霍尔效应实验报告

时间:2024.3.27

大 学

本(专)科实验报告

年 月 日

(实验报告目录)

实验名称

一、实验目的和要求

二、实验原理

三、主要实验仪器

四、实验内容及实验数据记录

五、实验数据处理与分析

六、质疑、建议

霍尔效应实验

一.实验目的和要求:

1、了解霍尔效应原理及测量霍尔元件有关参数.

2、测绘霍尔元件的https://upload.fanwen118.com/wk-img/img100/2695783_1.jpghttps://upload.fanwen118.com/wk-img/img100/2695783_2.jpg曲线了解霍尔电势差https://upload.fanwen118.com/wk-img/img100/2695783_3.jpg与霍尔元件控制(工作)电流https://upload.fanwen118.com/wk-img/img100/2695783_4.jpg、励磁电流https://upload.fanwen118.com/wk-img/img100/2695783_5.jpg之间的关系。

3、学习利用霍尔效应测量磁感应强度B及磁场分布。

4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。

5、学习用“对称交换测量法”消除负效应产生的系统误差。

二.实验原理:

1、霍尔效应

https://upload.fanwen118.com/wk-img/img100/2695783_6.jpg

霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如右图(1)所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流https://upload.fanwen118.com/wk-img/img100/2695783_7.jpg(称为控制电流或工作电流),假设载流子为电子(N型半导体材料),它沿着与电流https://upload.fanwen118.com/wk-img/img100/2695783_8.jpg相反的X负向运动。

由于洛伦兹力https://upload.fanwen118.com/wk-img/img100/2695783_9.jpg的作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力https://upload.fanwen118.com/wk-img/img100/2695783_10.jpg的作用。随着电荷积累量的增加,https://upload.fanwen118.com/wk-img/img100/2695783_11.jpg增大,当两力大小相等(方向相反)时,https://upload.fanwen118.com/wk-img/img100/2695783_12.jpg =-https://upload.fanwen118.com/wk-img/img100/2695783_13.jpg,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场https://upload.fanwen118.com/wk-img/img100/2695783_14.jpg,相应的电势差称为霍尔电压https://upload.fanwen118.com/wk-img/img100/2695783_15.jpg

设电子按均一速度https://upload.fanwen118.com/wk-img/img100/2695783_16.jpg向图示的X负方向运动,在磁场B作用下,所受洛伦兹力为https://upload.fanwen118.com/wk-img/img100/2695783_17.jpg=-ehttps://upload.fanwen118.com/wk-img/img100/2695783_18.jpgB

式中e为电子电量,https://upload.fanwen118.com/wk-img/img100/2695783_19.jpg为电子漂移平均速度,B为磁感应强度。

同时,电场作用于电子的力为 https://upload.fanwen118.com/wk-img/img100/2695783_20.jpg

式中https://upload.fanwen118.com/wk-img/img100/2695783_21.jpg为霍尔电场强度,https://upload.fanwen118.com/wk-img/img100/2695783_22.jpg为霍尔电压,https://upload.fanwen118.com/wk-img/img100/2695783_23.jpg为霍尔元件宽度

当达到动态平衡时,https://upload.fanwen118.com/wk-img/img100/2695783_24.jpg https://upload.fanwen118.com/wk-img/img100/2695783_25.jpg (1)

设霍尔元件宽度为https://upload.fanwen118.com/wk-img/img100/2695783_26.jpg,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为

https://upload.fanwen118.com/wk-img/img100/2695783_27.jpg (2)

由(1),(2)两式可得 https://upload.fanwen118.com/wk-img/img100/2695783_28.jpg (3)

即霍尔电压https://upload.fanwen118.com/wk-img/img100/2695783_29.jpg(A、B间电压)与Is、B的乘积成正比,与霍尔元件的厚度成反比,比例系数https://upload.fanwen118.com/wk-img/img100/2695783_30.jpg称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导率σ=neμ的关系,还可以得到:

https://upload.fanwen118.com/wk-img/img100/2695783_31.jpg (4)

