AES原理及其在c语言上的实现

时间:2024.4.13

AES加密解密算法及其在c语言上的实现

引言

对称密码算法主要用于保证数据的机密性,通信双方在加密/ 解密过程中使用它们共享的单一密钥。对称密码算法的使用相当广泛,密码学界已经对它们进行了深入的研究[1] 。最常用的对称密码算法是数据加密标准(DES) 算法,它是由IBM在美国国家安全局(NSA) 授意之下研制的一种使用56 位密钥的分组密码算法。自1977 年公布成为美国政府的商用加密标准以来已使用20 多年[2] 。DES 的主要问题是其密钥长度较短,已不适合于当今分布式开放网络对数据加密安全性的要求。在DES 每隔五年的评估会议中,最后一次在1998 年美国政府终于决定不再继续延用DES作为联邦加密标准,也就表明了DES 将退出加密标准的舞台,而新的标准AES(AdvancedEncryptionStandard ) 将粉墨登场[3] 。AES是美国国家标准技术研究所NIST旨在取代DES的新一代的加密标准[3~5] 。NIST对AES候选算法的基本要求是:对称分组密码体制;密钥长度支持128,192,256位;明文分组长度128 位;算法应易于各种硬件和软件实现。1998年NIST开始AES第一轮征集、分析、测试,共产生了15 个候选算法。1999 年3 月完成了第二轮AES 的分析、测试。1999 年8 月NIST公布了五种算法(MARS,RC6,Rijndael,Serpent,Twofish) 成为候选算法。最后,Rijn2dael[5] ,这个由比利时人设计的算法与其它候选算法在成为高级加密标准(AES) 的竞争中取得成功,于2000 年10月被NIST宣布成为取代DES的新一代的数据加密标准,即AES。尽管人们对AES还有不同的看法[6~8] ,但总体来说,Rijndael作为新一代的数据加密标准汇聚了强安全性、高性能、高效率、易用和灵活等优点。AES设计有三个密钥长度:128,192,256 比特, 相对而言,AES 的128 比特密钥比DES的56 比特密钥强1021倍[4] 。

AES 加密/ 解密算法原理

对称密码算法根据对明文消息加密方式的不同可分为两大类,即分组密码和流密码。分组密码将消息分为固定长度的分组,输出的密文分组通常与输入的明文分组长度相同。AES算法属于分组密码算法,它的输入分组、输出分组以及加/ 解密过程中的中间分组都是128比特。密钥的长度K为128,192 或256 比特。用Nk=4,6,8 代表密钥串的字数(1 字=32 比特) ,在本文编制的程序中由用户选定。用Nr 表示对一个数据分组加密的轮数(加密轮数与密钥长度的关系见表1) 。每一轮都需要一个和输入分组具有同样长度(128 比特) 的扩展密钥Ke的参与。由于外部输入的加密密钥K长度有限,所以在AES中要用一个密钥扩展程序( KeyExpansion) 把外部密钥K扩展成更长的比特串,以生成各轮的加密密钥。AES的加密与解密框图如图1 所示。

 

                                                                                                                

 

AES加密与解密流程图

(1) 加密变换

设X是AES的128 比特明文输入,Y 是128 比特的密文输出,则AES密文Y可以用下面的复合变换表示:

Y=A k(r+1 )·R·S·Akr·C·R·S·Ak(r21)·?·C·R·S·Ak1(X)

其中“·”表示复合运算。这里Aki :表示对X 的一个变换Aki (X) =X Ý Ki ( Ki为第i 轮的子密钥,为比特串的异或运算) 。S:S 盒置换。即对每一个字节用S2Box做一个置换。S2Box是一个给定的转换表。R: 行置换。C: 列置换。

这里是特殊的乘法运算,将在下面详细介绍。

(2) 解密变换

解密变换是加密变换的逆变换,这里不再详述。

 AES 加密/ 解密算法的实现

 分组加密

表1 是三种不同类型的AES 加密密钥分组大小与相应的加密轮数的对照表。加密开始时,输入分组的各字节按表2 的方式装入一个矩阵State 中。如输入ABCDEFGHIJKLMNOP, 则输

入块影射到如表2 的状态矩阵State 中。

表1

表2

加密过程主程序由下面的伪代码描述。其中的子程序SubBytes () ,ShiftRows () ,MixColumns () 和Ad2dRounKey() 将在接下来的部分介绍,密钥扩展程序( KeyExpansion) 将在下面介绍。

Cipher(bytein[4 3 4],byteout[4 3 4],wordw[4 3 (Nr+1 ) ])

begin

bytestate[4,4]

state=in;

AddRoundKey(state,w )   //SeeSec.3.1.4

forround=1step1toNr 21

  SubBytes(state)   //SeeSec.3.1.1

  ShiftRows(state)   //SeeSec.3.1.2

MixColumns(state)   //SeeSec.3.1.3

 AddRoundKey(state,w+round 3 4)

endfor

SubBytes(state)

ShiftRows(state)

AddRoundKey(state,w+Nr 3 4)

out=state

end

 S 盒变换SubBytes()

对输入矩阵的任一个元素A 做如下变换S[A]:(1) 一个元素A 从存储角度看都是一个八位的二进制数。算出前四位所代表的十六进制数x 和后四位所代表的十六进制数y。如A=11010100 时,x=c,y=4 。(2) 从AES算法给定的S2Box(16 行16 列的矩阵,其中每个元素为一个字节, 具体的S2Box 略) 中找出S[A]=S[x,y] 的值。如A=11010100 时,S[A]=S[x,y]=S[c,4]={1c}=00011101 。或直接通过下面的公式将A=b7b6b5b4b3b2b1b0 变为S[A]=b ’7b’6b’5b’4b’3b’2b’1b’0 。这里c= (c0,c1,c2,c3,c4,c5,c6,c7 ) = (0,1,1,0,0,0,1,1 ) 。

 行变换ShiftRows()

在行变换中,中间状态矩阵State 的第一行不变;第二至第四行做如下变换,即将表3 的状态矩阵变为表4的状态矩阵。

表3

变换为

表4

 列变换MixColumns()

列变换是对中间状态矩阵State 逐列进行变换。其变换为如下的矩阵运算:

经过上面的运算,原来的一列就被替换成下面的式子所表达的新列:

S(0,c )′= ({02} ×S(0,c ))  ({03} ×S(1,c ))  S(2,c )  S(3,c )

S(1,c )′=S (0,c )  ({02} ×S(1,c ))  ({03} ×S(2,c ))  S(3,c )

S(2,c )′=S (0,c )  S(1,c )  ({02} ×S(2,c ))  ({03} ×S(3,c )

