6.大型发电设备及输变电设备制造技术

加快整体煤气化联合循环电站(IGCC)的设备研制和关键技术攻关。发展大容量燃气轮机。研制百万千瓦级混流式水电机组、大型高水头混流式水电机组。开发大容量高水头冲击式水电机组。发展大容量(例如100 MW级以上)、高水头的灯泡贯流式机组。发展大容量(例如500 MW~600 MW)的抽水蓄能机组。研发智能特高压开关设备。实施特高压和直流套管的研制并全部国产化。加强高温超导电缆的研究和产业化应用。

建议整合国内发电设备领域相关的研究资源,建立全国发电设备共性技术研究机构,重点开展重大原创性技术研究,开展共性技术及关键性技术的研究,开展重大产品的开发。

Power and Electrical Engineering

Power and electrical engineering is a discipline to research and solve the scientific mechanism, key technology, engineering method and technical approach involving the generation, transmission, distribution and control of electric power. Entering into the 21st century, with a

further growth of energy demand resulted from China’s rapid economic development, redistribution of the world's energy structure and the worsened ecological situation on earth, power and electrical engineering is now facing unprecedented opportunities and challenges.

Firstly, the coal is the primary energy source and generates large amount of energy for China; furthermore, this situation will not be significantly changed in the long run. There is a certain gap between coal consumption in China and that of the advanced level in the world. And the overdependence on the coal has led to serious environmental problems. Now, the climate change has become a hot global issue. The per capita installed powergenerating capacity in China is only the onefifth of that in U.S.; furthermore China’s per capita hold of freshwater resources is far below the world’s average level. Therefore, the development and adoption of clean and efficient coal fired power generation technology and advanced environmental protection technology are the significant strategic needs and extremely important. In recent years, a positive progress has been made in clean and efficient coal fired power generation technology, China has become one of the countries in the world where most supercritical and ultrasupercritical power generation units and Circulating Fluidized Bed (CFB) boiler units are adopted (including several 1 000 MWclass ultrasupercritical power generation units which are in operation or under construction). The design and manufacture technology for 600 MWclass supercritical power generation units and 300 MWclass CFB combustion technology have been mastered; the heat and power cogeneration technology and the air cooling generation technology have got the further adoption and development, and 600 MWclass cogeneration and air cooling generation units can be independently designed and manufactured. The CFB combustion technology has approached the international advanced standard and more technologies with independent intellectual property rights and core technologies, such as design of air cooling island, have further grasped; units with the capacity above 300 MWclass account for more than 60 percent of total thermal power unit capacity. The 250 MW Integrated Gasification Combined Cycle (IGCC) power generation units that are equipped with gasification process and possess independent intellectual property right and design are under construction. Many kinds of oxygen enrichment combustion technologies are researched, and the experimental study in the small scale experimental platform is carried out. A large scale biomass power generation technology with multifuel combustion of biomass and coal has advanced, and multifuel combustion experiments on a 300 MW unit have succeeded. A clean and efficient coal fired power generation technology is moving further toward the direction that requires high parameters, highcapacity, pollutants emission reduction, resource utilization rate improvement, and so on. However, there is still a gap between the China and the international advanced standards in some respects, such as the key component material for ultrasupercritical units and key devices (such as gas turbine) in IGCC technology. Some positive progresses have also been made in the advanced environmental protection technology; China has become one of the countries in the world where most coal fired pollutants removal technologies and equipments are adopted, and some technologies and equipments have been exported to the foreign countries. The design and manufacture capacity of ESP for 1000 MW units, baghouse filter for 600 MW unit and electrostaticbag dust collector for 660 MW unit are mastered, it is indicated that the dust collection technologies have approached the international advanced standards. The design and manufacture capacity of desulfurization technologies, such as limestonegypsum wet Flue Gas Desulfurization (FGD) for 1000 MW unit, CFB semidry FGD for 600 MW unit and ammonia

FGD technology for 350 MW unit, seawater FGD for 1,000 MW unit and activated coke (carbon) FGD technology are grasped, moreover, the CFB semidry FGD technology has reached the international advanced standards. A low NOx combustion technology has got a universal use in large and medium scale boiler units. The design and manufacture technologies for Selective Catalytic Reduction (SCR) denitrification catalyst which is fit in with the characteristics of coal fired flue gas in China are mastered; the catalyst production capacity of 60500 m3 per year are formed and these catalysts are used in several 600 MW units. The multipollutants removal technologies based on the existed dust collection and desulfurization device are in the engineering application; the capture technology of CO2 in flue gas and the CO2 reclamation technology, such as the polymer composition also make breakthroughs and a demonstration project has been built. The prospects for related technologies and goals, as well as strategy are briefly discussed later on.