式中https://upload.fanwen118.com/wk-img/img100/2695783_32.jpg为材料的电阻率、μ为载流子的迁移率,即 单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用N型半导体材料。

当霍尔元件的材料和厚度确定时,设https://upload.fanwen118.com/wk-img/img100/2695783_33.jpg (5)

将式(5)代入式(3)中得 https://upload.fanwen118.com/wk-img/img100/2695783_34.jpg (6)

式中https://upload.fanwen118.com/wk-img/img100/2695783_35.jpg称为元件的灵敏度,它表示霍尔元件在单位磁感应强度和单位控制电流下的霍尔电势大小,其单位是[https://upload.fanwen118.com/wk-img/img100/2695783_36.jpg],一般要求https://upload.fanwen118.com/wk-img/img100/2695783_37.jpg愈大愈好。

若需测量霍尔元件中载流子迁移率μ,则有

https://upload.fanwen118.com/wk-img/img100/2695783_38.jpg (7)

将(2)式、(5)式、(7)式联立求得

https://upload.fanwen118.com/wk-img/img100/2695783_39.jpg (8)

其中VI为垂直于IS方向的霍尔元件两侧面之间的电势差,EI为由VI产生的电场强度,L、l分别为霍尔元件长度和宽度。

由于金属的电子浓度n很高,所以它的https://upload.fanwen118.com/wk-img/img100/2695783_40.jpghttps://upload.fanwen118.com/wk-img/img100/2695783_41.jpg都不大,因此不适宜作霍尔元件。此外元件厚度d愈薄,https://upload.fanwen118.com/wk-img/img100/2695783_42.jpg愈高,所以制作时,往往采用减少d的办法来增加灵敏度,但不能认为d愈薄愈好,因为此时元件的输入和输出电阻将会增加,这对锗元件是不希望的。

https://upload.fanwen118.com/wk-img/img100/2695783_43.jpg

应当注意,当磁感应强度B和元件平面法线成一角度时(如图2),作用在元件上的有效磁场是其法线方向上的分量https://upload.fanwen118.com/wk-img/img100/2695783_44.jpg,此时

https://upload.fanwen118.com/wk-img/img100/2695783_45.jpg (9)

所以一般在使用时应调整元件两平面方位,使https://upload.fanwen118.com/wk-img/img100/2695783_46.jpg达到最大,即θ=0,https://upload.fanwen118.com/wk-img/img100/2695783_47.jpg =https://upload.fanwen118.com/wk-img/img100/2695783_48.jpg

由式(9)可知,当控制(工作)电流https://upload.fanwen118.com/wk-img/img100/2695783_49.jpg或磁感应强度B,两者之一改变方向时,霍尔电压https://upload.fanwen118.com/wk-img/img100/2695783_50.jpg的方向随之改变;若两者方向同时改变,则霍尔电压https://upload.fanwen118.com/wk-img/img100/2695783_51.jpg极性不变。

霍尔元件测量磁场的基本电路如图3,将霍尔元件置于待测磁场的相应位置,并使元件平面与磁感应强度B垂直,在其控制端输入恒定的工作电流https://upload.fanwen118.com/wk-img/img100/2695783_52.jpg,霍尔元件的霍尔电压输出端接毫伏表,测量霍尔电势https://upload.fanwen118.com/wk-img/img100/2695783_53.jpg的值。

https://upload.fanwen118.com/wk-img/img100/2695783_54.jpg

三.主要实验仪器:

1、 ZKY-HS霍尔效应实验仪

包括电磁铁、二维移动标尺、三个换向闸刀开关、霍尔元件及引线。

2、 KY-HC霍尔效应测试仪

四.实验内容:

1、研究霍尔效应及霍尔元件特性

https://upload.fanwen118.com/wk-img/img100/2695783_55.jpg测量霍尔元件灵敏度KH,计算载流子浓度n(选做)。

https://upload.fanwen118.com/wk-img/img100/2695783_56.jpg测定霍尔元件的载流子迁移率μ。

https://upload.fanwen118.com/wk-img/img100/2695783_57.jpg判定霍尔元件半导体类型(P型或N型)或者反推磁感应强度B的方向。

https://upload.fanwen118.com/wk-img/img100/2695783_58.jpg 研究https://upload.fanwen118.com/wk-img/img100/2695783_59.jpg与励磁电流https://upload.fanwen118.com/wk-img/img100/2695783_60.jpg、工作(控制)电流IS之间的关系。

