金属学与热处理总结前七章(28000字)

发表于:2021.2.28来自:www.fanwen118.com字数:28000 手机看范文

金属学与热处理总结

一、金属的晶体结构

重点内容: 面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。

基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。

金属学与热处理总结前七章

金属学与热处理总结前七章

晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。

金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。

位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性:

①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。

刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性:

①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。

二、纯金属的结晶

重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。

基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热

力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。

相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。

变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。

过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,没有过冷度结晶就没有趋动力。根据 Rk?T可知当过冷度?T为零时临界晶核半径Rk为无穷大,临界形核功(?G??T2)也为无穷大。临界晶核半径Rk与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。

细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。

铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。

三、二元合金的相结构与结晶

重点内容:杠杆定律、相律及应用。

基本内容:相、匀晶、共晶、包晶相图的结晶过程及不同成分合金在室温下的显微组织。合金、成分过冷;非平衡结晶及枝晶偏析的基本概念。

相律:f = c – p + 1其中,f 为 自由度数,c为 组元数,p为 相数。

伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶。

合金:两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它方法组合而成的具有金属特性的物质。

合金相:在合金中,通过组成元素(组元)原子间的相互作用,形成具有相同晶体结构与性质,并以明确界面分开的成分均一组成部分称为合金相。

四、铁碳合金

重点内容:铁碳合金的结晶过程及室温下的平衡组织,组织组成物及相组成物的计算。

基本内容:铁素体与奥氏体、二次渗碳体与共析渗碳体的异同点、三个恒温转变。 钢的含碳量对平衡组织及性能的影响;二次渗碳体、三次渗碳体、共晶渗碳体相对量的计算;五种渗碳体的来源及形态。

奥氏体与铁素体的异同点:

相同点:都是铁与碳形成的间隙固溶体;强度硬度低,塑性韧性高。

不同点:铁素体为体心结构,奥氏体面心结构;铁素体最高含碳量为0.0218%, 奥氏体最高含碳量为2.11%,铁素体是由奥氏体直接转变或由奥氏体发生共析转变得到,奥氏体是由包晶或由液相直接析出的;存在的温度区间不同。

二次渗碳体与共析渗碳体的异同点。

相同点:都是渗碳体,成份、结构、性能都相同。

不同点:来源不同,二次渗碳体由奥氏体中析出,共析渗碳体是共析转变得到的;形态不同二次渗碳体成网状,共析渗碳体成片状;对性能的影响不同,片状的强化基体,提高强度,网状降低强度。

成分、组织与机械性能之间的关系:如亚共析钢。亚共析钢室温下的平衡组织为F+P,F的强度低,塑性、韧性好,与F相比P强度硬度高,而塑性、韧性差。随含碳量的增加,F量减少,P量增加(组织组成物的相对量可用杠杆定律计算)。所以对于亚共析钢,随含碳量的增加,强度硬度升高,而塑性、韧性下降

五、三元合金相图

重点内容:固态下无溶解度三元共晶相图投影图中不同区、线的结晶过程、室温组织。 基本内容:固态下无溶解度三元共晶相图投影图中任意点的组织并计算其相对量。 三元合金相图的成分表示法;直线法则、杠杆定律、重心法则。

六、金属及合金的塑性变形与断裂

重点内容:体心与面心结构的滑移系;金属塑性变形后的组织与性能。

基本内容:固溶体强化机理与强化规律、第二相的强化机理。霍尔——配奇关系式;单晶体塑性变形的方式、滑移的本质。

塑性变形的方式:以滑移和孪晶为主。

滑移:晶体的一部分沿着一定的晶面和晶向相对另一部分作相对的滑动。滑移的本质是位错的移动。

体心结构的滑移系个数为12,滑移面:{110},方向<111>。面心结构的滑移系个数为12,滑移面:{111},方向<110>。

金属塑性变形后的组织与性能 :显微组织出现纤维组织,杂质沿变形方向拉长为细带状或粉碎成链状,光学显微镜分辨不清晶粒和杂质。亚结构细化,出现形变织构。性能:材料的强度、硬度升高,塑性、韧性下降;比电阻增加,导电系数和电阻温度系数下降,抗腐蚀能力降低等。