Secondly, in recent years, “smart grid” has become a worldwide hot topic related to the future power grid’s development trend, which has been successively denominated by United States (using the term of “IntelliGrid”) and Europe (using the term “of Smart Grid”) early in this century. However, there is not yet a unified and clear definition on smart grid in the world. In China, at present, it could be defined as a high integration of advanced sensing and measurement technology, advanced information technology, advanced communication technology, advanced analysis and decisionmaking technology and automatic control technology with physical power transmission and distribution grids in order to form a new type power grid.

It possesses lots of advantages, such as meeting the elevation demand of electric power caused by social development, solving the lack of primary energies, improving the reliability, safety and capability of power supply and power quality, speeding up the utilization of renewable energy and reducing the dependence on nonrenewable energy, better protecting environment and lowering the impact on environment, mitigating the impact of greenhouse gas on climate, improving energy efficiency and reducing power losses in power grid, opening power market further, realizing more interactive activities with customers and providing valueadded service for customers. Smart grid has following characteristics, that is, robust, selfhealing, compatible, economical, integrated, and optimized.

The smart grid technology involves power generation, transmission, distribution and customer power utilization. Its main development directions and focal points are as follows: ①advanced Pharos Measurement Unit (PMU) and Wide Area Measurement System(WAMS), ②advanced dynamic, visualized power grid dispatching automation system, ③smart (digital) substation, ④advanced grid components and equipments for transmission, ⑤advanced distribution operation automation, ⑥advanced grid components and equipments for distribution, ⑦advanced custom power, ⑧advanced outage management (real time) system for distribution and fast fault treatment, ⑨distributed energy resources and micro grid operation, ⑩energy storage, advanced distribution management system, charging and discharging technology for electric vehicles and construction of charging stations, Advanced Metering Infrastructure (AMI) and Automatic Meter Reading (AMR), demand response, Home Area Networks (HANs) and smart home, optimal asset management and utilization for transmission and distribution, condition and reliability based maintenance,information and communication (information integration and

sharing), smart grid interoperability standards, etc.

Comparing with advanced developed countries in the world, the technical level of smart grid technologies in China is as follows: in the areas of ①,②,④,⑦ China is at a leading or cutting edge level, in the areas of , , China is keeping the same pace with the international advanced level, in the areas of ③,⑨,⑩,,, China is just started implementing, in the rest of areas, China is lagging behind or has implemented the capability technically, but the implementation conditions are not mature. In general, the smart grid technologies in the transmission field are not lagging behind and the R&D work of smart grid technologies in the distribution and utilization field should be strengthened and the implementation should be speeded up.

The development of smart grid technology is a long and gradual process, but the technology changes are very fast; therefore, it should be closely traced and studied in depth. In view of the practical situation of power transmission and distribution grid constructions in China, the smart grid technology for transmission should be one of the focal points in the development, but a lot of smart grid technologies are at distribution and utilization sides which are closely related to the customers, thus they should be implemented step by step according to the need and planning. Implementation is a long journey and it should be carried out gradually based on practical possibility. Key technologies must be first demonstrated and then disseminated. Largescale blind investment should be discouraged. Technologies should be implemented distinguishingly based on the different regions and situations. The research and establishment of smart grid standards should be strengthened and in line with the international standards. The laboratory construction for simulation and testing should be strengthened. A cyber security protection system should be built. It is very important to avoid overlooking the construction of physical power grids for the overall development of future modern grid technology.

The smart grid is a key enabler to the modern grid. Currently, a lot of countries in the world, including China, are actively starting their smart grid constructions due to the various challenges from the power grid in the 21st century.