2、测量电磁铁气隙中磁感应强度B的大小以及分布

https://upload.fanwen118.com/wk-img/img100/2695783_61.jpg 测量一定IM条件下电磁铁气隙中心的磁感应强度B的大小。

https://upload.fanwen118.com/wk-img/img100/2695783_62.jpg测量电磁铁气隙中磁感应强度B的分布。

五.实验步骤与实验数据记录:

1、仪器的连接与预热

将测试仪按实验指导说明书提供方法连接好,接通电源。

2、研究霍尔效应与霍尔元件特性

https://upload.fanwen118.com/wk-img/img100/2695783_63.jpg测量霍尔元件灵敏度KH,计算载流子浓度n。(可选做)。

a. 调节励磁电流IM为0.8A,使用特斯拉计测量此时气隙中心磁感应强度B的大小。

b. 移动二维标尺,使霍尔元件处于气隙中心位置。

c. 调节https://upload.fanwen118.com/wk-img/img100/2695783_64.jpg=2.00……、10.00mA(数据采集间隔1.00mA),记录对应的霍尔电压VH填入 表(1),描绘IS—VH关系曲线,求得斜率K1(K1=VH/IS)。

d. 据式(6)可求得KH,据式(5)可计算载流子浓度n。

https://upload.fanwen118.com/wk-img/img100/2695783_65.jpg测定霍尔元件的载流子迁移率μ。

a. 调节https://upload.fanwen118.com/wk-img/img100/2695783_66.jpg=2.00……、10.00mA(间隔为1.00mA),记录对应的输入电压降VI填入表4,描绘IS—VI关系曲线,求得斜率K2(K2=IS/VI)。

b. 若已知KH、L、l,据(8)式可以求得载流子迁移率μ。

c. 判定霍尔元件半导体类型(P型或N型)或者反推磁感应强度B的方向

Ø 根据电磁铁线包绕向及励磁电流IM的流向,可以判定气隙中磁感应强度B的方向。

Ø 根据换向闸刀开关接线以及霍尔测试仪IS输出端引线,可以判定IS在霍尔元件中的流向。

Ø 根据换向闸刀开关接线以及霍尔测试仪VH输入端引线,可以得出VH的正负与霍尔片上正负电荷积累的对应关系

d. 由B的方向、IS流向以及VH的正负并结合霍尔片的引脚位置可以判定霍尔元件半导体的类型(P型或N型)。反之,若已知IS流向、VH的正负以及霍尔元件半导体的类型,可以判定磁感应强度B的方向。

https://upload.fanwen118.com/wk-img/img100/2695783_67.jpg测量霍尔电压https://upload.fanwen118.com/wk-img/img100/2695783_68.jpg与励磁电流https://upload.fanwen118.com/wk-img/img100/2695783_69.jpg的关系

霍尔元件仍位于气隙中心,调节https://upload.fanwen118.com/wk-img/img100/2695783_70.jpg=10.00mA,调节https://upload.fanwen118.com/wk-img/img100/2695783_71.jpg=100、200……1000mA(间隔为100mA),分别测量霍尔电压https://upload.fanwen118.com/wk-img/img100/2695783_72.jpg值填入表(2),并绘出https://upload.fanwen118.com/wk-img/img100/2695783_73.jpg-https://upload.fanwen118.com/wk-img/img100/2695783_74.jpg曲线,验证线性关系的范围,分析当https://upload.fanwen118.com/wk-img/img100/2695783_75.jpg达到一定值以后,https://upload.fanwen118.com/wk-img/img100/2695783_76.jpg -https://upload.fanwen118.com/wk-img/img100/2695783_77.jpg直线斜率变化的原因。

