示波器的原理与使用_实验报告

时间:2024.4.20

实验目的与要求:

(1)       了解示波器的工作原理

(2)       学习使用示波器观察各种信号波形

(3)       用示波器测量信号的电压、频率和相位差

主要仪器设备:

YB4320G 双踪示波器, EE1641B型函数信号发生器

实验原理和内容:

1.       示波器基本结构

示波器主要由示波管、放大和衰减系统、触发扫描系统和电源四部分组成, 其中示波管是核心部分。

示波管的基本结构如下图所示, 主要由电子枪、偏转系统和荧光屏三个部分组成, 由外部玻璃外壳密封在真空环境中。

    电子枪的作用是释放并加速电子束。 其中第一阳极称为聚焦阳极, 第二阳极称为加速阳极。 通过调节两者的共同作用, 可以使电子束打到荧光屏上产生明亮清晰的圆点。

    偏转系统由X、Y两对偏转板组成, 通过在板上加电压来使电子束偏转, 从而对应地改变屏上亮点的位置。

    荧光屏上涂有荧光粉, 电子打上去时能够发光形成光斑。 不同荧光粉的发光颜色与余辉时间都不同。
    放大和衰减系统用于对不同大小的输入信号进行适当的缩放, 使其幅度适合于观测。
扫描系统的作用是产生锯齿波扫描电压(如左上图所示), 使电子束在其作用下匀速地在荧光屏周期性地自左向右运动, 这一过程称为扫描。 扫描开始的时间由触发系统控制。

2.       示波器的显示波形的原理

如果只在竖直偏转板加上交变电压而X偏转板上五点也是, 电子束在竖直方向上来回运动而形成一条亮线, 如左图所示:

如果在Y偏转板和X偏转板上同时分别加载正弦电压和锯齿波电压, 电子受水平竖直两个方向的合理作用下, 进行正弦震荡和水平扫描的合成运动, 在两电压周期相等时, 荧光屏上能够显示出完整周期的正弦电压波形, 显像原理如右图所示:

3.       扫描同步

为了完整地显示外界输入信号的周期波形, 需要调节扫描周期使其与外界信号周期相同或成合适的关系。 当某些因素改变致使周期发生变化时,使用扫描同步功能, 能够使扫描起点自动跟踪外界信号变化, 从而稳定地显示波形。

步骤与操作方法:

1.       示波器测量信号的电压和频率

对于一个稳定显示的正弦电压波形, 电压和频率可以由以下方法读出

其中a为垂直偏转因数(电压偏转因数)(从示波器面板的衰减器开关上可以直接读出)单位为V/div或mV/div; h为输入信号的峰-峰高度, 单位div; b为扫描时间系数, 从主扫描时间系数选择开关上可以直接读出, 单位s/div、ms/div或μs/div; l为输入信号的单个周期宽度, 单位div。

(1)       打开电源开关并切换到DC档, 拨动垂直工作方式开关,选择未知信号所在的通道。

(2)       通过调节“扫描时间系数选择开关”和“垂直偏转系数开关”, 以及它们对应的微调开关, 使未知信号图形的高度和波形个数便与测量。 同时在开关上读出计算所需的a、b值。

(3)       调节“垂直位移”与“水平位移”旋钮,利用荧光屏上的刻度读取l、h值, 并记录。

2.       用示波器直接观察半波和全波整流波形

(1)       将实验室提供的未知信号分别接到整流电路的AB端, CD端送入示波器的CH1或CH2端。

(2)       通过调节“扫描时间系数选择开关”和“垂直偏转系数开关”是信号显示在屏内, 分别观察整流后的波形, 并记录

3.       李萨如图形测量信号的频率

不使用机内的扫描电压, 而使用两个外界输入的正弦电压分别加载在X、Y偏转板上, 当两个正弦电压的频率相同或呈简单的整数比, 则屏上将显示特殊形状的轨迹, 这种轨迹称为李萨如图形。 李萨如图形与X轴和Y轴的最大交点数nx与ny之比正好等于Y、X端的输入电压频率之比, 即

* 示波器和函数信号发生器的操作原理略
数据记录与处理/结果与分析:

1.       正弦信号电压和频率的测量:

2.       正弦信号、半波整流信号、全波整流信号的图形

3.       李萨如图形测量正弦信号的频率

讨论、建议与质疑:

(1)       在示波器显示扫描波形图和李萨如图形的原理中, 不同之处在与它们所使用的扫描电压(即水平方向的输入电压)不同。 显示扫描波形时, 水平方向加载的是锯齿波的扫描电压, 它能够使电子束从左向右地单方向扫描, 当扫描频率和输入信号的频率相配合时, 就能够显示输入信号的波形; 显示李萨如图形时, 水平方向接入的是未知的正弦信号, 它使电子束在水平方向上做简谐往复运动, 与竖直方向的另一简谐运动相叠加后, 在荧光屏上形成李萨如图形。

(2)       形成椭圆的条件较为简单, 当输入的两个同频正弦信号相位差存在, 且大小在+π~ -π之间时, 即可形成椭圆图形。
圆可以认为是一种特殊条件下形成的椭圆图形。
当输入的两个正弦信号频率相同, 信号振幅相同, 且两者的相位差为±π/2时, 李萨如图形为圆形。

(3)       实验中Y轴信号为已知正弦信号, X轴为未知信号, 经过实验, 发现
当fy比fx大很多时, 荧光屏上的线条之间不可分辨, 形成一个矩形块状图案;
当fy比fx小很多时,荧光屏上显示一条上下振荡的水平线段。

(4)       试解释全波整流图形存在水平片段的原因。
个人认为, 由于示波器上没有精确地显示出波形所在的相对位置, 故对这一波形现象可以有以下两种理解方式:
第一种理解方式:
如上图,左图为理论上的全波整流信号波形, 右图为实际中由示波器观察到的整流波形, 可见实际波形下端未能达到0, 即负载端电压值在外部加载电压换向时没有达到最小。
原因可以认为, 二极管的单向导通作用不是绝对的, 在电压反向加载时, 仍有小部分的反向“漏电流”通过二极管, 因此在桥式整流电路中, 电路电流完全等于零的时刻是不存在的, 在正向电压下降到接近0的位置时, 由于有反向漏电流存在, 故负载两端的实际电流不为零,故电压也不为零, 由示波器显示其电压变化状态, 变得到了右上图示的“削尾”现象。另外, 也可以认为二极管有电流/电压残留现象等等。


第二种理解方式:

如右图所示, 波形的形状与实际可见相同, 但与上一种理解方式不同的是, 此种情况可以理解为, 负载两端的电压提前下降到零, 维持在零水平一段时间后, 重新上升。
在这种情况下, 必须提到二极管单向导通性质的一个前提:
当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。
由此可以解释实验中观察到的现象:
当第一个半周期内末端, 电压下降到门槛电压以下时,  二极管实际已不能导通, 而另两个反向的二极管此时也尚未导通, 此时负载两端的电压为零, 在示波器上表现为X轴上的直线;
当电压进入第二个半周期时, 电压由零开始重新上升, 但尚未达到门槛电压时, 二极管仍然处在不导通状态, 此时负载两端的电压仍为零; 直到电压上升到门槛电压以上, 二极管才被导通, 此时负载两端才有电压, 并且随外源信号呈正弦规律上升。
综合以上两个短暂过程来看, 可以发现负载两端电压有一段持续为零的“真空期”, 表现为波形即为示波器上观察到的短直线片段。

(5)       实验体会:
本次实验相比与其他实验, 更加接近于一种体验性的实验, 目的并不在于获得最终的实验数据结果, 而在于让我们更好地理解实际生产生活中常用的示波器; 通过操作示波器, 一方面我能够熟悉仪器的使用方法, 认识到书本理论和实际操作存在的差距, 一方面也体会了示波器中所表现的将一些不可见的动态量转化为另一种量直观地表现出来的方法(锯齿波扫描电压与信号电压的组合是其表现思想的精髓)。
另外, 本次实验中, 我也体会到了书本上的理论知识和实际应用的差异所在, 具体地说即是全波整形电流波形理论值和实际图样的差别。 通过实际的操作和观察, 我能够从差异出发, 从一些错误出发, 通过比较以不同地角度更好的理解所学的知识, 这是单独阅读书本所不能做到的。


第二篇:大物实验报告——示波器的原理及应用


 


   

  

         学号

         姓名:

         学院

 20##年12月

示波器的原理及应用

摘要:本实验主要目的是了解阴极射线示波器的工作原理,用函数信号发生器产生不同频率比的电压,通过数字示波器观察李萨如图形。同时以示波器和低频信号发生器为工具,分别运用共振干涉(驻波)法和相位比较(行波)法,利用示波器将抽象的较难测量的声速转换成容易测量的物理量,然后计算得出声速,实现对示波器的灵活应用。