七、金属及合金的回复与再结晶

重点内容:金属的热加工的作用;变形金属加热时显微组织的变化、性能的变化,储存能的变化。

基本内容:回复、再结的概念、变形金属加热时储存能的变化。再结晶后的晶粒尺寸;影响再结晶的主要因素性能的变化规律。

变形金属加热时显微组织的变化、性能的变化:随温度的升高,金属的硬度和强度下降,塑性和韧性提高。电阻率不断下降,密度升高。金属的抗腐蚀能力提高,内应力下降。

再结晶:冷变形后的金属加热到一定温度之后,在原来的变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化,并恢复到完全软化状态,这个过程称之为再结晶。

热加工的主要作用(或目的)是:①把钢材加工成所需要的各种形状,如棒材、板材、线材等;②能明显的改善铸锭中的组织缺陷,如气泡焊合,缩松压实,使金属材料的致密度增加;③使粗大的柱状晶变细,合金钢中大块状碳化物初晶打碎并使其均匀分布;④减轻或消除成分偏析,均匀化学成分等。使材料的性能得到明显的改善。

影响再结晶的主要因素:①再结晶退火温度:退火温度越高(保温时间一定时),再结晶后的晶粒越粗大;②冷变形量:一般冷变形量越大,完成再结晶的温度越低,变形量达到一定程度后,完成再结晶的温度趋于恒定;③原始晶粒尺寸:原始晶粒越细,再结晶晶粒也越细;④微量溶质与杂质原子,一般均起细化晶粒的作用;⑤第二相粒子,粗大的第二相粒子有利于再结晶,弥散分布的细小的第二相粒子不利于再结晶;⑥形变温度,形变温度越高,再结晶温度越高,晶粒粗化;⑦加热速度,加热速度过快或过慢,都可能使再结晶温度升高。

塑性变形后的金属随加热温度的升高会发生的一些变化:

显微组织经过回复、再结晶、晶粒长大三个阶段由破碎的或纤维组织转变成等轴晶粒,亚晶尺寸增大;储存能降低,内应力松弛或被消除;各种结构缺陷减少;强度、硬度降低,塑性、韧度提高;电阻下降,应力腐蚀倾向显著减小。

1.解释下列名词金属的力学性能 ,弹性极限,载荷 ,应力 ,强度,硬度 ,塑性。

答:金属的力学性能:是指金属在外力作用下所表现出来的性能。

弹性极限:是指金属材料在外力作用下,只发生弹性变形而不发生塑性变时所能承受的最大应力。

载荷:是指金属材料在加工及使用过程中所受到的各种外力。其符号用F表示。

应力:指单位面积上的内应力。

强度:是指金属材料抵抗塑性变形或断裂的能力,是工程技术上重要的力学性能指标。

硬度:材料抵抗局部变形特别是塑性变性压痕或划痕的能力。

塑性:是金属材料断裂前产生塑性变形的能力。

2、什么是金属的疲劳?简述疲劳断裂的特点。

答:金属材料在受到交变应力或重复循环应力时往往在工作应力小于屈服强度的情况下突 然断裂,这种现象称为疲劳。

疲劳断裂的特点:由于疲劳的应力比屈服强度低,所以不论是韧性材料还是脆性材料,在疲劳断裂前,均没有明显的塑性变形,它是在长期累积损伤过程中,经裂纹萌生和缓慢扩展到临界尺寸时突然发生的。由于断裂前没有明显的预兆,故疲劳断裂危险性极大。宏观断口一般可明显地分为三个区域,即疲劳源,疲劳裂纹扩展区和瞬间断裂区。疲劳源多在机件的表面处。