3、测量电磁铁气隙中磁感应强度B的大小及分布情况

https://upload.fanwen118.com/wk-img/img100/2695783_78.jpg测量电磁铁气隙中磁感应强度B的大小

a. 调节励磁电流IM为0—1000mA范围内的某一数值。

b. 移动二维标尺,使霍尔元件处于气隙中心位置。

c. 调节https://upload.fanwen118.com/wk-img/img100/2695783_79.jpg=2.00……、10.00mA(数据采集间隔1.00mA),记录对应的霍尔电压VH填入表(1),描绘IS—VH关系曲线,求得斜率K1(K1=VH/IS)。

d. 将给定的霍尔灵敏度KH及斜率K1代入式(6)可求得磁感应强度B的大小。

(若实验室配备有特斯拉计,可以实测气隙中心B的大小,与计算的B值比较。)

https://upload.fanwen118.com/wk-img/img100/2695783_80.jpg考察气隙中磁感应强度B的分布情况

a. 将霍尔元件置于电磁铁气隙中心,调节https://upload.fanwen118.com/wk-img/img100/2695783_81.jpg=1000mA,https://upload.fanwen118.com/wk-img/img100/2695783_82.jpg =10.00mA,测量相应的https://upload.fanwen118.com/wk-img/img100/2695783_83.jpg

b. 将霍尔元件从中心向边缘移动每隔5mm选一个点测出相应的https://upload.fanwen118.com/wk-img/img100/2695783_84.jpg,填入表3。

c. 由以上所测https://upload.fanwen118.com/wk-img/img100/2695783_85.jpg值,由式(6)计算出各点的磁感应强度,并绘出B-X图,显示出气隙内B的分布状态。

为了消除附加电势差引起霍尔电势测量的系统误差,一般按±https://upload.fanwen118.com/wk-img/img100/2695783_86.jpg,±https://upload.fanwen118.com/wk-img/img100/2695783_87.jpg的四种组合测量求其绝对值的平均值。

五.实验数据处理与分析:

1、测量霍尔元件灵敏度KH,计算载流子浓度n。

表1 VH-IS https://upload.fanwen118.com/wk-img/img100/2695783_88.jpg=800mA

https://upload.fanwen118.com/wk-img/img100/2695783_90.jpg根据上表,描绘出IS—VH关系曲线如右图。

求得斜率K1,K1=9.9

据式(6)可求出K1,

本例中取铭牌上标注的KH=47,取实验指导说明书第3页上的d=2μm

据式(5)可计算载流子浓度n

。。。。

2、测量电磁铁气隙中磁感应强度B的大小

https://upload.fanwen118.com/wk-img/img100/2695783_91.jpg=800mA ,则可由B=K1/KH求出磁感应强度B的大小

3、 考察气隙中磁感应强度B的分布情况

表3 VH-X IM=1000mA Is=10.00mA

由以上所测https://upload.fanwen118.com/wk-img/img100/2695783_93.jpg值,由式(6)计算出各点的磁感应强度如下表:

https://upload.fanwen118.com/wk-img/img100/2695783_94.jpg根据上表,描绘出B-X关系曲线如右图,可看出气隙内B的分布状态。

4、测定霍尔元件的载流子迁移率μ

表4 IS-VI

根据上表,https://upload.fanwen118.com/wk-img/img100/2695783_95.jpg描绘出IS—VI关系曲线如右图。

求得斜率K2

已知KH、L、l(从实验指导说明书上可查出),据(8)式可以求得载流子迁移率μ。

。。。。

5、测量霍尔电压https://upload.fanwen118.com/wk-img/img100/2695783_96.jpg与励磁电流https://upload.fanwen118.com/wk-img/img100/2695783_97.jpg的关系

表2 VH-IS Is=10.00mA

https://upload.fanwen118.com/wk-img/img100/2695783_99.jpg根据上表,描绘出https://upload.fanwen118.com/wk-img/img100/2695783_100.jpg-https://upload.fanwen118.com/wk-img/img100/2695783_101.jpg关系曲线如右图, 由此图可验证线性关系的范围。

分析当https://upload.fanwen118.com/wk-img/img100/2695783_102.jpg达到一定值以后,https://upload.fanwen118.com/wk-img/img100/2695783_103.jpg -https://upload.fanwen118.com/wk-img/img100/2695783_104.jpg直线斜率变化的原因。