关键词:阴极射线示波器、数字示波器、李萨如图形、干涉、相位比较、声速测量

引言:示波器是显示被测量的瞬时值轨迹变化情况的仪器,它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。示波器初期主要为模拟示波器,发展到一定阶段,人们发现模拟示波器有很多缺陷,而且已经到了发展的瓶颈,这些缺陷都很难得到改善,例如,模拟示波器观察低频、慢速信号存在缺陷,单次、瞬变等信号根本无法观测等等。这时数字示波器正在兴起,数字示波器可以弥补模拟示波器的很多缺陷,数字示波器可以存储波形和数据,而且测量方便,并且大大增加了可测量信号的范围,对于探测未知信号非常有用,基于以上情况,便产生了模数组合示波器。现在示波器已成为电子测量实验中不可缺少的仪器。广泛应用于科学研究、实验教学、医药卫生、电工电子和仪器仪表等各个研究领域和行业。

一、示波器的基本组成和原理:

    示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。

示波器由示波管、竖直信号放大器(Y放大)、水平信号放大器(X放大)、扫描信号发生器、触发同步系统和直流电源等组成。示波管由电子枪、偏转系统和荧光屏组成,管内抽成真空。

1、电子枪由灯丝、阴极、控制栅极、第一阳极、第二阳极组成,作用是产生高速飞行的一束电子。

2、电子随后进入偏转系统,偏转系统中有一对竖直偏转板(Y轴)和一对水平偏转板(X轴)。示波管的Y偏转电极上加的是待显示的信号电压。示波器的X偏转电极通常接入其自身产生的锯齿波电压(扫描电压)。电子束受到竖直和水平两个方向的电场作用,除了参与Y方向上的振动,同时参与X轴方向的匀速移动,就可以把Y方向上的振动横向拉开,从而显示出其波形。这里需要特别注意的地方是,锯齿波电压和信号电压的周期必须相同或者成整数倍的关系,这样才能正确地显示出信号电压的波形。若两电压周期不相同或无整数倍关系,这时需要进行“整步”或“同步”,调节示波器上的触发电平,通过电子电路来调整扫描电压周期。

3、电子经过偏转系统的偏转之后,最终打在荧光屏上,屏上涂有荧光粉,电子打上去荧光粉发光形成光斑。当频率适中时,连续的电子束在屏幕上形成连续的曲线,显示出信号电压的波形。

二、李萨如图形的基本原理

两个相互垂直的简谐振动相互叠加,即在示波器的X轴和Y轴输入频率相同或成简单整数比的两个正弦电压,荧光屏上呈现的光电的特殊形状轨迹称为李萨如图形。X轴和Y轴输入频率比不同,在示波器上得到的李萨如图形也不同。实验中通过调节函数信号发生器两输入电压的频率,得到不同的图形。

如果作一个限制光点在x、y方向变化范围内的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于y和x输入的两正弦信号的频率之比。即

三、示波器的应用——声速测量

声波是机械纵波。频率在20Hz-20KHz的声波能引起人的听觉,称为可闻声波,简称声波。超声波的频率在20KHz~500MHz,具有波长短、穿透能力强、易于定向传播等优点,故本实验利用超声波对声速进行测量。

1、共振干涉(驻波)法

在同一介质中两列频率、振动方向相同,而且振动幅度也相同的简谐波,在同一直线上沿反方向传播时就叠加形成驻波。振幅呈周期性变化,最大处为波腹,振幅为0处为波节,波腹与波节的距离为λ/2,若声速测量仪调节到适当的距离(>10cm)时,开始观察。避免因距离太近产生干扰,影响测量结果的准确性。S1为超声源(发射头),S2作为超声波接收头。移动S2对试验中的某一波长。相继出现一系列共振状态,示波器上的信号幅度每出现一次周期性变化,相当于S1、S2改变了λ/2,此距离可由声速测量仪测得,根据v=λ*f求得声速。

2、相位比较(行波)法

相位比较法与共振干涉法有相似之处,仍利用原装置,不同的是将示波器的功能调于X-Y方式,S1与S2之间产生相位差,运用李萨如图形,S1、S2之间的距离改变一个波长λ,相位变化2π,为了便于观测,调节S2使示波器出现一条直线,记录下数据L1,然后调节距离S2,再次出现相同直线时记录数据L2。λ=L1-L2,再由V=λ×f求得速度V。