第二章 金属的晶体结构

1.解释下列名词

点缺陷,线缺陷,面缺陷,晶体,晶格,晶胞,单晶体,晶粒,晶界,合金,组亓,相,固溶体,金属化合物。

答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间

隙原子、置换原子等。

线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上

的尺寸很小。如位错。

面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向

上的尺寸很小。如晶界和亚晶界。

晶体:是指组成物质的原子或分子在空间排列是有规则、有序排列的物体。 晶格:把点阵中的结点假想用一系列平行直线连接起来构成空间格架称为晶格。

晶胞:构成晶格的最基本单元。

单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。

晶粒:多晶体中的每个外形不规则的、呈颗粒状的小晶体称为晶粒。 晶界:晶粒与晶粒之间的分界线称为晶界。

合金:通过熔炼,烧结或其它方法,将一种金属元素同一种或几种其它元素结合在一起所形成的具有金属特性的新物质,称为合金。

组亓:组成合金的最基本的、独立的物质称为组元

相:在纯金属或合金中,凡成分相同、结构相同并与其它部分有界面分开的均匀组成部分,均称之为相。

固溶体:合金的组元之间以不同的比例混合,混合后形成的固相的晶格结构

与组成合金的某一组元的相同,这种相称为固溶体。

金属化合物:合金的组元间发生相互作用形成的一种具有金属性质的新相,

称为金属化合物。它的晶体结构不同于任一组元,用分子式

来表示其组成。

2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、 Pb 、 Cr 、 V 、Mg、Zn 各属何种晶体结构?

答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;

α-Fe、Cr、V属于体心立方晶格;

γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;

Mg、Zn属于密排六方晶格;

3.实际金属晶体中存在哪几种缺陷?这些缺陷对金属性能有何影响?

答:金属实际晶体中存在点缺陷、线缺陷和面缺陷三种晶体缺陷。这些缺陷对金

属性能的影响如下:1)点缺陷造成局部晶格畸变,使金属的电阻率,屈服强度增加,密度发生变化。2)线缺陷形成位错对金属的机械性能影响很大,位错极少时,金属强度很高。3)面缺陷晶界和亚晶界越多,晶粒越细,金属强度越高金属塑变的能力越大,塑性越好。

总之,材料的强度硬度增加,随着点、线缺陷量的增加,材料的塑性韧性下降,而随着面缺陷量的增加,塑性和韧性反而提高。

4.金属中常见的晶体结构有哪几种?

答:金属中常见的晶体结构有:体心立方晶格、面心立方晶格和密排六方晶格三种

5.固溶体有哪几种类型?固溶体与化合物有何区别?

答:间隙固溶体固溶体根据溶质在溶剂中所占据的位置不同分为和置换固溶

体。固溶体与化合物的区别是:固溶体与化合物的区别是:

1) 固溶体的晶格结构保持了溶剂的晶格结构,化合物的晶格结构不同于任何一种组元。

2)化合物的硬度高而脆,熔点高,通常不做为主相,而作为强化相。

6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?

答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因

而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。

第三章 纯金属的结晶

1.解释下列名词:

机械混合物;枝晶偏析。

答:

机械混合物:合金的组织由不同的相以不同的比例机械的混合在一起,称机

械混合物。

枝晶偏析:实际生产中,合金冷却速度快,原子扩散不充分,使得先结晶出

来的固溶体合金含高熔点组元较多,后结晶含低熔点组元较

多,这种在晶粒内化学成分不均匀的现象称为枝晶偏析。

2.金属形核的方式有几种?通常金属结晶时形核的主要方式是哪一种?晶粒的形态如何?

答:金属形核的方式有:自发形核(均质形核)和非自发形核(异质形核)两种。

金属通常以非自发形核为主要形核方式。(需能量小)

晶粒的形态通常为树枝晶。

3.影响晶粒大小的因素有哪些?如何影响晶粒大小?

答:影响晶粒大小的因素是形核率(N)和长大速度(G)。

形核率提高的比长大速度更快,即N/G增大时,晶粒更细小。

4.什么叫同素异晶转变?其转变与纯金属的结晶有何异同?

答: 同素异晶转变:金属在固态下随温度的改变,由一种晶格转变为 另一种晶格的现象称为同素异晶转变。

同素异晶转变与金属的结晶相同点:

1)过程都包括形核与长大两过程

2)且都在恒温下进行

3)同时都是相变。

不同点:同素异晶转变是固态下的相变;而纯金属的结晶是液态向固态转变的相变。

5.指出下列名词的主要区别:

1)置换固溶体与间隙固溶体;

答:置换固溶体:溶质原子代替溶剂晶格结点上的一部分原子而组成的固溶体称

置换固溶体。

间隙固溶体:溶质原子填充在溶剂晶格的间隙中形成的固溶体,即间隙固溶

体。

2)相组成物与组织组成物;

相组成物:合金的基本组成相。

组织组成物:合金显微组织中的独立组成部分。

6.固溶体和金属化合物在结构和性能上有什么主要差别?