S(3,c )′= ({03} ×S(0,c ))  S(1,c )  S(2,c )  ({02} ×S(3,c ))

这里为按位异或运算,其中的乘法×按照下面介绍的模乘同余规则进行计算。

列变换中要用到的模乘同余规则和我们一般用到的乘法有些不同,由于每一个元素都是一个字节,于是可把这个字节看成一个形式上的七次多项式, 即将b7b6b5b4b3b2b1b0 视为b7x7 +b 6x6 +b 5x5 +b 4x4 +b 3x3 +b2x2 +b 1x+b 0 ,如{11011001}2 ={d9} 16可以被看成是x7+x 6 +x 4 +x 3 +1 。列变换希望把一个字节变换为一个新的字节,所以需要把两个形式上的七次多项式的乘法结果变为一个新的形式上的七次多项式,然后才能将其恢复为一个字节的长度。这里采用模一个八次不可约多项式的同余乘法,即将两七次多项式的乘法结果除以这个八次不可约多项式再取其余式。在AES 中这个八次不可约多项式为m(x) =x 8 +x 4 +x 3 +x+1 。例如:(x6 +x 4 +x 2 +x+1 ) ×(x7 +x+1 ) =x 13 +x 11 +x 9 +x 8 +x 6 +x 5 +x 4 +x 3 +1(x13 +x 11 +x 9 +x 8 +x 6 +x 5 +x 4 +x 3 +1 ) mod(x8 +x 4 +x 3 +x+1 ) =x 7 + x6 +1对应为{57} ×{83}={c1} 。

 与扩展密钥的异或运算AddRoundKey()

扩展密钥只参与了这一个变换。根据加密的轮数用相应的扩展密钥的四个数据项和中间状态矩阵上的列进行按位异或。[S (0,c )′,S(1,c )′,S(2,c )′,S(3,c )′]=[S (0,c ) ,S(1,c ) ,S(2,c ) ,S(3,c ) ]XOR[W (round×nb+c ) ]

密钥扩展程序KeyExpansion

AES 算法利用外部输入密钥K(密钥串的字数为Nk) ,通过密钥扩展程序得到共4 (Nr+1 ) 字的扩展密钥w[4 ×(Nr+1 ) ] 。涉及如下三个模块:

 (1) 位置变换RotWord() 。把一个四个字节的序列[a0,a1,a2,a3] 左移一个字节变为[a1,a2,a3,a0] 。(2) SubWord() 。对一个四字节的输入字[a0,a1,a2,a3] 的每一个字节进行S 盒变换,然后作为输出(见31111) 。

(3) 变换Rcon[] 。Rcon[i] 表示32 比特字符串 [xi21 ,00,00,00] 。例如,Rcon[1]=[01000000],Rcon[2]=[02000000],Rcon[3]=[04000000],Rcon[4]=[08000000], ?,Rcon[10]=[36000000] 。(4) 扩展密钥的生成。扩展密钥的前Nk 个字就是外部密钥K;以后的字w[[i]] 等于它前一个字w[[i 21]]与前第Nk 个字w[[i 2Nk]] 的异或,即w[[i]]=w[[i 21]]XORw[[i 2Nk]] 。但是若i 为Nk 的倍数, 则w[i]=w[i2 Nk]XORSubWord ( RotWord(w[[i 21]] )) XORRcon[i/Nk] 。

举例:

①设外部输入的加密密钥CipherKey=2b7e1516

28aed2a6abf7158809cf4f3c

Nk=4, 则w0=2b7e1516w1=28aed2a6w2=abf71588w3=09cf4f3c;

w4=w0XORSubWord (RotWord(w3)) XORRcon[4/Nk]=a0fafe17;

w5=w[[i 21]]XORw[[i 2Nk]=w[[4]]XORw[[1]]=88542cb1; ?

w43=b6630ca6 。

②输入明文:00112233445566778899aabbccddeeff;

输入密钥:000102030405060708090a0b0c0d0e0f

各轮密文:

round[0].input00112233445566778899aabbccddeeff;

round[0].k sch000102030405060708090a0b0c0d0e0f

round[1].start00102030405060708090a0b0c0d0e0f0

?

round[10].output69c4e0d86a7b0430d8cdb78070b4c55a

OUTPUT:69c4e0d86a7b0430d8cdb78070b4c55a

 对文件的加密/ 解密

在完成了DES分组加密算法实现的基础上,现在利用密文分组链接(CBC) 方式将其用于对文件的加密/ 解密(密钥长度可选) ,程序的操作步骤如下:(1) 根据文件处理方式选择模块,选择对文件加密、对文件解密或是退出程序。(2) 输入密钥K的长度(128 比特、192 比特、256 比特) 和密钥。(3) 用密钥扩展程序对密钥加以扩展。128 比特、192 比特、256 比特密钥分别对应KeyExpansion128(key) ,KeyExpansion192(key) ,KeyExpansion256 (key) ,分别生成

72bytes,204bytes,236bytes 的扩展密钥。(4) 创建加密/ 解密文件。文件都是以文本格式存

储的。(5) 从等待加密/ 解密文件中取出16 字节。若是未取出16 个字节文件就结束,则在结束处标上文件结束符。把取出的数据放入中间变量(STATE) 中。(6) 根据密钥的长度对STATE中的数据进行加密/解密。128 比特、192 比特、256 比特分别对应Cipher128( InvCipher128) ,Cipher192 ( InvCipher192) ,Cipher256 ( In2vCipher256) 。并把加密/ 解密后的数据保存在STATE中。把STATE中的数据写入加密/ 解密文件中。(7) 如果等待加密/ 解密的文件已经结束,则关闭文件,回到操作(1) ;否则回到操作(5) 。这样程序就实现了对一个文件的加密/ 解密操作。

 结束语

本文在研究分析了AES 加密原理的基础上着重说明了AES算法实现的具体步骤,包括扩展密钥的异或运算、AddRoundKey() 、列变换MixColumns() 、行变换ShiftRows() 、S 盒变换SubBytes() 等,以及各步骤的轮换顺序和最重要的密钥扩展程序KeyExpansion 等,并用C语言完整地实现了AES算法。


AES在C语言上实现程序

#include <string.h>

#include <stdio.h>

#ifndef uint8

#define uint8  unsigned char

#endif

#ifndef uint32

#define uint32 unsigned long int

#endif

typedef struct

{

    uint32 erk[64];     /* encryption round keys */

    uint32 drk[64];     /* decryption round keys */

    int nr;             /* number of rounds */

}

aes_context;

