解析几何知识点总结(2600字)

发表于:2021.2.17来自:www.fanwen118.com字数:2600 手机看范文

淮上陌客2012.3.26

抛物线的标准方程、图象及几何性质:p?0

解析几何知识点总结

淮上陌客2012.3.26

关于抛物线知识点的补充:

1、定义:

2、几个概念:

① p的几何意义:焦参数p是焦点到准线的距离,故p为正数;

1② ; 4

③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。

④ 通径:2p

23、如:AB是过抛物线y?2px(p?0)焦点F的弦,M是AB的中点,l是抛物线的准线,MN?l,N为垂足,BD?l,AH?l,D,H为垂足,求

证:

(1)HF?DF;

(2)AN?BN;

(3)FN?AB;

(4)设MN交抛物线于Q,则Q平分MN;

2(5)设A(x1,y1),B(x2,y2),则y1y2??p,x1x2?12p; 4

(6)1?1

|FA|

|FB|?2;

解析几何知识点总结

p

淮上陌客2012.3.26

(7)A,O,D三点在一条直线上

(8)过M作ME?AB,ME交x轴于E,求证:|EF|?1|AB|,|ME|2?|FA|?|FB|; 2

关于双曲线知识点的补充:

1、 双曲线的定义:平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|

e(e

注意: |F1F2|)的点的轨迹。 ?1)的点的轨迹。两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。常数叫做离心率。 PF1|?|PF2|?2a与|PF2|?|PF1|?2a(2a?|F1F2|)表示双曲线的一支。 2a?|F1F2|表示两条射线;2a?|F1F2|没有轨迹;

2、 双曲线的标准方程

x2y2y2x2

①焦点在x轴上的方程:2?2?1(a>0,b>0); ②焦点在y轴上的方程:2?2?1 (a>0,b>0); abab

③当焦点位置不能确定时,也可直接设椭圆方程为:mx-ny=1(m·n<0);

④双曲线的渐近线:改1为0,分解因式则可得两条渐近线之方程.

3、双曲线的渐近线: ①求双曲线x?y?1的渐近线,可令其右边的1为0,即得x?y

2222222222abab22x2y2xy?0,因式分解得到。②与双曲线2?2?1共渐近线的双曲线系方程是2?2??; abab

2224、等轴双曲线: 为x?y?t,其离心率为2

5、共轭双曲线:

6、几个概念:

xyb2b?222; ; ③等轴双曲线x-y=? (?∈R,?≠0):渐近线是y=±x,2 ;④2?2?1焦点三角形的面积:bcot (其中∠F1PF2=?); ca2ab2222

淮上陌客2012.3.26 222222⑤弦长公式:

解析几何知识点总结

c=a-b,而在双曲线中:c=a+b,

淮上陌客2012.3.26

解析几何知识点总结

淮上陌客2012.3.26

8、双曲线中的定点、定值及参数的取值范围问题:

①定点、定值问题:通常有两种处理方法:第一种方法?是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;第二种方法?是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。

②关于最值问题:常见解法有两种:代数法与几何法。若题目中的条件和结论能明显体现几何特征及意义,则考虑利用图形的性质来解决,这就是几何法;若题目中的条件和结论难以体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,求函数的最值常用的方法有配方法、判别式法、重要不等式法、函数的单调性法等。

③参数的取值范围问题:此类问题的讨论常用的方法有两种:第一种是不等式(组)求解法?根据题意结合图形列出所讨论的参数适合的不等式(组),通过解不等式再得出参数的变化范围;第二种是函数的值域求解法:把所讨论的参数表示为某个变量的函数,通过讨论函数的值域求得参数的变化范围。

关于椭圆知识点的补充:

1、椭圆的标准方程:

x2y2y2x2

① 焦点在x轴上的方程:2?2?1 (a>b>0); ②焦点在y轴上的方程:2?2?1 (a>b>0); abab

③当焦点位置不能确定时,也可直接设椭圆方程为:mx+ny=1(m>0,n>0); ④、参数方程:?