答:在结构上:固溶体的晶体结构与溶剂的结构相同,而金属化合物的晶体结构

不同于组成它的任一组元,它是以分子式来表示其组成。

在性能上:形成固溶体和金属化合物都能强化合金,但固溶体的强度、硬度

比金属间化合物低,塑性、韧性比金属间化合物好,也就是固溶

体有更好的综合机械性能。

7. 何谓共晶反应、包晶反应和共析反应?试比较这三种反应的异同点.

答:共晶反应:指一定成分的液体合金,在一定温度下,同时结晶出成分和晶格

均不相同的两种晶体的反应。

包晶反应:指一定成分的固相与一定成分的液相作用,形成另外一种固相的

反应过程。

共析反应:由特定成分的单相固态合金,在恒定的温度下,分解成两个新的,

具有一定晶体结构的固相的反应。

共同点:反应都是在恒温下发生,反应物和产物都是具有特定成分的相,都

处于三相平衡状态。

不同点:共晶反应是一种液相在恒温下生成两种固相的反应;共析反应是一

种固相在恒温下生成两种固相的反应;而包晶反应是一种液相与一

种固相在恒温下生成另一种固相的反应。

8.二元合金相图表达了合金的哪些关系?

答:二元合金相图表达了合金的状态与温度和成分之间的关系。

9.在二元合金相图中应用杠杆定律可以计算什么?

答:应用杠杆定律可以计算合金相互平衡两相的成分和相对含量。

10.在相图中三相水平线处相和组织是否能用杠杆定律来计算,为什么?

答:在相图中三相水平线处:在转变前后相和组织能用杠杆定律来计算,转变过程中不能。转变前后的相是两相,转变过程中为3相,杠杆定律只适用于两相区。

11.某合金相图如图所示,回答下列问题。

1)试标注①—④空白区域中存在相的名称;

2)指出此相图包括哪几种转变类型;

3)说明合金Ⅰ的平衡结晶过程及室温下的显微组织。

金属学与热处理总结前七章

答:(1)①:L+γ ②: γ+β ③: β+(α+β) ④: β+αⅡ

(2)匀晶转变;共析转变

(3)合金①在1点以上全部为液相,冷至1点时开始从液相中析出γ固溶体至

2点结束,2~3点之间合金全部由γ固溶体所组成,3点以下,开始从γ固溶体中析出α固溶体,冷至4点时合金全部由α固溶体所组成,4~5之间全部由α固溶体所组成,冷到5点以下,由于α固溶体的浓度超过了它的溶解度限度,从α中析出第二相β固溶体,最终得到室温下稳定的显微组织: α+βⅡ

12.有形状、尺寸相同的两个 Cu-Ni 合金铸件,一个含 90% Ni ,另一个含 50% Ni,铸后自然冷却,问哪个铸件的偏析较严重?

答:含 50% Ni的Cu-Ni 合金铸件偏析较严重。在实际冷却过程中,由于冷速较

快,使得先结晶部分含高熔点组元多,后结晶部分含低熔点组元多,因为含 50% Ni的Cu-Ni 合金铸件固相线与液相线范围比含 90% Ni铸件宽,因此它所造成的化学成分不均匀现象要比含 90% Ni的Cu-Ni 合金铸件严重。

13.过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响?