Thirdly, entering into the 21st century, along with the economic and social development, the demand for electricity as well as the power system stability and reliability is gradually increasing. In recent years, in order to meet the needs of social progress, a number of modern new transmission and transformation technologies have emerged, such as Ultra High Voltage (UHV) AC/DC transmission technology, FACTS technology, new communication technology based power system dispatching system, digital substations, and superconducting electric power technology. These technologies are being or about to serve power systems, and thus play active roles in the economic and social development.

China’s power grid will become stronger with the development of smart grid. The ultra highvoltage power grid is the basis for building a strong smart grid, and the reason for developing an ultra highvoltage power grid as the backbone network is quite simple. According to China’s national conditions, the development of UHV power grid is the correct decision for implementing the scientific view of development, carrying out the national energy policy, and

ensuring that the power industry undergoing a comprehensive, coordinated and sustainable development, and eventually achieving a wider range of optimal allocation of resources to meet future China’s economic and social development and the increasing electricity demand accompanied with the economic and social development. In a word, it has great political and economic significance, as well as technological innovation significance.

In recent three years, with lots of HVDC transmission project constructions, China has realized the great development in the field of HVDC transmission project construction, equipment manufacture, and technical research. The construction scale in HVDC transmission, application level of HVDC, and design/operation/ test technology, as well as the research on and control over acdc system interaction are all leading the world. China has also made great progresses on the localization of main HVDC equipments as well as control and protection equipments.

In the developing process of electric power system, the most important task for constructing power networks is to ensure secure and stable operation of the power grid. In order to realize the goal of building an adequate, reliable, highquality, economical feeding and operation of the power grid, a flexible and reliable AC control technology is called for. Flexible AC Transmission System (FACTS) is a kind of technology which applies hightechs, such as power electronic technology, microcomputer technology and control technology, to the high voltage transmission system in order to improve the system reliability, controllability, operation performance, and power quality, as well as to obtain large amounts of new synthetic technologies for the benefit of energysaving. The technology will augment the conveyance capacity of transmission lines, optimize the operational conditions for power transmission network, expand power network operation and control technology, and change the traditional application scope of AC transmission, etc.

The electric power dispatch automation is the core and key technology for the automation system,and plays an important role in quality and stability of automation system. Improving the efficiency of power dispatch system is an essential way to ensure reliability and safety operation of the power system. Firstly, to improve network’s stability and reduce the data loss rate, the power network should be optimized; secondly, to ensure the accuracy and timeliness of dispatching work, the data instantaneity should be improved and data exchange time should be cut down.

With the popularity and development of information technology, the research realizing digitization of information, communication, decisionmaking and management for digital substations and networks is received more and more attentions. By using the optical fiber communication in digital substation instead of the conventional cable pointtopoint communication mode, the instantaneity and redundancy of various electrical quantities has been greatly improved.

As the development of power source construction, especially largescale hydropower projects’ construction, the transmission voltage level and gird size are gradually increasing in China. After many years’ rapid development, China has experienced the progress from 220 kV,

500 kV(330kV), 750 kV and even to 1000 kV in AC transmission system, got fully hold of the technology of extrahigh voltage power transmission, and also grasped the ±500 kV HVDC technology, meanwhile, the ± 660kV and ± 800kV HVDC projects are recently under construction.

Superconducting technology is a hightech with the strategic significance, and is considered as a key point of the future technology competition. It mainly uses the unobstructed highdensity currentcarrying capacity of superconductor and the superconductingnormal state transition characteristics. It requires a close integration of superconducting materials, low temperature engineering, power electronics, and intelligent control. The main research contents for superconducting power technology include the electrical and magnetic properties of applied superconducting materials, the study and development as well as application of superconducting power devices, superconducting power device’s transient characteristics and its interaction with power system, characteristics, planning, design, operation, control, and protection of power system with superconducting devices, and so on. Now, the superconducting power technology not only has become an important pillar for the future superconducting industry, but also is considered as an important frontier development direction for advanced power technology in the 21st century.

Fourthly, wind energy has rapidly developed all over the world in the past 10 years, and the total installed capacity increases by 30% each year. China has the resourceful wind energy, and wind energy reservation which can be estimated and utilized is about one billion kilowatt. By the end of 2008, the total installed capacity reached to 12152.8 thousand kilowatt.Based on the analysis of the wind power technology actuality and the comparison between China and aboard, the future development and strategy of the wind energy in China is pointed out.