2、椭圆的定义:平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹。 |PF1|e(0?e?1) =e (椭圆的焦半径公式:|PF1|=a+ex0, |PF2|=a-ex0)d

其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距;定直线叫做准线。 常数叫做离心率。

注意: 2a?|F1F2|表示椭圆;2a?|F1F2|表示线段F1F2;2a?|F1F2|没有轨迹; 22?x?acos? ?y?bsin?

xyb2b?23、 ; 4、通径:、点与椭圆的位置关系; 6、2?2?1焦点三角形的面积:btan其中∠F1PF2=?); ca2ab2222

7、弦长公式:

解析几何知识点总结

; 8、 椭圆在点P(x0,y0)处的切线方程:x0xy0y?2?1; 2ab

9、直线与椭圆的位置关系:

凡涉及直线与椭圆的问题,通常设出直线与椭圆的方程,将二者联立,消去x或y,得到关于y或x的一元二次方程,再利用根与系数的关系及根的判别

淮上陌客2012.3.26

式等知识来解决,需要有较强的综合应用知识解题的能力。

10、椭圆中的定点、定值及参数的取值范围问题:

①定点、定值问题:通常有两种处理方法:第一种方法?是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;第二种方法?是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。

②关于最值问题:常见解法有两种:代数法与几何法。若题目中的条件和结论能明显体现几何特征及意义,则考虑利用图形的性质来解决,这就是几何法;若题目中的条件和结论难以体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,求函数的最值常用的方法有配方法、判别式法、重要不等式法、函数的单调性法等。

③参数的取值范围问题:此类问题的讨论常用的方法有两种:第一种是不等式(组)求解法?根据题意结合图形列出所讨论的参数适合的不等式(组),通过解不等式(组)得出参数的变化范围;第二种?是函数的值域求解法:把所讨论的参数表示为某个变量的函数,通过讨论函数的值域求得参数的变化范围

椭圆图象及几何性质:

解析几何知识点总结

解析几何知识点总结




第二篇:解析几何知识点总结 3100字

解析几何

1、抛物线的标准方程、图象及几何性质:p?0

解析几何知识点总结

1

1.抛物线的概念

平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上)。定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。 方程y2?2px?p?0?叫做抛物线的标准方程。

pp,0),它的准线方程是x?? ; 22注意:它表示的抛物线的焦点在x轴的正半轴上,焦点坐标是F(

2.抛物线的性质

一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:y2??2px,x2?2py,x2??2py.这四种抛物线的图形、标准方程、焦点坐标以及准线方程。

说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;

(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;

(3)注意强调p的几何意义:是焦点到准线的距离。

题型1:抛物线

(1)已知抛物线的焦点坐标是F(0,?2),求它的标准方程

题型2:抛物线的性质

x2y2

??1的右焦点重合,则p的值为( ) 例2.(1)若抛物线y?2px的焦点与椭圆622

A.?2 B.2 C.?4 D.4

(2)抛物线y?8x的准线方程是( )

(A) x??2 (B) x??4 (C) y??2 (D) y??4

(3)抛物线y??8x的焦点坐标是( ) 22

2

A.(2,0) B.(- 2,0) C.(4,0) D.(- 4,0)

例3.(1)(全国卷I)抛物线y??x2上的点到直线4x?3y?8?0距离的最小值是( )

A.478 B. C. D.3 355

(2)对于抛物线y2=4x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是( )

B.(-∞,2] C.[0,2] D.(0,2) A.(-∞,0)

关于双曲线知识点的补充:

1、 双曲线的定义:平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|

第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数e(e

注意: |F1F2|)的点的轨迹。 ?1)的点的轨迹。两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。常数叫做离心率。 PF1|?|PF2|?2a与|PF2|?|PF1|?2a(2a?|F1F2|)表示双曲线的一支。 2a?|F1F2|表示两条射线;2a?|F1F2|没有轨迹;

2、 双曲线的标准方程

x2y2y2x2

①焦点在x轴上的方程:2?2?1(a>0,b>0); ②焦点在y轴上的方程:2?2?1 (a>0,b>0); abab

③当焦点位置不能确定时,也可直接设椭圆方程为:mx-ny=1(m·n<0);

④双曲线的渐近线:改1为0,分解因式则可得两条渐近线之方程.

3、双曲线的渐近线: 22

x22①求双曲线x?y?1的渐近线,可令其右边的1为0,即得x?y?0,因式分解得到。②与双曲线2aa2b2a2b222222y2xy?2?1共渐近线的双曲线系方程是2?2??; bab

4、等轴双曲线: 为x?y?t,其离心率为2

6、几个概念:

3 222

22 22b2bxy?222; ; ③等轴双曲线x-y=? (?∈R,?≠0):渐近线是y=±x,2 ;④2?2?1焦点三角形的面积:bcot (其中∠F1PF2=?); ca2ab

⑤弦长公式:

解析几何知识点总结

c=a-b,而在双曲线中:c=a+b, 222222 4

5

解析几何知识点总结

8、双曲线中的定点、定值及参数的取值范围问题:

①定点、定值问题:通常有两种处理方法:第一种方法?是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;第二种方法?是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。