//#define TEST

/* uncomment the following line to use pre-computed tables */

/* otherwise the tables will be generated at the first run */

/* #define FIXED_TABLES */

#ifndef FIXED_TABLES

/* forward S-box & tables */

uint32 FSb[256];

uint32 FT0[256];

uint32 FT1[256];

uint32 FT2[256];

uint32 FT3[256];

/* reverse S-box & tables */

uint32 RSb[256];

uint32 RT0[256];

uint32 RT1[256];

uint32 RT2[256];

uint32 RT3[256];

/* round constants */

uint32 RCON[10];

/* tables generation flag */

int do_init = 1;

/* tables generation routine */

#define ROTR8(x) ( ( ( x << 24 ) & 0xFFFFFFFF ) | \

                   ( ( x & 0xFFFFFFFF ) >>  8 ) )

#define XTIME(x) ( ( x <<  1 ) ^ ( ( x & 0x80 ) ? 0x1B : 0x00 ) )

#define MUL(x,y) ( ( x &&  y ) ? pow[(log[x] + log[y]) % 255] : 0 )

void aes_gen_tables( void )

{

    int i;

    uint8 x, y;

    uint8 pow[256];

    uint8 log[256];

    /* compute pow and log tables over GF(2^8) */

    for( i = 0, x = 1; i < 256; i++, x ^= XTIME( x ) )

    {

        pow[i] = x;

        log[x] = i;

    }

    /* calculate the round constants */

    for( i = 0, x = 1; i < 10; i++, x = XTIME( x ) )

    {

        RCON[i] = (uint32) x << 24;

    }

    /* generate the forward and reverse S-boxes */

    FSb[0x00] = 0x63;

    RSb[0x63] = 0x00;

    for( i = 1; i < 256; i++ )

    {

        x = pow[255 - log[i]];

        y = x;  y = ( y << 1 ) | ( y >> 7 );

        x ^= y; y = ( y << 1 ) | ( y >> 7 );

        x ^= y; y = ( y << 1 ) | ( y >> 7 );

        x ^= y; y = ( y << 1 ) | ( y >> 7 );

        x ^= y ^ 0x63;

        FSb[i] = x;

        RSb[x] = i;

    }

    /* generate the forward and reverse tables */

    for( i = 0; i < 256; i++ )

    {

        x = (unsigned char) FSb[i]; y = XTIME( x );

        FT0[i] =   (uint32) ( x ^ y ) ^

                 ( (uint32) x <<  8 ) ^

                 ( (uint32) x << 16 ) ^

                 ( (uint32) y << 24 );

        FT0[i] &= 0xFFFFFFFF;

        FT1[i] = ROTR8( FT0[i] );

        FT2[i] = ROTR8( FT1[i] );

        FT3[i] = ROTR8( FT2[i] );

        y = (unsigned char) RSb[i];

        RT0[i] = ( (uint32) MUL( 0x0B, y )       ) ^

                 ( (uint32) MUL( 0x0D, y ) <<  8 ) ^

                 ( (uint32) MUL( 0x09, y ) << 16 ) ^

                 ( (uint32) MUL( 0x0E, y ) << 24 );

        RT0[i] &= 0xFFFFFFFF;

        RT1[i] = ROTR8( RT0[i] );

        RT2[i] = ROTR8( RT1[i] );

        RT3[i] = ROTR8( RT2[i] );

    }

}

#else

/* forward S-box */

static const uint32 FSb[256] =

{

    0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,

    0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,

    0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,

    0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,

    0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,

    0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,

    0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,

    0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,

    0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,

    0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,

    0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,

    0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,

    0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,

    0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,

    0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,

    0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,

    0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,

    0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,

    0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,

    0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,

    0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,

    0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,

    0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,

    0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,

    0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,

    0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,

    0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,

    0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,

    0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,

    0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,

    0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,

    0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16

};

