杨氏模量实验报告

时间:2024.4.14

杨氏模量的测定(伸长法)

 实 验 目 的

1.用伸长法测定金属丝的杨氏模量

2.学习光杠杆原理并掌握使用方法

  实 验 原 理

物体在外力作用下或多或少都要发生形变,当形变不超过某一限度时,撤走外力之后形变能随之消失,这种形变叫弹性形变,发生弹性形变时物体内部将产生恢复原状的内应力。

设有一截面为S,长度为的均匀棒状(或线状)材料,受拉力F拉伸时,伸长了,其单位面积截面所受到的拉力称为胁强,而单位长度的伸长量称为胁变。根据胡克定律,在弹性形变范围内,棒状(或线状)固体胁变与它所受的胁强成正比:

其比例系数取决于固体材料的性质,反应了材料形变和内应力之间的关系,称为杨氏弹性模量。

                   (1)

  

   上图是光杠杆镜测微小长度变化量的原理图。左侧曲尺状物为光杠杆镜,M是反射镜,为光杠杆镜短臂的杆长,为光杆杆平面镜到尺的距离,当加减砝码时,b边的另一端则随被测钢丝的伸长、缩短而下降、上升,从而改变了M镜法线的方向,使得钢丝原长为时,从一个调节好的位于图右侧的望远镜看M镜中标尺像的读数为;而钢丝受力伸长后,光杠杆镜的位置变为虚线所示,此时从望远镜上看到的标尺像的读数变为。这样,钢丝的微小伸长量,对应光杠杆镜的角度变化量,而对应的光杠杆镜中标尺读数变化则为。由光路可逆可以得知,对光杠杆镜的张角应为。从图中用几何方法可以得出:

                             (2)

                                   (3)

将(2)式和(3)式联列后得:

                                        (4)

所以:,令

故:

这种测量方法被称为放大法。由于该方法具有性能稳定、精度高,而且是线性放大等优点,所以在设计各类测试仪器中有着广泛的应用。

  实 验 仪 器

杨氏模量仪;光杆杆;螺旋测微器;游标尺;钢卷尺和米尺;望远镜(附标尺)。

  实 验 内 容

1.用2kg砝码挂在钢丝下端钢丝拉直,调节杨氏模量仪底盘下面的3个底脚螺丝,同时观察放在平台上的水准尺,直至中间平台处于水平状态为止。

2.调节光杠杆镜位置。将光杆镜放在平台上,两前脚放在平台横槽内,后脚放在固定钢丝下端圆柱形套管上(注意一定要放在金属套管的边上,不能放在缺口的位置),并使光杠杆镜镜面基本垂直或稍有俯角,如图所示。

3.望远镜调节。将望远镜置于距光杆镜2m左右处,松开望远镜固定螺钉,上下移动使得望远镜和光杠杆镜的镜面基本等高。从望远镜筒上方沿镜筒轴线瞄准光杠杆镜面,移动望远镜固定架位置,直至可以看到光杠杆镜中标尺的像。然后再从目镜观察,先调节目镜使十字叉丝清晰,最后缓缓旋转调焦手轮,使物镜在镜筒内伸缩,直至从望远镜里可以看到清晰的标尺刻度为止。

4.观测伸长变化。以钢丝下挂2kg砝码时的读数作为开始拉伸的基数,然后每加上1kg砝码,读取一次数据, 这样依次可以得到, 这是钢丝拉伸过程中的读数变化。紧接着再每次撤掉1kg砝码,读取一次数据,依次得到,这是钢丝收缩过程中的读数变化。

注意:加、减砝码时,应轻放轻拿,避免钢丝产生较大幅度振动。加(或减)砝码后,钢丝会有一个伸缩的微振动,要等钢丝渐趋平稳后再读数。

5.测量光杠杆镜前后脚距离。把光杠杆镜的三只脚在白纸上压出凹痕,用尺画出两前脚的连线,再用游标卡尺量出后脚到该连线的垂直距离

6.测量钢丝直径。用螺旋测微计在钢丝的不同部位测5次,取其平均值。测量时每次都要注意记下数据,螺旋测微计的零位误差。

7.测量光杠杆镜镜面到望远镜附标尺的距离。用钢卷尺量出光杠杆镜镜面到望远镜附标尺的距离,测量5次。

8.用米尺测量钢丝原长,测量5次。

数 据 记录与处理

1.长度的测量(表1)。

表1  数据表  

2.增减重量时钢丝伸缩量的记录参考数据(表2)。

表2  钢丝伸缩量的记录表

3.实验结果的计算:

(1)不确定度分析:

        

 

    

 

   

 

(2)计算

   令:

  

标准偏差

平均值:

所以杨氏模量

结论分析:

1、钢丝的两端一定要夹紧,一来减小系统误差,二来避免砝码加重后拉脱而砸坏实验装置。

2、在测读伸长变化的整个过程中,不能碰动望远镜及其安放的桌子,否则重新开始测读。

3、被测钢丝一定要保持平直,以免将钢丝拉直的过程误测为伸长量,导致测量结果谬误。

4、增减砝码时要注意砝码的质量是否都是1kg,并且不能碰到光杠杆镜镜。

5、望远镜有一定的调焦范围,不能过分用力拧动调焦旋钮。


第二篇:光杠杆法测定杨氏模量实验报告


杨氏弹性模量测定实验报告

一、摘要

弹性模量是描述材料形变与应力关系的重要特征量,是工程技术中常用的一个参数。在实验室施加的外力使材料产生的变形相当微小,难以用肉眼观察,同时过大的载荷又会使得材料发生塑形变形,所以要通过将微小变形放大的方法来测量。本实验通过光杠杆将外力产生的微小位移放大,从而测量出杨氏弹性模量,具有较高的可操作性。

二、实验仪器

弹性模量测定仪(包括:细钢丝、光杠杆、望远镜、标尺和拉力测量装置);钢卷尺、螺旋测微器、游标卡尺。

三、实验原理

1)杨氏弹性模量定义式

任何固体在外力作用下都要发生形变,最简单的形变就是物体受外力拉伸(或压缩)时发生的伸长(或缩短)形变。设金属丝的长度为L,截面积为S,一端固定,一端在伸长方向上受力为F,伸长为△L。

定义:

物体的相对伸长为应变,

物体单位面积上的作用力为应力。

根据胡克定律,在物体的弹性限度内,物体的应力与应变成正比,即

则有:        

             

式中的比例系数E称为杨氏弹性模量(简称弹性模量)。                                                

实验证明:弹性模量E与外力F、物体长度L以及截面积的大小均无关,而只取决定于物体的材料本身的性质。它是表征固体性质的一个物理量。

对于直径为D的圆柱形钢丝,其弹性模量为:

根据上式,测出等号右边各量,杨氏模量便可求得。式中的F、D、L三个量都可用一般方法测得。唯有是一个微小的变化量,用一般量具难以测准。故而本实验采用光杠杆法进行间接测量。

2)光杠杆放大原理

    光杠杆测量系统由光杠杆反射镜、倾角调节架、标尺、望远镜和调节反射镜组成。实验时,将光杠杆两个前足尖放在弹性模量测定仪的固定平台上,后足尖放在待测金属丝的测量端面上。当金属丝受力后,产生微小伸长,后足尖便随着测量端面一起作微小移动,并使得光杠杆绕前足尖转动一个微小角度,从而带动光杠杆反射镜转动相应的微小角度,这样标尺的像在光杠杆反射镜和调节反射镜之间反射,便把这一微小角位移放大成较大的线位移。

如右图所示,当钢丝的长度发生变化时,光杠杆镜面的竖直度必然要发生改变。那么改变后的镜面和改变前的镜面必然有一个角度差,用θ来表示这个角度差。从下图我们可以看出:

 ,式中b为光杠杆前后足距离,称为光杠杆常数。

设开始时在望远镜中读到的标尺读数为,偏转后读到的标尺读数为,则放大后的钢丝伸长量为,由图中几何关系有:

,

由上式得到:      

代入计算式,即可得下式:

                

这就是本实验所依据的公式。

四、实验步骤

1)调整测量系统

1、目测调整

首先调整望远镜,使其与光杠杆等高,然后左右平移望远镜与调节平面镜,直到凭目测从望远镜上方观察到光杠杆反射镜中出现调节平面镜的像,再适当转动调节平面镜直到出现标尺的像。

2、调焦找尺

首先调节望远镜目镜旋轮,使“十”字叉丝清晰成像;然后调节望远镜物镜焦距,直到标尺像和“十”字叉丝无视差。

3、细调光路水平

观察望远镜水平叉丝所对应的标尺读数和光杠杆在标尺上的实际位置是否一致,若明显不同,则说明入射光线与反射光线未沿水平面传播,可以适当调节平面镜的俯仰,直到望远镜读出的数恰好为其实际位置为止。调节过程中还应该兼顾标尺像上下清晰度一致,若清晰度不同,则可以适当调节望远镜俯仰螺钉。