。。。。。。

6、实验系统误差分析

测量霍尔电势VH时,不可避免地会产生一些副效应,由此而产生的附加电势叠加在霍尔电势上,形成测量系统误差,这些副效应有:

(1)不等位电势https://upload.fanwen118.com/wk-img/img100/2695783_105.jpg

https://upload.fanwen118.com/wk-img/img100/2695783_106.jpg 由于制作时,两个霍尔电势极不可能绝对对称地焊在霍尔片两侧(图5a)、霍尔片电阻率不均匀、控制电流极的端面接触不良(图5b)都可能造成A、B两极不处在同一等位面上,此时虽未加磁场,但A、B间存在电势差https://upload.fanwen118.com/wk-img/img100/2695783_107.jpg,此称不等位电势,https://upload.fanwen118.com/wk-img/img100/2695783_108.jpg,V是两等位面间的电阻,由此可见,在V确定的情况下,https://upload.fanwen118.com/wk-img/img100/2695783_109.jpghttps://upload.fanwen118.com/wk-img/img100/2695783_110.jpg的大小成正比,且其正负随https://upload.fanwen118.com/wk-img/img100/2695783_111.jpg的方向而改变。

(2)爱廷豪森效应

当元件的X方向通以工作电流https://upload.fanwen118.com/wk-img/img100/2695783_112.jpg,Z方向加磁场B时,由于霍尔片内的载流子速度服从统计分布,有快有慢。在达到动态平衡时,在磁场的作用下慢速与快速的载流子将在洛伦兹力和霍尔电场的共同作用下,沿y轴分别向相反的两侧偏转,这些载流子的动能将转化为热能,使两侧的温升不同,因而造成y方向上的两侧的温差(TA-TB)。

https://upload.fanwen118.com/wk-img/img100/2695783_113.jpg

图6 正电子运动平均速度 图中https://upload.fanwen118.com/wk-img/img100/2695783_114.jpg https://upload.fanwen118.com/wk-img/img100/2695783_115.jpg

因为霍尔电极和元件两者材料不同,电极和元件之间形成温差电偶,这一温差在A、B间产生温差电动势VE,VE∝IB

这一效应称爱廷豪森效应,VE的大小与正负符号与I、B的大小和方向有关,跟VH与I、B的关系相同,所以不能在测量中消除。

(3)伦斯脱效应

由于控制电流的两个电极与霍尔元件的接触电阻不同,控制电流在两电极处将产生不同

的焦耳热,引起两电极间的温差电动势,此电动势又产生温差电流(称为热电流)Q,热电流在磁场作用下将发生偏转,结果在y方向上产生附加的电势差https://upload.fanwen118.com/wk-img/img100/2695783_116.jpg

VN∝QB这一效应称为伦斯脱效应,由上式可知https://upload.fanwen118.com/wk-img/img100/2695783_117.jpg的符号只与B的方向有关。

(4)里纪—勒杜克效应

如(3)所述霍尔元件在X方向有温度梯度https://upload.fanwen118.com/wk-img/img100/2695783_118.jpg,引起载流子沿梯度方向扩散而有热电

流Q通过元件,在此过程中载流子受Z方向的磁场B作用下,在y方向引起类似爱廷豪森效应的温差TA-TB,由此产生的电势差https://upload.fanwen118.com/wk-img/img100/2695783_119.jpg∝QB,其符号与B的的方向有关,与https://upload.fanwen118.com/wk-img/img100/2695783_120.jpg的方向无关。

为了减少和消除以上效应引起的附加电势差,利用这些附加电势差与霍尔元件控制(工作)电流https://upload.fanwen118.com/wk-img/img100/2695783_121.jpg,磁场B(既相应的励磁电流https://upload.fanwen118.com/wk-img/img100/2695783_122.jpg)的关系,采用对称(交换)测量法进行测量。

https://upload.fanwen118.com/wk-img/img100/2695783_123.jpghttps://upload.fanwen118.com/wk-img/img100/2695783_124.jpg时 https://upload.fanwen118.com/wk-img/img100/2695783_125.jpg

https://upload.fanwen118.com/wk-img/img100/2695783_126.jpg,时 https://upload.fanwen118.com/wk-img/img100/2695783_128.jpg