/* forward tables */

#define FT \

\

    V(C6,63,63,A5), V(F8,7C,7C,84), V(EE,77,77,99), V(F6,7B,7B,8D), \

    V(FF,F2,F2,0D), V(D6,6B,6B,BD), V(DE,6F,6F,B1), V(91,C5,C5,54), \

    V(60,30,30,50), V(02,01,01,03), V(CE,67,67,A9), V(56,2B,2B,7D), \

    V(E7,FE,FE,19), V(B5,D7,D7,62), V(4D,AB,AB,E6), V(EC,76,76,9A), \

    V(8F,CA,CA,45), V(1F,82,82,9D), V(89,C9,C9,40), V(FA,7D,7D,87), \

    V(EF,FA,FA,15), V(B2,59,59,EB), V(8E,47,47,C9), V(FB,F0,F0,0B), \

    V(41,AD,AD,EC), V(B3,D4,D4,67), V(5F,A2,A2,FD), V(45,AF,AF,EA), \

    V(23,9C,9C,BF), V(53,A4,A4,F7), V(E4,72,72,96), V(9B,C0,C0,5B), \

    V(75,B7,B7,C2), V(E1,FD,FD,1C), V(3D,93,93,AE), V(4C,26,26,6A), \

    V(6C,36,36,5A), V(7E,3F,3F,41), V(F5,F7,F7,02), V(83,CC,CC,4F), \

    V(68,34,34,5C), V(51,A5,A5,F4), V(D1,E5,E5,34), V(F9,F1,F1,08), \

    V(E2,71,71,93), V(AB,D8,D8,73), V(62,31,31,53), V(2A,15,15,3F), \

    V(08,04,04,0C), V(95,C7,C7,52), V(46,23,23,65), V(9D,C3,C3,5E), \

    V(30,18,18,28), V(37,96,96,A1), V(0A,05,05,0F), V(2F,9A,9A,B5), \

    V(0E,07,07,09), V(24,12,12,36), V(1B,80,80,9B), V(DF,E2,E2,3D), \

    V(CD,EB,EB,26), V(4E,27,27,69), V(7F,B2,B2,CD), V(EA,75,75,9F), \

    V(12,09,09,1B), V(1D,83,83,9E), V(58,2C,2C,74), V(34,1A,1A,2E), \

    V(36,1B,1B,2D), V(DC,6E,6E,B2), V(B4,5A,5A,EE), V(5B,A0,A0,FB), \

    V(A4,52,52,F6), V(76,3B,3B,4D), V(B7,D6,D6,61), V(7D,B3,B3,CE), \

    V(52,29,29,7B), V(DD,E3,E3,3E), V(5E,2F,2F,71), V(13,84,84,97), \

    V(A6,53,53,F5), V(B9,D1,D1,68), V(00,00,00,00), V(C1,ED,ED,2C), \

    V(40,20,20,60), V(E3,FC,FC,1F), V(79,B1,B1,C8), V(B6,5B,5B,ED), \

    V(D4,6A,6A,BE), V(8D,CB,CB,46), V(67,BE,BE,D9), V(72,39,39,4B), \

    V(94,4A,4A,DE), V(98,4C,4C,D4), V(B0,58,58,E8), V(85,CF,CF,4A), \

    V(BB,D0,D0,6B), V(C5,EF,EF,2A), V(4F,AA,AA,E5), V(ED,FB,FB,16), \

    V(86,43,43,C5), V(9A,4D,4D,D7), V(66,33,33,55), V(11,85,85,94), \

    V(8A,45,45,CF), V(E9,F9,F9,10), V(04,02,02,06), V(FE,7F,7F,81), \

    V(A0,50,50,F0), V(78,3C,3C,44), V(25,9F,9F,BA), V(4B,A8,A8,E3), \

    V(A2,51,51,F3), V(5D,A3,A3,FE), V(80,40,40,C0), V(05,8F,8F,8A), \

    V(3F,92,92,AD), V(21,9D,9D,BC), V(70,38,38,48), V(F1,F5,F5,04), \

    V(63,BC,BC,DF), V(77,B6,B6,C1), V(AF,DA,DA,75), V(42,21,21,63), \

    V(20,10,10,30), V(E5,FF,FF,1A), V(FD,F3,F3,0E), V(BF,D2,D2,6D), \

    V(81,CD,CD,4C), V(18,0C,0C,14), V(26,13,13,35), V(C3,EC,EC,2F), \

    V(BE,5F,5F,E1), V(35,97,97,A2), V(88,44,44,CC), V(2E,17,17,39), \

    V(93,C4,C4,57), V(55,A7,A7,F2), V(FC,7E,7E,82), V(7A,3D,3D,47), \

    V(C8,64,64,AC), V(BA,5D,5D,E7), V(32,19,19,2B), V(E6,73,73,95), \

    V(C0,60,60,A0), V(19,81,81,98), V(9E,4F,4F,D1), V(A3,DC,DC,7F), \

    V(44,22,22,66), V(54,2A,2A,7E), V(3B,90,90,AB), V(0B,88,88,83), \

    V(8C,46,46,CA), V(C7,EE,EE,29), V(6B,B8,B8,D3), V(28,14,14,3C), \

    V(A7,DE,DE,79), V(BC,5E,5E,E2), V(16,0B,0B,1D), V(AD,DB,DB,76), \

    V(DB,E0,E0,3B), V(64,32,32,56), V(74,3A,3A,4E), V(14,0A,0A,1E), \

    V(92,49,49,DB), V(0C,06,06,0A), V(48,24,24,6C), V(B8,5C,5C,E4), \

    V(9F,C2,C2,5D), V(BD,D3,D3,6E), V(43,AC,AC,EF), V(C4,62,62,A6), \

    V(39,91,91,A8), V(31,95,95,A4), V(D3,E4,E4,37), V(F2,79,79,8B), \

    V(D5,E7,E7,32), V(8B,C8,C8,43), V(6E,37,37,59), V(DA,6D,6D,B7), \

    V(01,8D,8D,8C), V(B1,D5,D5,64), V(9C,4E,4E,D2), V(49,A9,A9,E0), \

    V(D8,6C,6C,B4), V(AC,56,56,FA), V(F3,F4,F4,07), V(CF,EA,EA,25), \

    V(CA,65,65,AF), V(F4,7A,7A,8E), V(47,AE,AE,E9), V(10,08,08,18), \

    V(6F,BA,BA,D5), V(F0,78,78,88), V(4A,25,25,6F), V(5C,2E,2E,72), \

    V(38,1C,1C,24), V(57,A6,A6,F1), V(73,B4,B4,C7), V(97,C6,C6,51), \

    V(CB,E8,E8,23), V(A1,DD,DD,7C), V(E8,74,74,9C), V(3E,1F,1F,21), \

    V(96,4B,4B,DD), V(61,BD,BD,DC), V(0D,8B,8B,86), V(0F,8A,8A,85), \

    V(E0,70,70,90), V(7C,3E,3E,42), V(71,B5,B5,C4), V(CC,66,66,AA), \

    V(90,48,48,D8), V(06,03,03,05), V(F7,F6,F6,01), V(1C,0E,0E,12), \

    V(C2,61,61,A3), V(6A,35,35,5F), V(AE,57,57,F9), V(69,B9,B9,D0), \

    V(17,86,86,91), V(99,C1,C1,58), V(3A,1D,1D,27), V(27,9E,9E,B9), \

    V(D9,E1,E1,38), V(EB,F8,F8,13), V(2B,98,98,B3), V(22,11,11,33), \

    V(D2,69,69,BB), V(A9,D9,D9,70), V(07,8E,8E,89), V(33,94,94,A7), \

    V(2D,9B,9B,B6), V(3C,1E,1E,22), V(15,87,87,92), V(C9,E9,E9,20), \

    V(87,CE,CE,49), V(AA,55,55,FF), V(50,28,28,78), V(A5,DF,DF,7A), \

    V(03,8C,8C,8F), V(59,A1,A1,F8), V(09,89,89,80), V(1A,0D,0D,17), \

    V(65,BF,BF,DA), V(D7,E6,E6,31), V(84,42,42,C6), V(D0,68,68,B8), \

    V(82,41,41,C3), V(29,99,99,B0), V(5A,2D,2D,77), V(1E,0F,0F,11), \

    V(7B,B0,B0,CB), V(A8,54,54,FC), V(6D,BB,BB,D6), V(2C,16,16,3A)

#define V(a,b,c,d) 0x##a##b##c##d

static const uint32 FT0[256] = { FT };

#undef V

#define V(a,b,c,d) 0x##d##a##b##c

static const uint32 FT1[256] = { FT };

#undef V

#define V(a,b,c,d) 0x##c##d##a##b

static const uint32 FT2[256] = { FT };

#undef V

#define V(a,b,c,d) 0x##b##c##d##a

static const uint32 FT3[256] = { FT };

#undef V

#undef FT

/* reverse S-box */

static const uint32 RSb[256] =

{

    0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38,

    0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,

    0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,

    0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,

    0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D,

    0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,

    0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2,

    0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,

    0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,

    0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,

    0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA,

    0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,

    0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A,

    0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,

    0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,

    0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,

    0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA,

    0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,

    0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85,

    0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,

    0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,

    0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,

    0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20,

    0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,

    0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31,

    0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,

    0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,

    0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,

    0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0,

    0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,

    0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26,

    0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D

};