结论:通过实验观察可以看出,当竖直偏转板加正弦电压,水平偏转板不加电压时,在荧光屏上得到的是Y方向的一条亮线或者是连续的光点,这是因为水平方向无偏转力。这是若是在水平方向加上锯齿波电压,在一个周期内,电压随时间逐渐升高,电子便在水平方向被拉开,呈现出正弦电压的波形。若水平加的是同频率或呈简单整数比的正弦电压,则出现李萨如图形。

    两输入电压频率不相等或非整数倍关系时,得到的是以个连续变化的图形,这是由于频率不同步,两垂直电压的相位变化造成的图形不稳定。通过观察得出图形的变化快慢取决于两者及其整数倍之间的差之大小,差值越大,变化越快。利用示波器、声速测量仪信号源、声速测量仪将难以测量的声速巧妙转化成距离的测量时此实验的一大特色。比较两种方法测声速的结果,不难看出利用示波器测声速具有很大的优势,结果较为准确,达到了预期的效果。

参考文献

[1] 张三慧.大学基础物理学.清华大学出版社,2007.

[2] 白梅兰.北方工业大学学报.北方工业大学出版社,1990(3).

更多相关推荐:
示波器的原理与使用 实验报告

大连理工大学大学物理实验报告院系材料学院专业材料物理班级0705姓名童凌炜学号20xx67025实验台号实验时间20xx年11月18日第13周星期二第56节实验名称示波器的原理与使用教师评语实验目的与要求1了解...

大物实验示波器的使用实验报告

实验二十三示波器的使用班级姓名学号同组人日期【实验目的】1、了解示波器的基本结构和工作原理,学会正确使用示波器。2、掌握用示波器观察各种电信号波形、测量电压和频率的方法。3、掌握观察利萨如图形的方法,并能用利萨…

示波器使用大学物理实验报告

《示波器的使用》实验示范报告阿【实验目的】1.了解示波器显示波形的原理,了解示波器各主要组成部分及它们之间的联系和配合;2.熟悉使用示波器的基本方法,学会用示波器测量波形的电压幅度和频率;3.观察李萨如图形。【…

示波器的使用 实验报告

实验报告实验名称示波器的使用班级温度同组者12

模拟示波器的使用 实验报告

模拟示波器的使用·实验目的1.了解示波器的基本原理及基本使用方法;2.掌握用示波器观察一路不同型电压信号的方法;3.掌握观察利萨如图形的方法,了解利萨如图形测量未知正弦信号的频率的方法.·实验原理1.示波器显示…

《示波器的原理和使用》实验报告

示波器的原理和使用实验预习报告工程物理系工物22方侨光0220xx实验内容和数据记录一观测波形1绘制波形2记录与计算二观测利萨如图形将自制信号源和函数信号发生器的正弦信号分别输入到示波器的两输入端调出频率为或者...

示波器原理及应用研究实验报告

示波器原理及应用姓名学号日期一、实验目的:了解通用电子示波工器工作原理的基础上,学会正确使用示波器测量各种电参数的方法。二、实验原理:见课本三、实验设备:1、函数信号发生器,数量2台;2、双踪示波器,数量1台。…

大学物理实验示波器的使用

示波器的使用实验示范报告金木兄弟实验目的1了解示波器显示波形的原理了解示波器各主要组成部分及它们之间的联系和配合2熟悉使用示波器的基本方法学会用示波器测量波形的电压幅度和频率3观察李萨如图形实验仪器1双踪示波器...

实验二、示波器的调节与使用

实验二示波器的调整与使用实验目的1了解示波器的结构和工作原理2熟悉示波器各旋钮功能3掌握示波器的基本调整方法4掌握用示波器观测信号的波形学会用示波器测量电压周期和频率示波器的原理注意有下划线的示波器显示随时间变...

示波器的原理和使用实验报告

示波器的原理和使用实验报告,内容附图。

示波器的原理与使用

1模拟示波器为何能显示高速变化的电信号轨迹答在模拟示波器垂直偏转板上加的是被观测信号电压而在水平偏转板上加的是锯齿波时间线性变化信号电压所以示波器的示波管的横轴相当于直角坐标的时间轴经过一个锯齿波信号周期电子束...

电子测量原理实验--数字示波器的应用与信号测量

电子测量原理实验指导实验项目一数字示波器的应用与信号测量一实验目的1了解数字存储示波器的工作原理2学会正确使用数字示波器测量各种电参数的方法二实验原理电子示波器是应用最广泛的电子测量仪器其用途是时域测量电子示波...

示波器的原理与使用实验报告(24篇)