In recent years, the photovoltaic technology, as a clean and renewable energy power generation mode, is rapidly developing. The range of applications unceasingly widens and the system integration technology continue to be improved. Application forms include offgrid PV system, BI(A)PV, large scale PV, and PV MicroGrid system. Application fields include communication, railway, meteorology, petroleum, rural electrification, PV application products, distributed power generation systems, and largescale PV. All over the world, a lot of countries are committed to the photovoltaic technology research.

The solar thermal power generation technology is relatively mature, low cost with small impact on the grid. It is considered as one of the most promising ways of renewable energy power generation in competition with the wind energy, hydroelectric power, and fossil fuels in power generation. The status quo of China’s solar thermal power generation technology is reported and a comparative analysis on the foreign technology is also given. Finally the prospect and strategy of the technology development are put forward.

Moreover, the nuclear power is a kind of safe, clean, stable, and economical energy which can be supplied at large scale. For the sustainable development of China society, it is a strategic choice for the Chinese government to develop more and more nuclear power plants, while the closed nuclear fuel cycle is adopted by the Chinese government as a principal policy.

The present status and prospects on the technology development of advanced nuclear energy and power engineering in China are summarized from three aspects, i.e. the front part of the nuclear fuel cycle, the reactor engineering, and the back parts of the nuclear fuel cycle.

In the aspect of front parts of nuclear fuel cycle, China has already developed a completed industry system for the uranium exploring, mining, refining, enriching and fabrication of the nuclear fuel assembly. The R&D on advanced uranium separation technology, such as centrifugal machine, the advanced nuclear fuel assembly with high performance, and the advanced MOX fuel are conducted.

In the aspect of reactor engineering, the R&D is extensively performed on the Gen.Ⅱ, Gen.Ⅲ and Gen. Ⅳ, as well as the fusion technology.

Based on the M310type PWR, a French Gen.Ⅱ technology, China has developed its own CPR1000type PWR. On the basis of AP1000 technology transfer, China now is developing its own advanced PWR with even more large output.

In the field of Gen.Ⅳ, China Experimental Fast Reactor (CEFR) is expected to reach its first criticality in 2010; China experimental high temperature gas reactor (HTR10) has been completed in 2002, while two prototype high temperature gas reactors with 200 MW output in total is under construction; the fundamental researches on Super Critical Water Reactor (SCWR) are also performed with the support from a national fundamental science and technology program named “973”.

In the field of fusion technology, it is well known that China became a member of the ITER program in 2003. The Experimental Advanced Superconducting Tokamak (EAST) facility has been put into the operation in 2006.

In the aspect of back parts of nuclear fuel cycle, China has already developed a completed industry system for the spent fuel processing, solidification of the radioactive liquid, and the disposal of the high level radioactive waste. A pilot factory for the spent fuel processing is nearly completed. The R&D on the geologic disposal of the high level radioactive waste is performed.

At last, after hard struggling for 60 years, especially the fast development for 30 years after reform and opening up, the largescale power generation equipment manufacturing industry in China has made some remarkable achievements. The Chinese manufacturing capacity of largescale power generation equipment ranks No.1 in the world and some of the power generation equipment manufacturing technologies of China have already reached the world advanced standard.

The largescale power transmission and transformation equipments are key equipments of power system; their manufacture technology level will influence the safety and reliability of power system significantly. With the development of science and technology, the design and manufacture technology of international largescale power transmission and transformation

equipments have obtained a rapid development. However, restricted by the whole mechanical manufacture technology, new material technology, the largescale power transmission and transformation equipments, especially extra and ultra high voltage equipments, need to be urgently improved.

The improvement of design and manufacture technology of largescale power generation, transmission and transformation equipments in China need a concert effort that coordinates related manufacture factories, research institutes, colleges, and guilds. By using the organization function of guild, the scientific research and innovation ability of research institute and college, and the design and manufacture ability of manufacture factory, solutions to the difficulties existing in the design and manufacture of largescale power generation, transmission and transformation equipments are gradually provided.