/* reverse tables */

#define RT \

\

    V(51,F4,A7,50), V(7E,41,65,53), V(1A,17,A4,C3), V(3A,27,5E,96), \

    V(3B,AB,6B,CB), V(1F,9D,45,F1), V(AC,FA,58,AB), V(4B,E3,03,93), \

    V(20,30,FA,55), V(AD,76,6D,F6), V(88,CC,76,91), V(F5,02,4C,25), \

    V(4F,E5,D7,FC), V(C5,2A,CB,D7), V(26,35,44,80), V(B5,62,A3,8F), \

    V(DE,B1,5A,49), V(25,BA,1B,67), V(45,EA,0E,98), V(5D,FE,C0,E1), \

    V(C3,2F,75,02), V(81,4C,F0,12), V(8D,46,97,A3), V(6B,D3,F9,C6), \

    V(03,8F,5F,E7), V(15,92,9C,95), V(BF,6D,7A,EB), V(95,52,59,DA), \

    V(D4,BE,83,2D), V(58,74,21,D3), V(49,E0,69,29), V(8E,C9,C8,44), \

    V(75,C2,89,6A), V(F4,8E,79,78), V(99,58,3E,6B), V(27,B9,71,DD), \

    V(BE,E1,4F,B6), V(F0,88,AD,17), V(C9,20,AC,66), V(7D,CE,3A,B4), \

    V(63,DF,4A,18), V(E5,1A,31,82), V(97,51,33,60), V(62,53,7F,45), \

    V(B1,64,77,E0), V(BB,6B,AE,84), V(FE,81,A0,1C), V(F9,08,2B,94), \

    V(70,48,68,58), V(8F,45,FD,19), V(94,DE,6C,87), V(52,7B,F8,B7), \

    V(AB,73,D3,23), V(72,4B,02,E2), V(E3,1F,8F,57), V(66,55,AB,2A), \

    V(B2,EB,28,07), V(2F,B5,C2,03), V(86,C5,7B,9A), V(D3,37,08,A5), \

    V(30,28,87,F2), V(23,BF,A5,B2), V(02,03,6A,BA), V(ED,16,82,5C), \

    V(8A,CF,1C,2B), V(A7,79,B4,92), V(F3,07,F2,F0), V(4E,69,E2,A1), \

    V(65,DA,F4,CD), V(06,05,BE,D5), V(D1,34,62,1F), V(C4,A6,FE,8A), \

    V(34,2E,53,9D), V(A2,F3,55,A0), V(05,8A,E1,32), V(A4,F6,EB,75), \

    V(0B,83,EC,39), V(40,60,EF,AA), V(5E,71,9F,06), V(BD,6E,10,51), \

    V(3E,21,8A,F9), V(96,DD,06,3D), V(DD,3E,05,AE), V(4D,E6,BD,46), \

    V(91,54,8D,B5), V(71,C4,5D,05), V(04,06,D4,6F), V(60,50,15,FF), \

    V(19,98,FB,24), V(D6,BD,E9,97), V(89,40,43,CC), V(67,D9,9E,77), \

    V(B0,E8,42,BD), V(07,89,8B,88), V(E7,19,5B,38), V(79,C8,EE,DB), \

    V(A1,7C,0A,47), V(7C,42,0F,E9), V(F8,84,1E,C9), V(00,00,00,00), \

    V(09,80,86,83), V(32,2B,ED,48), V(1E,11,70,AC), V(6C,5A,72,4E), \

    V(FD,0E,FF,FB), V(0F,85,38,56), V(3D,AE,D5,1E), V(36,2D,39,27), \

    V(0A,0F,D9,64), V(68,5C,A6,21), V(9B,5B,54,D1), V(24,36,2E,3A), \

    V(0C,0A,67,B1), V(93,57,E7,0F), V(B4,EE,96,D2), V(1B,9B,91,9E), \

    V(80,C0,C5,4F), V(61,DC,20,A2), V(5A,77,4B,69), V(1C,12,1A,16), \

    V(E2,93,BA,0A), V(C0,A0,2A,E5), V(3C,22,E0,43), V(12,1B,17,1D), \

    V(0E,09,0D,0B), V(F2,8B,C7,AD), V(2D,B6,A8,B9), V(14,1E,A9,C8), \

    V(57,F1,19,85), V(AF,75,07,4C), V(EE,99,DD,BB), V(A3,7F,60,FD), \

    V(F7,01,26,9F), V(5C,72,F5,BC), V(44,66,3B,C5), V(5B,FB,7E,34), \

    V(8B,43,29,76), V(CB,23,C6,DC), V(B6,ED,FC,68), V(B8,E4,F1,63), \

    V(D7,31,DC,CA), V(42,63,85,10), V(13,97,22,40), V(84,C6,11,20), \

    V(85,4A,24,7D), V(D2,BB,3D,F8), V(AE,F9,32,11), V(C7,29,A1,6D), \

    V(1D,9E,2F,4B), V(DC,B2,30,F3), V(0D,86,52,EC), V(77,C1,E3,D0), \

    V(2B,B3,16,6C), V(A9,70,B9,99), V(11,94,48,FA), V(47,E9,64,22), \

    V(A8,FC,8C,C4), V(A0,F0,3F,1A), V(56,7D,2C,D8), V(22,33,90,EF), \

    V(87,49,4E,C7), V(D9,38,D1,C1), V(8C,CA,A2,FE), V(98,D4,0B,36), \

    V(A6,F5,81,CF), V(A5,7A,DE,28), V(DA,B7,8E,26), V(3F,AD,BF,A4), \

    V(2C,3A,9D,E4), V(50,78,92,0D), V(6A,5F,CC,9B), V(54,7E,46,62), \

    V(F6,8D,13,C2), V(90,D8,B8,E8), V(2E,39,F7,5E), V(82,C3,AF,F5), \

    V(9F,5D,80,BE), V(69,D0,93,7C), V(6F,D5,2D,A9), V(CF,25,12,B3), \

    V(C8,AC,99,3B), V(10,18,7D,A7), V(E8,9C,63,6E), V(DB,3B,BB,7B), \

    V(CD,26,78,09), V(6E,59,18,F4), V(EC,9A,B7,01), V(83,4F,9A,A8), \

    V(E6,95,6E,65), V(AA,FF,E6,7E), V(21,BC,CF,08), V(EF,15,E8,E6), \

    V(BA,E7,9B,D9), V(4A,6F,36,CE), V(EA,9F,09,D4), V(29,B0,7C,D6), \

    V(31,A4,B2,AF), V(2A,3F,23,31), V(C6,A5,94,30), V(35,A2,66,C0), \

    V(74,4E,BC,37), V(FC,82,CA,A6), V(E0,90,D0,B0), V(33,A7,D8,15), \

    V(F1,04,98,4A), V(41,EC,DA,F7), V(7F,CD,50,0E), V(17,91,F6,2F), \

    V(76,4D,D6,8D), V(43,EF,B0,4D), V(CC,AA,4D,54), V(E4,96,04,DF), \

    V(9E,D1,B5,E3), V(4C,6A,88,1B), V(C1,2C,1F,B8), V(46,65,51,7F), \

    V(9D,5E,EA,04), V(01,8C,35,5D), V(FA,87,74,73), V(FB,0B,41,2E), \

    V(B3,67,1D,5A), V(92,DB,D2,52), V(E9,10,56,33), V(6D,D6,47,13), \

    V(9A,D7,61,8C), V(37,A1,0C,7A), V(59,F8,14,8E), V(EB,13,3C,89), \

    V(CE,A9,27,EE), V(B7,61,C9,35), V(E1,1C,E5,ED), V(7A,47,B1,3C), \

    V(9C,D2,DF,59), V(55,F2,73,3F), V(18,14,CE,79), V(73,C7,37,BF), \

    V(53,F7,CD,EA), V(5F,FD,AA,5B), V(DF,3D,6F,14), V(78,44,DB,86), \

    V(CA,AF,F3,81), V(B9,68,C4,3E), V(38,24,34,2C), V(C2,A3,40,5F), \