当,https://upload.fanwen118.com/wk-img/img100/2695783_130.jpg时 https://upload.fanwen118.com/wk-img/img100/2695783_131.jpg

https://upload.fanwen118.com/wk-img/img100/2695783_132.jpghttps://upload.fanwen118.com/wk-img/img100/2695783_133.jpg时 https://upload.fanwen118.com/wk-img/img100/2695783_134.jpg

对以上四式作如下运算则得:

https://upload.fanwen118.com/wk-img/img100/2695783_135.jpg

可见,除爱廷豪森效应以外的其他副效应产生的电势差会全部消除,因爱廷豪森效应所产生的电势差https://upload.fanwen118.com/wk-img/img100/2695783_136.jpg的符号和霍尔电势https://upload.fanwen118.com/wk-img/img100/2695783_137.jpg的符号,与https://upload.fanwen118.com/wk-img/img100/2695783_138.jpg及B的方向关系相同,故无法消除,但在非大电流、非强磁场下,https://upload.fanwen118.com/wk-img/img100/2695783_139.jpg >>https://upload.fanwen118.com/wk-img/img100/2695783_140.jpg,因而https://upload.fanwen118.com/wk-img/img100/2695783_141.jpg可以忽略不计,https://upload.fanwen118.com/wk-img/img100/2695783_142.jpghttps://upload.fanwen118.com/wk-img/img100/2695783_143.jpghttps://upload.fanwen118.com/wk-img/img100/2695783_144.jpg

一般情况下,当https://upload.fanwen118.com/wk-img/img100/2695783_145.jpg较大时,https://upload.fanwen118.com/wk-img/img100/2695783_146.jpghttps://upload.fanwen118.com/wk-img/img100/2695783_147.jpg同号,https://upload.fanwen118.com/wk-img/img100/2695783_148.jpghttps://upload.fanwen118.com/wk-img/img100/2695783_149.jpg同号,而两组数据反号,故

https://upload.fanwen118.com/wk-img/img100/2695783_150.jpg

即用四次测量值的绝对值之和求平均值即可。

六、质疑、建议


第二篇:霍尔效应实验报告参考


华南农业大学信息软件学院 实验报告

课程:大学物理实验    学期:20##-2013第一学期  任课老师:***

专业班级:**************学号:**************        姓名:***    

评分:

实验3  霍尔效应的应用  

一.      实验目的

1.     了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。

2.    测量霍尔元件的曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流之间的系。

3.     学习用对称测量法消除副效应的影响,测量试样的和曲线。

4.     确定试样的导电类型、载流子浓度以及迁移率。

二.      实验仪器设备

TH-H  型霍尔实验组合仪由试验仪和测试仪组成

1.实验仪本实验仪由电磁铁、二维移动标尺、三个换向闸 刀开关、霍尔元件组成。C型

电磁铁,给它通以电流产生磁场。 二维移动标尺及霍尔元件;霍尔元件是由N型半导体材料制成的,将其固定在二维移动标尺上,将霍尔元件放入磁铁的缝隙之中,使霍尔元件垂直放置在磁场之中,在霍尔元件上通以电流,如果这个电流是垂直于磁场方向的话,则在垂直于电流和磁场方向上导体两侧会产生一个电势差。 三个双刀双掷闸刀开关分别对励磁电流,工作电流  霍尔电压  进行通断和换向控制。右边闸刀控制励磁电流的通断换向。左边闸刀开关控制工作电流的通断换向。中间闸刀固定不变即指向一侧。

2.测试仪

        测试仪有两组独立的恒流源,即“输出”为0~10mA给霍 尔元件提供工作电流的电流源,“输出”为0~1A为电磁铁提供电流的励磁电流源。两组电流源相互独立。两路输出电流大小均连续可调,其值可通过“测量选择”键由同一数字电流表进行测量,向里按“测量选 择”测,放出键来测。电流源上有Is调节旋钮和Im调节旋钮。