答:①冷却速度越大,则过冷度也越大。②随着冷却速度的增大,则晶体内形核

率和长大速度都加快,加速结晶过程的进行,但当冷速达到一定值以后则结晶过程将减慢,因为这时原子的扩散能力减弱。③过冷度增大,ΔF大,结晶驱动力大,形核率和长大速度都大,且N的增加比G增加得快,提高了N与G的比值,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难。

14.金属结晶的基本规律是什么?晶核的形成率和成长率受到哪些因素的影响? 答:①金属结晶的基本规律是形核和核长大。②受到过冷度的影响,随着过冷度的增大,晶核的形成率和成长率都增大,但形成率的增长比成长率的增长快;同时外来难熔杂质以及振动和搅拌的方法也会增大形核率。

15.在铸造生产中,采用哪些措施控制晶粒大小?在生产中如何应用变质处理? 答:①采用的方法:变质处理,钢模铸造以及在砂模中加冷铁以加快冷却速度的

方法来控制晶粒大小。②变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒。③机械振动、搅拌。

第四章 铁碳合金

1.选择题:

(1)下列组织中塑性最好的是( A )。

A.铁素体 B.珠光体 C.渗碳体 莱氏体

(2)Fe—Fe3C相图上所形成的共析线是( C ),共晶线是( A )。

A.ECF线 B.ACD线 C.PSK线

2.判断题:

(1)渗碳体中碳的质量分数是6.69%。( √ )

(2)碳溶于α—Fe中所形成的间隙固溶体为奥氏体。( × )

(3)共析转变是在恒温下进行的。( √ )

3.何谓金属的同素异构转变?试画出纯铁的结晶冷却曲线和晶体结构变化图。

金属学与热处理总结前七章

答:由于条件(温度或压力)变化引起金属晶体结构的转变,称同素异构转变。

4.何谓铁素体(F),奥氏体(A),渗碳体(Fe3C),珠光体(P),莱氏体(Ld)?

它们的结构、组织形态、性能等各有何特点?

答:铁素体(F):铁素体是碳在??Fe中形成的间隙固溶体,为体心立方晶格。

由于碳在??Fe中的溶解度`很小,它的性能与纯铁相近。塑性、

韧性好,强度、硬度低。它在钢中一般呈块状或片状。

奥氏体(A):奥氏体是碳在??Fe中形成的间隙固溶体,面心立方晶格。因其

晶格间隙尺寸较大,故碳在??Fe中的溶解度较大。有很好的塑

性。

渗碳体(Fe3C):铁和碳相互作用形成的具有复杂晶格的间隙化合物。渗碳体

具有很高的硬度,但塑性很差,延伸率接近于零。在钢中以片

状存在或网络状存在于晶界。在莱氏体中为连续的基体,有时

呈鱼骨状。

珠光体(P):由铁素体和渗碳体组成的机械混合物。铁素体和渗碳体呈层片状。

珠光体有较高的强度和硬度,但塑性较差。

莱氏体(Ld):由奥氏体和渗碳体组成的机械混合物。在莱氏体中,渗碳体是

连续分布的相,奥氏体呈颗粒状分布在渗碳体基体上。由于渗

碳体很脆,所以莱氏体是塑性很差的组织。

5.Fe-Fe3C合金相图有何作用?在生产实践中有何指导意义?又有何局限性?

答:①碳钢和铸铁都是铁碳合金,是使用最广泛的金属材料。铁碳合金相图是研

究铁碳合金的重要工具,了解与掌握铁碳合金相图,对于钢铁材料的研究和使用,各种热加工工艺的制订以及工艺废品原因的分析等方面都有重要指导意义。②为选材提供成分依据:F?Fe3C相图描述了铁碳合金的组织随含碳量的变化规律,合金的性能决定于合金的组织,这样根据零件的性能要求来选择不同成分的铁碳合金;为制定热加工工艺提供依据:对铸造,根据相图可以找出不同成分的钢或铸铁的熔点,确定铸造温度;根据相图上液相线和固相线间距离估计铸造性能的好坏。对于锻造:根据相图可以确定锻造温度。对焊接:

根据相图来分析碳钢焊缝组织,并用适当热处理方法来减轻或消除组织不均匀性;对热处理:F?Fe3C相图更为重要,如退火、正火、淬火的加热温度都要参考铁碳相图加以选择。③由于铁碳相图是以无限缓慢加热和冷却的速度得到的,而在实际加热和冷却通常都有不同程度的滞后现象。

6.画出 Fe-Fe3C 相图,指出图中 S 、C 、E 、P、N 、G 及 GS 、SE 、PQ 、

PSK 各点、线的意义,并标出各相区的相组成物和组织组成物。

答:

金属学与热处理总结前七章

C:共晶点1148℃ 4.30%C,在这一点上发生共晶转变,反应式:

Lc?AE?Fe3C,当冷到1148℃时具有C点成分的液体中同时结晶出具有E点成分的奥氏体和渗碳体的两相混合物——莱氏体?Le???AE?Fe3C?