    V(16,1D,C3,72), V(BC,E2,25,0C), V(28,3C,49,8B), V(FF,0D,95,41), \

    V(39,A8,01,71), V(08,0C,B3,DE), V(D8,B4,E4,9C), V(64,56,C1,90), \

    V(7B,CB,84,61), V(D5,32,B6,70), V(48,6C,5C,74), V(D0,B8,57,42)

#define V(a,b,c,d) 0x##a##b##c##d

static const uint32 RT0[256] = { RT };

#undef V

#define V(a,b,c,d) 0x##d##a##b##c

static const uint32 RT1[256] = { RT };

#undef V

#define V(a,b,c,d) 0x##c##d##a##b

static const uint32 RT2[256] = { RT };

#undef V

#define V(a,b,c,d) 0x##b##c##d##a

static const uint32 RT3[256] = { RT };

#undef V

#undef RT

/* round constants */

static const uint32 RCON[10] =

{

    0x01000000, 0x02000000, 0x04000000, 0x08000000,

    0x10000000, 0x20000000, 0x40000000, 0x80000000,

    0x1B000000, 0x36000000

};

int do_init = 0;

void aes_gen_tables( void )

{

}

#endif

/* platform-independant 32-bit integer manipulation macros */

#define GET_UINT32(n,b,i)                       \

{                                               \

    (n) = ( (uint32) (b)[(i)    ] << 24 )       \

        | ( (uint32) (b)[(i) + 1] << 16 )       \

        | ( (uint32) (b)[(i) + 2] <<  8 )       \

        | ( (uint32) (b)[(i) + 3]       );      \

}

#define PUT_UINT32(n,b,i)                       \

{                                               \

    (b)[(i)    ] = (uint8) ( (n) >> 24 );       \

    (b)[(i) + 1] = (uint8) ( (n) >> 16 );       \

    (b)[(i) + 2] = (uint8) ( (n) >>  8 );       \

    (b)[(i) + 3] = (uint8) ( (n)       );       \

}

/* decryption key schedule tables */

int KT_init = 1;

uint32 KT0[256];

uint32 KT1[256];

uint32 KT2[256];

uint32 KT3[256];

/* AES key scheduling routine */

int aes_set_key( aes_context *ctx, uint8 *key)

{

    int i;

    uint32 *RK, *SK;

    if( do_init )

    {

        aes_gen_tables();

        do_init = 0;

    }

    ctx->nr = 14;

    /*switch( nbits )

    {

        case 128: ctx->nr = 10; break;

        case 192: ctx->nr = 12; break;

        case 256: ctx->nr = 14; break;

        default : return( 1 );

    }*/

    RK = ctx->erk;

    for( i = 0; i < 8; i++ )

    {

        GET_UINT32( RK[i], key, i * 4 );

    }

        for( i = 0; i < 7; i++, RK += 8 )

        {

            RK[8]  = RK[0] ^ RCON[i] ^

                        ( FSb[ (uint8) ( RK[7] >> 16 ) ] << 24 ) ^

                        ( FSb[ (uint8) ( RK[7] >>  8 ) ] << 16 ) ^

                        ( FSb[ (uint8) ( RK[7]       ) ] <<  8 ) ^

                        ( FSb[ (uint8) ( RK[7] >> 24 ) ]       );

            RK[9]  = RK[1] ^ RK[8];

            RK[10] = RK[2] ^ RK[9];

            RK[11] = RK[3] ^ RK[10];

            RK[12] = RK[4] ^

                        ( FSb[ (uint8) ( RK[11] >> 24 ) ] << 24 ) ^

                        ( FSb[ (uint8) ( RK[11] >> 16 ) ] << 16 ) ^

                        ( FSb[ (uint8) ( RK[11] >>  8 ) ] <<  8 ) ^

                        ( FSb[ (uint8) ( RK[11]       ) ]       );

            RK[13] = RK[5] ^ RK[12];

            RK[14] = RK[6] ^ RK[13];

            RK[15] = RK[7] ^ RK[14];

        }

    /* setup decryption round keys */

    if( KT_init )

    {

        for( i = 0; i < 256; i++ )

        {

            KT0[i] = RT0[ FSb[i] ];

            KT1[i] = RT1[ FSb[i] ];

            KT2[i] = RT2[ FSb[i] ];

            KT3[i] = RT3[ FSb[i] ];

        }

        KT_init = 0;

    }

    SK = ctx->drk;

    *SK++ = *RK++;

    *SK++ = *RK++;

    *SK++ = *RK++;

    *SK++ = *RK++;

    for( i = 1; i < 14; i++ )

    {

        RK -= 8;

        *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^

                KT1[ (uint8) ( *RK >> 16 ) ] ^

                KT2[ (uint8) ( *RK >>  8 ) ] ^

                KT3[ (uint8) ( *RK       ) ]; RK++;

        *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^

                KT1[ (uint8) ( *RK >> 16 ) ] ^

                KT2[ (uint8) ( *RK >>  8 ) ] ^

                KT3[ (uint8) ( *RK       ) ]; RK++;

        *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^

                KT1[ (uint8) ( *RK >> 16 ) ] ^

                KT2[ (uint8) ( *RK >>  8 ) ] ^

                KT3[ (uint8) ( *RK       ) ]; RK++;

        *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^

                KT1[ (uint8) ( *RK >> 16 ) ] ^

                KT2[ (uint8) ( *RK >>  8 ) ] ^

                KT3[ (uint8) ( *RK       ) ]; RK++;