       直流数字电压表用于测量霍尔电压,本实验只读霍尔电压、所以将中间闸刀开关拨向上面即可。当显示屏上的数字前出现“—”号时,表示被测电压极性为负值。

三.      实验的基本构思和原理

霍尔效应从本质上讲是运动的带电粒子在磁场中受洛伦兹力作用而引起的偏转。由于带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚集,从而形成附加的横向电场,即霍尔电场。然而在产生霍尔效应的同时,因伴着多种副效应,以致实验测得的两极之间的电压并不等于真的值,而是包含着各种副效应引起的附加电压,因此必须设法消除。根据副效应产生的机理可知,采用电流和磁场换向的所谓对称测量法,基本上能够把副效应的影响从测量的结果中消除。具体做法是和大小不变,并在设定电流和磁场的正反方向后,依次测量由下列四组不同方向的和组合的两点之间的电压V1,V2,V,.V4,即

                                    +Is,+B,V1

                                   +Is,--B,V2

                                  --Is,--B,V3

                                  --Is,+B,V4,

然后求上述四组数据V1,V2,V3,V4的代数平均值,可得

                              Vh=(V1—V2+V3—V4)/4

通过对称测量法求得的Vh,虽然还存在个别无法消除的副效应,但其引入的误差甚小,可以不计。

四.实验基本步骤

(1)  按连接测试仪和实验仪之间相应的I s  、V s 和I m 各组连线,I s 及Im换向开关投向上方,表明I s 及Im均为正值,反之为负值。V h 、Vo 切换开关投向上方测Vh,投向下方测Vo 。

(2)对测试仪进行调零。将测试仪的两个调节旋钮均置零位,待开机数分钟后若V h,显示不为零,可通过面板左下方小孔的“调零”电位器实现调零,即“0. .00“。

(3)测绘切换Vh- 值。将开关“V h 、Vo ”投向V h测,测试仪的功能切换置Vh,保持Im值不变,测绘Vh-Is曲线。

(4)测绘Vh-Im值。实验仪及试验仪各开关位置同上。保持半导体的电流I s不变,测绘Vh-Im曲线。

(5)测量Vo 值。将切换开关V h 、Vo ”投向v o测,在零磁场下,取I s=2.00mA,测量Vo。

(6)确定样品的导电类型。将实验仪三组双刀开关均投向上方,毫伏表测量电压为Vaa,取

I s=2.00mA,-,Im=0.6A ,测量V h 大小及极性,判断样品导电类型。

(7) 求样品R h ,n,o,u 值。

   五.实验数据记录及处理

绘制Vh-Is 曲线数据表

其中电流范围:Im=0.6A;Is=1.00~4.00mA

绘制Vh-Im  曲线数据表

其中电流范围:Is=3.00mA;Im=0.300~0.800A。Vo=1mv,d=0.5mm,

由表画出V  h---Im关系线:

由表画出V h —I s关系线:

     相关数据计算   R h=(Vh*d)/(I s*B)=1.06*10^-2(M.V)/(A.T)

u=|Rh|o =?       .

n=1/|Rh|e=6.4*10^(20)(m-3)

o=l*I/(S*U)=

五.实验结论:

  1. 当励磁电流=0时,霍尔电压不为0,且随着霍尔电流的增加而增加,通过作图发现二者满足线性关系。说明在霍尔元件内存在一不等位电压,这是由于测量霍尔电压的两条接线没有在同一个等势面上造成的。

2.当励磁电流保持恒定,改变霍尔电流时,测量得到的霍尔电压随霍尔电流的增加而增加,通过作图发现二者之间满足线性关系。

3.当霍尔电压保持恒定,改变励磁电流时,测量得到的霍尔电压随励磁电流的增加而增加,通过作图发现二者之间也满足线性关系

六.注意事项:

1..不要带电接线,中间改变电路时,一定要先关闭电源,再连接电路。

2..实验完成后要整理实验仪器,先关闭电源,再将电线拆下,捋好后放在实验仪器的右侧。

3..仪器开机前应将调节旋钮逆时针方向旋到底,使其输出电流趋于最小,然后再开机关机前,应将调节旋钮逆时针方向旋到底,然后切断电源

4..电源开机后预热几分钟,即可进行实验。

5..在实验过程中试验仪的开关应至始至终保持闭合,否则会为“1”或数字跳动现象。

6..改变或霍尔元件过程应断开试验仪上的换向开关以防长时间通电而发热,导致霍尔元件升温影响实验结果。

更多相关推荐:
大学物理实验报告系列之霍尔效应

大学物理实验报告

霍尔效应实验报告(附带实验结论)

《霍尔效应》参考实验报告附带结论实验目的1.了解霍尔效应实验原理。2.测量霍尔电流与霍尔电压之间的关系。3.测量励磁电流与霍尔电压之间的关系。4.学会用“对称测量法”消除负效应的影响。实验仪器霍尔效应实验仪。实…

大学物理实验报告--霍尔效应及其应用

大学物理实验报告霍尔效应及其应用

实验报告--霍尔效应原理及其应用

参考实验报告霍尔效应原理及其应用成都信息工程学院物理实验报告姓名专业班级学号实验日期20xx0903一段实验教室5206指导教师一实验名称霍尔效应原理及其应用二实验目的1了解霍尔效应产生原理2测量霍尔元件的螺线...

霍尔效应实验报告 (1)

霍尔效应实验一实验目的1霍尔效应原理及霍尔元件有关参数的含义和作用2测绘霍尔元件的VHIsVHIM曲线了解霍尔电势差VH与霍尔元件工作电流Is磁场应强度B及励磁电流IM之间的关系3学习利用霍尔效应测量磁感应强度...

霍尔效应的应用实验报告

一、名称:霍尔效应的应用二、目的:1.霍尔效应原理及霍尔元件有关参数的含义和作用2.测绘霍尔元件的VH—Is,VH—IM曲线,了解霍尔电势差VH与霍尔元件工作电流Is,磁场应强度B及励磁电流IM之间的关系。3.…

霍尔效应实验报告

霍耳效应实验报告学号20xx020xx940实验人张学林同组人杨天海实验目的1观察霍耳效应2了解应用霍耳效应进行简单的相关测量的方法实验内容实验原理一关于霍耳效应如图一所示当电流通过一块导体或半导体制Byz1确...

霍尔效应实验报告(附带实验结论)

霍尔效应参考实验报告附带结论实验目的1了解霍尔效应实验原理2测量霍尔电流与霍尔电压之间的关系3测量励磁电流与霍尔电压之间的关系4学会用对称测量法消除负效应的影响实验仪器霍尔效应实验仪实验步骤1正确连接电路调节霍...

霍尔效应实验报告参考

华南农业大学信息软件学院实验报告课程:大学物理实验学期:20XX-20XX第一学期任课老师:***专业班级:***学号:***姓名:***评分:实验3霍尔效应的应用一.实验目的1.了解霍尔效应实验原理以及有关霍…

物理实验报告3_利用霍尔效应测磁场

实验名称利用霍耳效应测磁场实验目的a了解产生霍耳效应的物理过程b学习用霍尔器件测量长直螺线管的轴向磁场分布c学习用对称测量法消除负效应的影响测量试样的VHIS和VHIM曲线d确定试样的导电类型载流子浓度以及迁移...

华科物理实验霍尔效应实验报告

霍耳效应实验报告学号20xx020xx940实验人张学林同组人杨天海实验目的1观察霍耳效应2了解应用霍耳效应进行简单的相关测量的方法实验内容实验原理一关于霍耳效应如图一所示当电流通过一块导体或半导体制Byz1确...

大学物理仿真实验——霍尔效应

姓名wuming1目的1霍尔效应原理及霍尔元件有关参数的含义和作用作电流Is磁场应强度B及励磁电流IM之间的关系3学习利用霍尔效应测量磁感应强度B及磁场分布4学习用对称交换测量法消除负效应产生的系统误差2简单的...

霍尔效应实验报告(38篇)