2)测量数据

1、首先预加10kg的拉力,将钢丝拉直,然后逐次改变钢丝拉力(逐次增加2kg),测量望远镜水平叉丝对应的读数。

   由于物体受力后和撤销外力后不是马上能恢复原状,而会产生弹性滞后效应,所以为了减小该效应带来的误差,应该在增加拉力和减小拉力过程中各测一次对应拉力下标尺读书,然后取两次结果的平均值。

2、根据量程及相对不确定度大小,用钢卷尺测量L和H,千分尺测量D,游标卡尺测量b。考虑到钢丝直径因为钢丝截面不均匀而产生误差,应该在钢丝的不同位置测量多组D在取平均值。

3)数据处理

   由于在测量时采取了等间距测量,适合用逐差法处理,故采用逐差法对视伸长C求平均值,并估算不确定度。其中L、H、b只测量一次,由于实验条件的限制,其不确定度不能简单地由量具仪器规定的误差限决定,而应该根据实际情况估算仪器误差限。

i、测量钢丝长度L时,由于钢丝上下端装有紧固夹头,米尺很难测准,故误差限应该取0.3 cm;

ii、测量镜尺间距H时,难以保证米尺水平,不弯曲和两端对准,若该距离为1.0~1.5m,则误差限应该取0.5cm;

iii、用卡尺测量光杠杆前后足距b时,不能完全保证是垂直距离,该误差限可定为0.02cm。

五、数据记录与处理

1)计算钢丝弹性模量

钢丝长度L=39.60cm,平面镜到标尺的距离H=102.20cm,光杠杆前后足间距b=8.50cm

钢丝直径D测量结果(千分尺零点

加力后标尺的读数r

用逐差法求标尺读数改变量C

       

故:

2)计算钢丝弹性模量的不确定度

L、H、b只测量一次,只有B类不确定度,估计其误差限为ΔL=0.3cm,ΔH=0.5cm,Δb=0.02cm,故:

D的不确定度:     

C的不确定度:

两边同时求微分,得到:

将上式中d改为u,并取平方和的根:

故:

最终结果为:

六、实验讨论

1)误差分析

通过查阅相关资料可得,钢的理论弹性模量约为,不妨取作为真值的估计值,并以此计算绝对误差与相对误差:

可以看出,实验的误差是比较小的。

下面估算各测量量不确定度对最终结果的不确定度的贡献:

各测量量的相对不确定度分量

  可见,的影响均很大,其贡献主要来自。实际上只计及这三项的方差合成就达2.6 %,和相差无几。上述不确定度分量主要来自仪器误差,因此很难再通过改善测量方法来提高准确度。反过来也说明本实验在测量方法上的安排上是合理的。C、D的测量中采取了多次测量的措施,其中对D的测量没有给E带入很大的误差,但C的测量则带入了很大的误差,故而在对C的测量可能存在较大问题。下面对C带来的误差可能性进行分析:

由于在实验中,通过光杠杆观察标尺像的读数时,轻微的扰动,就会使得标尺像出现晃动,严重影响了读数的准确性。同时由于未能完全消除视差的影响,在读取标尺读数r时,很可能会出现粗大误差。由公式可变形得到:,故随着F的线性增加,C也应该作线性增加,故而等间距测量的理论上应该等于某个常数。考虑到多次测量带来的随机误差,测量值应该围绕着该常数作上下波动。考察测量数据,并将之做出散点图。

散点图显示,第五个数据波动相当大,很可能是由于测量有误而读出的坏数。由于测量次数只有五次,故而不能用拉依达法则判断其是否坏数,而应该用t检验准则来判断。

先将剔除,计算剩余数据的平均值和单次测量标准偏差:

根据测量次数n=5,查表得到若选置信概率为0.99和0.95时的对应k值为:

k(5,0.99)=6.53,k(5,0.95)=3.56,分别设为A,B,则有:

 

故而并不是坏数,只是多次测量中的一次比较极端的情况,应该保留。重新考虑C的测量带来的随机误差,发现测量次数仅有5次,故而多次测量中的极端情况带来的随机误差使得测量结果的A类不确定分量特别大。为了消减误差,在测量C的时候,应当进行次数更多的测量,获取更为平均的结果。但应该注意,测量次数不宜过多,否则可能会带来新的测量误差和粗大误差。

2)改进意见

在实验中通过亲身经历,我总结出本实验中可以做出改进的几个方面:

1、测量钢丝长度L的改进。

在测量钢丝长度L时,由于钢丝上下端装有紧固夹头,同时钢丝处于竖直拉长状态,这给测量带来很大不便。一来由于紧固夹头的阻碍,很难将钢卷尺贴近钢丝,而必须将钢卷尺放置在距离钢丝有一定距离的位置进行测量,这样由于人眼读数的视差,必然会减低读数准确度;二来由于钢丝处于竖直拉长状态,测量者要将钢卷尺竖直拉长后再去读数,这样就很难保证视线与刻度对齐,从而产生视差,降低读数精度。针对这个问题,可以考虑将钢卷尺和固定钢丝的装置的一端固连在一起,并使得钢卷尺尽量靠近细钢丝。需要读数的时候,将钢卷尺拉出,由于钢卷尺的一端固定,这将大大降低了单人操作时的难度,可以提高测量精度。

2、测量镜尺间距H的改进。

在测量镜尺间距H时,由于距离较远,很难保证钢卷尺水平放置、不弯曲而且两端对齐,显然这样带来的误差将会相当大。为了减少该误差,可以参考光学实验中测量光学元件间距时采用带刻度的光具座的方法,将望远镜、钢丝固定装置置于一个带有刻度的导轨上,从而简化测量和提高精度。

3、测量光杠杆前后足间距b的改进。

在测量光杠杆前后足间距b时,不能保证完全是垂直距离,同时由于光杠杆的尺寸和形状问题,也会使得游标卡尺不能很好地卡紧前后足。可以考虑将光杠杆置于白纸上,用铅笔描出光杠杆三足位置,然后连接两个后足,再过前足作后足的垂线,测量前足到垂足的距离,则可以比较简便地测出前后足间距。但是这样操作则不能用游标卡尺测量前后足间距,故而将会损失一定测量精度。

4、测量视伸长C的改进。

由于采用了光杠杆多次成像的方法放大了微小位移,故而对原来位移的微小扰动,也会同时放大成相当大的干扰,从而影响读取视伸长数值的精确度。在实验中我发现,望远镜中的标尺像总是在晃动,很难保证叉丝保持对齐某个刻度线,严重的时候叉丝对准的刻度甚至会有一个相当大的变动范围,大大超过仪器本身的测量误差限度。考虑到视伸长C对本实验精确度的影响极大,我认为应该着重改善这个问题。

首先应该尽可能地减少钢丝受到的扰动。实验时应该尽量小心,保持桌面的平稳,并且尽量在标尺像晃动不太剧烈的时候迅速读数。

其次应该通过多次读取数值来消减误差。在加力和减力后,应该在标尺晃动不太剧烈时,读取几组数据,然后再求平均,通过平均的作用消减读取位置偏离真实位置的误差。

再次应该在条件允许下改善实验设备。由于标尺像在不断晃动,要在它晃动的时候看清对齐的刻度并估读数字是很困难的,所以如果条件允许,可以将望远镜改进为带有摄像功能的摄像望远镜。在标尺像晃动不太剧烈时,拍摄几组照片,之后再读取静止的照片中的读数,此时就能获得更好的精确度。

3)其他方案设想

受到光杠杆放大微小位移的原理启发,我联想到很多微小位移都可以通过光学规律来间接求出。联系基础物理学中学到的光的干涉知识,可以设计另外的方案来测量微小位移,从而达到测量弹性模量的目的。

方案1:利用劈尖干涉测量微小位移

如图,两块薄玻璃板叠放在一起并在B端固连,可绕B端张开某一角度。在A端将钢丝与下面的玻璃板连接,当对钢丝施加拉力F时,两玻璃张开一个微小角度,其中的空气薄膜组成劈尖,平行光垂直照射下来后将产生劈尖干涉,根据劈尖干涉规律,观察到的相邻明(暗)条纹间距为:,其中λ为入射光波长,n为空气折射率,从而得到:

测出AB间距H,则钢丝伸长,从而有,

测出钢丝直径D,钢丝原长L和施加的拉力F,则有:

方案1:利用迈克尔逊干涉仪测量微小位移

如图为迈克尔逊干涉仪,将钢丝固连到平面镜M1上,则当拉力F使得长为L,半径为D的钢丝产生形变时,将带动M1向下平移相同位移,此时观察视场中将会看到干涉条纹相对某参考线移过N条,根据等厚干涉规律,有:

,

故有:

当然以上两个方案纯属构想,没有得到实践证明,难以评测其是否简便可行。但是这可以为我们提供测量微小位移的思路,也就是把通过精密的光学实验间接测量出难以直接测量的微小位移。

五、总结

本实验通过光杠杆的放大作用,测出了在载荷作用下钢丝的微小变形,从而测量出了钢丝的杨氏弹性模量。与文献上的理论值相比较,测量值能较好地吻合理论真值。光杠杆的放大作用同时也启发我们,放大微小位移时可以通过光学仪器或者光学规律将微小位移转化成或放大成可测量的较大位移。由此我们可以将这个思想推广到任何微小位移的测量上去,故而本实验具有重大的启发意义。实验中我通过仔细琢磨原理和小心操作仪器,顺利地解决了一些故障和意外,但是仍然存在测量精度不足的问题,故而仍需要再接再厉。

更多相关推荐:
金属材料杨氏模量的测定实验报告

浙江中医药大学学生物理实验报告实验名称金属材料杨氏模量的测定学院信息技术学院专业医学信息工程班级一班报告人学号同组人学号同组人学号同组人学号理论课任课教师实验课指导教师实验日期20xx年3月2日报告日期20xx...