    }

    RK -= 8;

    *SK++ = *RK++;

    *SK++ = *RK++;

    *SK++ = *RK++;

    *SK++ = *RK++;

    return( 0 );

}

/* AES 256-bit block encryption routine */

void aes_encrypt( aes_context *ctx, uint8 input[16], uint8 output[16] )

{

    uint32 *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;

    RK = ctx->erk;

    GET_UINT32( X0, input,  0 ); X0 ^= RK[0];

    GET_UINT32( X1, input,  4 ); X1 ^= RK[1];

    GET_UINT32( X2, input,  8 ); X2 ^= RK[2];

    GET_UINT32( X3, input, 12 ); X3 ^= RK[3];

#define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3)     \

{                                               \

    RK += 4;                                    \

                                                \

    X0 = RK[0] ^ FT0[ (uint8) ( Y0 >> 24 ) ] ^  \

                 FT1[ (uint8) ( Y1 >> 16 ) ] ^  \

                 FT2[ (uint8) ( Y2 >>  8 ) ] ^  \

                 FT3[ (uint8) ( Y3       ) ];   \

                                                \

    X1 = RK[1] ^ FT0[ (uint8) ( Y1 >> 24 ) ] ^  \

                 FT1[ (uint8) ( Y2 >> 16 ) ] ^  \

                 FT2[ (uint8) ( Y3 >>  8 ) ] ^  \

                 FT3[ (uint8) ( Y0       ) ];   \

                                                \

    X2 = RK[2] ^ FT0[ (uint8) ( Y2 >> 24 ) ] ^  \

                 FT1[ (uint8) ( Y3 >> 16 ) ] ^  \

                 FT2[ (uint8) ( Y0 >>  8 ) ] ^  \

                 FT3[ (uint8) ( Y1       ) ];   \

                                                \

    X3 = RK[3] ^ FT0[ (uint8) ( Y3 >> 24 ) ] ^  \

                 FT1[ (uint8) ( Y0 >> 16 ) ] ^  \

                 FT2[ (uint8) ( Y1 >>  8 ) ] ^  \

                 FT3[ (uint8) ( Y2       ) ];   \

}

    AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 1 */

    AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 2 */

    AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 3 */

    AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 4 */

    AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 5 */

    AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 6 */

    AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 7 */

    AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 8 */

    AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 9 */

   // if( ctx->nr > 10 )

    //{

        AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );   /* round 10 */

        AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );   /* round 11 */

    //}

        AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );   /* round 12 */

        AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );   /* round 13 */

    /* last round */

    RK += 4;

    X0 = RK[0] ^ ( FSb[ (uint8) ( Y0 >> 24 ) ] << 24 ) ^

                 ( FSb[ (uint8) ( Y1 >> 16 ) ] << 16 ) ^

                 ( FSb[ (uint8) ( Y2 >>  8 ) ] <<  8 ) ^

                 ( FSb[ (uint8) ( Y3       ) ]       );

    X1 = RK[1] ^ ( FSb[ (uint8) ( Y1 >> 24 ) ] << 24 ) ^

                 ( FSb[ (uint8) ( Y2 >> 16 ) ] << 16 ) ^

                 ( FSb[ (uint8) ( Y3 >>  8 ) ] <<  8 ) ^

                 ( FSb[ (uint8) ( Y0       ) ]       );

    X2 = RK[2] ^ ( FSb[ (uint8) ( Y2 >> 24 ) ] << 24 ) ^

                 ( FSb[ (uint8) ( Y3 >> 16 ) ] << 16 ) ^

                 ( FSb[ (uint8) ( Y0 >>  8 ) ] <<  8 ) ^

                 ( FSb[ (uint8) ( Y1       ) ]       );

    X3 = RK[3] ^ ( FSb[ (uint8) ( Y3 >> 24 ) ] << 24 ) ^

                 ( FSb[ (uint8) ( Y0 >> 16 ) ] << 16 ) ^

                 ( FSb[ (uint8) ( Y1 >>  8 ) ] <<  8 ) ^

                 ( FSb[ (uint8) ( Y2       ) ]       );

    PUT_UINT32( X0, output,  0 );

    PUT_UINT32( X1, output,  4 );

    PUT_UINT32( X2, output,  8 );

    PUT_UINT32( X3, output, 12 );

}

/* AES 256-bit block decryption routine */

void aes_decrypt( aes_context *ctx, uint8 input[16], uint8 output[16] )

{

    uint32 *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;

    RK = ctx->drk;

    GET_UINT32( X0, input,  0 ); X0 ^= RK[0];

    GET_UINT32( X1, input,  4 ); X1 ^= RK[1];

    GET_UINT32( X2, input,  8 ); X2 ^= RK[2];

    GET_UINT32( X3, input, 12 ); X3 ^= RK[3];

#define AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3)     \

{                                               \

    RK += 4;                                    \

                                                \

    X0 = RK[0] ^ RT0[ (uint8) ( Y0 >> 24 ) ] ^  \

                 RT1[ (uint8) ( Y3 >> 16 ) ] ^  \

                 RT2[ (uint8) ( Y2 >>  8 ) ] ^  \

                 RT3[ (uint8) ( Y1       ) ];   \

                                                \

    X1 = RK[1] ^ RT0[ (uint8) ( Y1 >> 24 ) ] ^  \

                 RT1[ (uint8) ( Y0 >> 16 ) ] ^  \

                 RT2[ (uint8) ( Y3 >>  8 ) ] ^  \

                 RT3[ (uint8) ( Y2       ) ];   \

                                                \

    X2 = RK[2] ^ RT0[ (uint8) ( Y2 >> 24 ) ] ^  \

                 RT1[ (uint8) ( Y1 >> 16 ) ] ^  \

                 RT2[ (uint8) ( Y0 >>  8 ) ] ^  \

                 RT3[ (uint8) ( Y3       ) ];   \

                                                \

    X3 = RK[3] ^ RT0[ (uint8) ( Y3 >> 24 ) ] ^  \

                 RT1[ (uint8) ( Y2 >> 16 ) ] ^  \

                 RT2[ (uint8) ( Y1 >>  8 ) ] ^  \

                 RT3[ (uint8) ( Y0       ) ];   \

}

    AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 1 */

    AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 2 */

    AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 3 */

    AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 4 */

    AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 5 */

    AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 6 */

    AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 7 */

    AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 8 */

    AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 9 */

   // if( ctx->nr > 10 )

    //{

        AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );   /* round 10 */

        AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );   /* round 11 */

    //}

        AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );   /* round 12 */

        AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );   /* round 13 */

    /* last round */

    RK += 4;