To sum up, the development process involving manufacturing technology of generation, transmission and transformation equipments in China is reviewed. Secondly, the comparison with international advanced levels is made and the gaps are found out. Finally, the future for the largescale generation, transmission and transformation equipment manufacturing technology in China is forecasted and some good advices and suggestions are put forward.

更多相关推荐:
20xx年公路学科发展报告(概要)

20xx年公路学科发展报告概要中国公路学会去年首次开展公路学科发展研究得到各分会及各方面的大力支持也引起了全行业的广泛关注交通运输部对这项研究工作给予高度评价中国科协还将此项研究工作纳入20xx年度的资助支撑计...

学科发展综述报告

学科发展综述报告1无线电报技术在中国的发展特点科学原理的首次发现与技术首次转化为实际应用之间有着相当长的时间差1895年马可尼的无线电报通讯实验可以被认为是无线电报技术的首次应用而麦克斯韦的电磁场理论的形成则以...

控制科学与工程学科发展报告,发展现状及趋势

控制科学与工程学科发展现状及趋势一国内外现状概述经典控制理论的研究对象一般为单输入单输出的自动控制系统特别是线性定常系统经典控制理论的特点是以输入输出特性主要是传递函数为系统的数学模型采用频率响应法和根轨迹法这...

土壤学学科发展报告

土壤学学科发展报告20xx11简本一引言目前全球所面临的粮食安全和环境污染等方面的问题以及节能减排和生态保护等方面的要求促使土壤学各分支学科的研究不断向前推进在这样的背景下总结近年来我国科学家在该领域所取得的研...

数据挖掘学科发展报告20xx

数据挖掘学科发展报告作者唐杰梅俏竹时间20xx1017145900摘要近年随着各行业对大规模数据处理和深度分析需求的快速增长数据挖掘引起了研究界和工业界的广泛关注1引言数据挖掘是知识发现过程中的一个关键步骤一般...

学科建设经验总结报告

学科专业带头人梯队建设工作总结近年来,北安市按照省及黑河市关于学科、专业带头人梯队建设的有关要求,牢固树立科学技术是第一生产力和可持续发展的战略方针,注重学科、专业带头人梯队的建设、管理和培养工作,积极开发人才…

环境化学学科发展报告(20xx-20xx年)

环境化学学科发展报告20xx20xx年环境化学分会20xx年10月目录0中英文摘要301中文摘要302英文摘要31引言42环境化学学科基础理论体系建设进展421国际环境化学学科基础理论体系建设历程422我国环境...

吉林省民族中小学双语教学数学学科发展调研报告调查问卷

吉林省民族中小学双语教学数学学科发展调研报告调查问卷初中亲爱的同学你好首先感谢你参与本次问卷调查活动你现在看到的是关于数学学科的一份调查问卷本卷纯属研究所用不记名各题答案无对错之分我们诚恳地希望你根据自己的真实...

学科教学中有效渗透心理健康教育的研究开题报告

学科教学中有效渗透心理健康教育的研究开题报告德育研训室一课题研究的背景有效教学的核心理念是关注学生的进步和发展有效教学研究最终的衡量标准就是学生成长而这种成长将不单单用成绩高低来作为衡量标准而是激发学生学习的积...

福建省园艺学学科发展报告

龙源期刊网cn福建省园艺学学科发展报告作者福建省园艺学会来源海峡科学20xx年第01期摘要本文阐述了国内外园艺学学科发展的现状分析了福建省园艺业发展的概况存在问题及发展的对策提出了我省今后园艺学科发展的重点领域...

我国水产养殖工程学科发展报告

我国水产养殖工程学科发展报告20xx20xx发布时间20xx1114信息来源渔业现代化徐皓张建华农业部渔业装备与工程重点开放实验室中国水产科学研究院渔业机械仪器研究所上海20xx92水产养殖工程学科在我国渔业科...

实验动物学学科发展研究报告20xx

一引言实验动物科学LaboratoryAnimalScience是以实验动物资源研究质量控制和利用实验动物进行科学实验的一门综合性学科现代意义上的实验动物科学诞生于上个世纪五十年代初期融合了动物学Zoology...

学科发展报告(23篇)