杨氏模量测定实验报告

杨氏模量的测定实验目的1掌握用光杠杆测量微小长度变化的原理和方法了解其应用2掌握各种长度测量工具的选择和使用3学习用逐差法和作图法处理实验数据实验仪器MYC1型金属丝杨氏模量测定仪一套钢卷尺米尺螺旋测微计重垂砝...

大学物理实验示范报告(以杨氏模量实验为例)

一预习报告1拉伸法测金属丝的杨氏模量2实验目的1掌握用光杠杆法测量微小长度变化的原理和方法2学会用逐差法处理数据3学习合理选择仪器减小测量误差3实验原理1根据胡克定律在弹性限度内其应力FS与应变LL成正比即FE...

大学物理实验-拉伸法测钢丝的杨氏模量(已批阅)

评分系学号姓名日期实验题目用拉伸法测钢丝的杨氏模量13393385实验目的采用拉伸法测定杨氏模量掌握利用光杠杆测定微小形变地方法在数据处理中掌握逐差法和作图法两种数据处理的方法实验仪器杨氏模量测量仪包括光杠杆砝...

杨氏模量实验报告

杨氏模量的测量实验目的11掌握螺旋测微器的使用方法2学会用光杠杆测量微小伸长量3学会用拉伸法金属丝的杨氏模量的方法实验仪器杨氏模量测定仪包括拉伸仪光杠杆望远镜标尺水准器钢卷尺螺旋测微器钢直尺1金属丝与支架装置见...

杨氏模量测定(实验报告范例)

杨氏模量测定横梁弯曲法一实验目的1学习用弯曲法测量金属的杨氏模量2学习微小位移测量方法二实验仪器JC1读数显微镜待测金属片砝码片若干待测金属片支撑架可挂砝码片的刀口三实验原理宽度为b厚度为a有效长度为d的棒在相...

用拉伸法测金属丝的杨氏弹性模量实验报告示范

实验报告示范1实验名称用拉伸法测金属丝的杨氏弹性模量一实验目的学习用拉伸法测定钢丝的杨氏模量掌握光杠杆法测量微小变化量的原理学习用逐差法处理数据二实验原理长为l截面积为S的金属丝在外力F的作用下伸长了l称Y丝直...

杨氏模量实验报告

钢丝的杨氏模量预习重点杨氏模量的定义利用光杠杆测量微小长度变化的原理和方法用逐差法和作图法处理实验数据的方法仪器杨氏模量仪包括砝码组光杠杆及望远镜标尺装置螺旋测微器钢卷尺原理杨氏模量物体受力产生的形变去掉外力后...

杨氏模量实验报告1

杨氏模量的测量实验目的11掌握螺旋测微器的使用方法2学会用光杠杆测量微小伸长量3学会用拉伸法金属丝的杨氏模量的方法实验仪器杨氏模量测定仪包括拉伸仪光杠杆望远镜标尺水准器钢卷尺螺旋测微器钢直尺1金属丝与支架装置见...

CCD杨氏模量实验报告

实验用CCD测量杨氏弹性模量材料受外力作用时必然发生形变其内部胁强单位面积上受力大小和胁变即相对形变的比值称为弹性模量这是衡量材料受力后形变大小的参数之一是设计各种工程结构时选用材料的主要依据之一本实验测量康铜...

杨氏模量实验报告

钢丝的杨氏模量预习重点杨氏模量的定义利用光杠杆测量微小长度变化的原理和方法用逐差法和作图法处理实验数据的方法仪器杨氏模量仪包括砝码组光杠杆及望远镜标尺装置螺旋测微器钢卷尺原理杨氏模量物体受力产生的形变去掉外力后...

传统的杨氏弹性模量实验报告

杨氏弹性模量的测定实验人杨氏弹性模量是材料弹性性质的一个主要特征量本实验通过对钢丝杨氏弹性模量的测量学习一种测量长度微小变化的方法光杠杆镜尺法目的1测定金属丝的杨氏弹性模量2掌握光杠杆镜尺法测定长度微小变化的原...

杨氏模量实验报告(41篇)