②关于最值问题:常见解法有两种:代数法与几何法。若题目中的条件和结论能明显体现几何特征及意义,则考虑利用图形的性质来解决,这就是几何法;若题目中的条件和结论难以体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,求函数的最值常用的方法有配方法、判别式法、重要不等式法、函数的单调性法等。

③参数的取值范围问题:此类问题的讨论常用的方法有两种:第一种是不等式(组)求解法?根据题意结合图形列出所讨论的参数适合的不等式(组),通过解不等式再得出参数的变化范围;第二种是函数的值域求解法:把所讨论的参数表示为某个变量的函数,通过讨论函数的值域求得参数的变化范围。

关于椭圆知识点的补充:

1、椭圆的标准方程:

x2y2y2x2

① 焦点在x轴上的方程:2?2?1 (a>b>0); ②焦点在y轴上的方程:2?2?1 (a>b>0); abab

?x?acos?③当焦点位置不能确定时,也可直接设椭圆方程为:mx+ny=1(m>0,n>0); ④、参数方程:? y?bsin??22

2、椭圆的定义:平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹。 |PF1|e(0?e?1) =e (椭圆的焦半径公式:|PF1|=a+ex0, |PF2|=a-ex0)d

其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距;定直线叫做准线。 常数叫做离心率。

注意: 2a?|F1F2|表示椭圆;2a?|F1F2|表示线段F1F2;2a?|F1F2|没有轨迹;

xyb2b?23、 ; 4、通径:、点与椭圆的位置关系; 6、2?2?1焦点三角形的面积:btan其中∠F1PF2=?); ca2ab2222

7、弦长公式:

解析几何知识点总结

; 8、 椭圆在点P(x0,y0)处的切线方程:x0xy0y?2?1; a2b

9、直线与椭圆的位置关系:

凡涉及直线与椭圆的问题,通常设出直线与椭圆的方程,将二者联立,消去x或y,得到关于y或x的一元二次方程,再利用根与系数的关系及根的判别式等知识来解决,需要有较强的综合应用知识解题的能力。

6

10、椭圆中的定点、定值及参数的取值范围问题:

①定点、定值问题:通常有两种处理方法:第一种方法?是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;第二种方法?是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。

②关于最值问题:常见解法有两种:代数法与几何法。若题目中的条件和结论能明显体现几何特征及意义,则考虑利用图形的性质来解决,这就是几何法;若题目中的条件和结论难以体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,求函数的最值常用的方法有配方法、判别式法、重要不等式法、函数的单调性法等。

③参数的取值范围问题:此类问题的讨论常用的方法有两种:第一种是不等式(组)求解法?根据题意结合图形列出所讨论的参数适合的不等式(组),通过解不等式(组)得出参数的变化范围;第二种?是函数的值域求解法:把所讨论的参数表示为某个变量的函数,通过讨论函数的值域求得参数的变化范围 椭圆图象及几何性质:

解析几何知识点总结

7

解析几何知识点总结

8

更多类似范文
┣ 人教A版高中数学必修2空间立体几何知识点归纳 3300字
┣ 高中数学立体几何知识点整理 3400字
┣ 平面向量和解析几何专题复习探讨 3800字
┣ 20xx-20xx学年沭阳银河学校高一数学教案:第2章《平面解析几何初步复习与小结》 1100字
┣ 更多解析几何知识点总结
┗ 搜索类似范文

更多相关推荐:
解析几何知识点总结2500字

抛物线的标准方程图象及几何性质p0关于抛物线知识点的补充1定义2几个概念p的几何意义焦参数p是焦点到准线的距离故p为正数焦点的非零坐标是一次项系数的14方程中的一次项的变量与对称轴的名称相同一次项的系数符号决定...

高中数学知识点总结之平面向量与空间解析几何(经典必看)3900字

56你对向量的有关概念清楚吗1向量既有大小又有方向的量2向量的模有向线段的长度a3单位向量a01a04零向量000aa长度相等5相等的向量ab方向相同在此规定下向量可以在平面或空间平行移动而不改变6并线向量平行...

高中数学知识点总结之平面向量与空间解析几何篇1200字

1向量既有大小又有方向的量2向量的模有向线段的长度a3单位向量a01a0aa4零向量000长度相等5相等的向量ab方向相同在此规定下向量可以在平面或空间平行移动而不改变6并线向量平行向量方向相同或相反的向量规定...

空间向量与立体几何知识点归纳总结3000字

空间向量与立体几何知识点归纳总结一知识要点1空间向量的概念在空间我们把具有大小和方向的量叫做向量注12向量具有平移不变性2空间向量的运算定义与平面向量运算一样空间向量的加法减法与数乘运算如下如图OBOAABab...

专栏推荐
大家在关注

地图地图CC