    X0 = RK[0] ^ ( RSb[ (uint8) ( Y0 >> 24 ) ] << 24 ) ^

                 ( RSb[ (uint8) ( Y3 >> 16 ) ] << 16 ) ^

                 ( RSb[ (uint8) ( Y2 >>  8 ) ] <<  8 ) ^

                 ( RSb[ (uint8) ( Y1       ) ]       );

    X1 = RK[1] ^ ( RSb[ (uint8) ( Y1 >> 24 ) ] << 24 ) ^

                 ( RSb[ (uint8) ( Y0 >> 16 ) ] << 16 ) ^

                 ( RSb[ (uint8) ( Y3 >>  8 ) ] <<  8 ) ^

                 ( RSb[ (uint8) ( Y2       ) ]       );

    X2 = RK[2] ^ ( RSb[ (uint8) ( Y2 >> 24 ) ] << 24 ) ^

                 ( RSb[ (uint8) ( Y1 >> 16 ) ] << 16 ) ^

                 ( RSb[ (uint8) ( Y0 >>  8 ) ] <<  8 ) ^

                 ( RSb[ (uint8) ( Y3       ) ]       );

    X3 = RK[3] ^ ( RSb[ (uint8) ( Y3 >> 24 ) ] << 24 ) ^

                 ( RSb[ (uint8) ( Y2 >> 16 ) ] << 16 ) ^

                 ( RSb[ (uint8) ( Y1 >>  8 ) ] <<  8 ) ^

                 ( RSb[ (uint8) ( Y0       ) ]       );

    PUT_UINT32( X0, output,  0 );

    PUT_UINT32( X1, output,  4 );

    PUT_UINT32( X2, output,  8 );

    PUT_UINT32( X3, output, 12 );

}

int main( void )

{

    //int m, n, i, j;

    int  i;

    //char c;

    aes_context ctx;

    unsigned char buf[16];

    unsigned char key[32]={'f','e','f','2','f','e','g','h','b','v','c','x','z','q','e','w','f','e','f','2','f','e','g','h','f','e','f','2','f','e','g','h'};

    aes_set_key( &ctx, key );

         for(i=0; i<16; i++)

    {

         buf[i]='d';

    }

    printf("the data to encrypt:\n");

    for(i=0;i<16;i++)

    {

         printf("%02x ",buf[i]);

         }

    printf("\n");

    aes_encrypt( &ctx, buf, buf );

         printf("The encrypted data is:\n");

         for(i=0;i<16;i++)

         {

         printf("%02x ",buf[i]);

         }

         printf("\n");

         printf("\n");

  //  aes_set_key( &ctx, key, 128 + n * 64 );

    aes_decrypt( &ctx, buf, buf );

         printf("The decrypted data is:\n");

         for(i=0;i<16;i++)

         {

         printf("%02x ",buf[i]);

         }

         printf("\n");

    return( 0 );

}

//#endif

更多相关推荐:
关于理想的名言名句

关于理想的名言名句TheonlylimittoourrealizationoftomorrowwillbeourdoubtsoftodayFranklinRooseveltAmericanpresident实现...

关于理想的名言名句

关于理想的名言名句TheonlylimittoourrealizationoftomorrowwillbeourdoubtsoftodayFranklinRooseveltAmericanpresident实现...

关于理想的名言摘抄大全100句

关于理想的名言摘抄大全100句关于理想的名言摘抄大全100句1生活不能没有理想应当有健康的理想发自内心的理想来自本国人民的理想2世界上最快乐的事莫过于为理想而奋斗苏格拉底3理想的实现只靠干不靠空谈德谟克利特4男...

关于理想的名言警句

一个人的理想越崇高生活越纯洁伏尼契人的活动如果没有理想的鼓舞就会变得空虚而渺小车尔尼雪夫斯基人的理想志向往往和他的能力成正比约翰逊我宁可做人类中有梦想和有完成梦想的愿望的最渺小的人而不愿做一个最伟大的无梦想无愿...

关于理想的经典名言

关于理想的经典名言1每个人心目中都有一份理想不管这份理想能否实现都是我们心目中的一个梦希望大家的理想都能实现2生活若剥去了理想梦想幻想那生命便只是一堆空架子3有理想在的地方地狱就是天堂4理想的路总是为有信心的人...

有关理想的名言警句

有关理想的名言警句1理想是指路明灯没有理想没有坚定的方向没有方向没有生活作者托尔斯泰2没有理想就达不到目的没有勇敢就得不到东西作者别林斯基3一个没有远大理想的人就象一部没有马达的机床谚语4一个人有了崇高的伟大的...

关于理想的名言

关于理想的名言1最理想的朋友是气质上互相倾慕心灵上互相沟通世界观上互相合拍事业上目标一致的人周汉晖2追求理想是一个人进行自我教育的最初的动力而没有自我教育就不能想象会有完美的精神生活我认为教会学生自己教育自己这...

关于理想的名言

关于理想的名言23理想的书籍是智慧的钥匙托尔斯泰2一种理想就是一种力罗曼罗兰83理想是人生的太阳德莱赛66没有理想就达不到目的没有勇敢就得不到东西别林斯基43生活中没有理想的人是可怜的人屠格涅夫54世界上最快乐...

关于理想的名人名言和名人故事

世界上最快乐的事莫过于为理想而奋斗苏格拉底人类的心灵需要理想甚于需要物质雨果抱负是高尚行为成长的萌牙莫格利希在理想的最美好世界中一切都是为最美好的目的而设伏尔泰一个人的理想越崇高生活越纯洁伏尼契人的活动如果没有...

关于理想的名言

理想是人生的太阳德莱赛人的活动如果没有理想的鼓舞就会变得空虚而渺小车尔尼雪夫斯基命运是一件很不可思议的东西虽人各有志往往在实现理想时会遭遇到许多困难反而会使自己走向与志趣相反的路而一举成功我想我就是这样松下幸之...

理想方面的名言警句 一切都是为最美好的目的而设

理想方面的名言警句一切都是为最美好的目的而设时间20xx815来源句子作者西海点击3186次TAG理想方面的名言警句1只有知道了通往今天的路我们才能清楚而有智地规划未来2只有同这个世界结合起来我们的理想才能结出...

关于梦想的60句名言

1梦想只要能持久就能成为现实我们不就是生活在梦想中的吗丁尼生2我们因梦想而伟大所有的成功者都是大梦想家在冬夜的火堆旁在阴天的雨雾中梦想着未来有些人让梦想悄然绝灭有些人则细心培育维护直到它安然度过困境迎来光明和希...

实现理想的名言(29篇)