E:碳在??Fe中的最大溶解度点1148℃ 2.11%C

G:??Fe???Fe同素异构转变点(A3)912℃ 0%C

H:碳在??Fe中的最大溶解度为1495℃ 0.09%C

J:包晶转变点1495℃ 0.17%C 在这一点上发生包晶转变,反应式:LB??H?AJ当冷却到1495℃时具有B点成分的液相与具有H点成分的固相δ反应生成具有J点成分的固相A。

N:??Fe???Fe同素异构转变点(A4)1394℃ 0%C

P:碳在??Fe中的最大溶解度点 0.0218%C 727℃

S:共析点727℃ 0.77%C 在这一点上发生共析转变,反应式:

As?Fp?Fe3c,当冷却到727℃时从具有S点成分的奥氏体中同时析出具有P点成分的铁素体和渗碳体的两相混合物——珠光体P(Fp?Fe3c)

ES线:碳在奥氏体中的溶解度曲线,又称Acm温度线,随温度的降低,碳

在奥化体中的溶解度减少,多余的碳以Fe3C形式析出,所以具有0.77%~2.11%C的钢冷却到Acm线与PSK线之间时的组织A?Fe3CⅡ,

从A中析出的Fe3C称为二次渗碳体。

GS线:不同含碳量的奥氏体冷却时析出铁素体的开始线称A3线,GP线则

是铁素体析出的终了线,所以GSP区的显微组织是F?A。

PQ线:碳在铁素体中的溶解度曲线,随温度的降低,碳在铁素体中的溶解

度减少,多余的碳以Fe3C形式析出,从F中析出的Fe3C称为三次渗碳体Fe3CⅢ,由于铁素体含碳很少,析出的Fe3CⅢ很少,一般忽

略,认为从727℃冷却到室温的显微组织不变。

PSK线:共析转变线,在这条线上发生共析转变AS?FP?Fe3C,产物(P)

珠光体,含碳量在0.02~6.69%的铁碳合金冷却到727℃时都有共析转变发生。

7.何谓碳素钢?何谓白口铁?两者的成分组织和性能有何差别?

答:碳素钢:含有0.02%~2.14%C的铁碳合金。

白口铁:含大于2.14%C的铁碳合金。

碳素钢中亚共析钢的组织由铁素体和珠光体所组成,其中珠光体中的渗碳体以细片状分布在铁素体基体上,随着含碳量的增加,珠光体的含量增加,则钢的强度、硬度增加,塑性、韧性降低。当含碳量达到0.8%时就是珠光体的性能。过共析钢组织由珠光体和二次渗碳体所组成,含碳量接近1.0%时,强度达到最大值,含碳量继续增加,强度下降。由于二次渗碳体在晶界形成连续的网络,导致钢的脆性增加。

白口铁中由于其组织中存在大量的渗碳体,具有很高的硬度和脆性,难以切削加工。

8.亚共析钢、共析钢和过共析钢的组织有何特点和异同点。

答:亚共析钢的组织由铁素体和珠光体所组成。其中铁素体呈块状。珠光体中

铁素体与渗碳体呈片状分布。共析钢的组织由珠光体所组成。过共析钢的

组织由珠光体和二次渗碳体所组成,其中二次渗碳体在晶界形成连续的网络状。

共同点:钢的组织中都含有珠光体。不同点:亚共析钢的组织是铁素体和

珠光体,共析钢的组织是珠光体,过共析钢的组织是珠光体和二

次渗碳体。

9.分析含碳量分别为 0.20% 、 0.60% 、 0.80% 、 1.0% 的铁碳合金从液态缓冷至室温时的结晶过程和室温组织.

答:0.80%C:在1~2点间合金按匀晶转变结晶出A,在2点结晶结束,全部转变

为奥氏体。冷到3点时(727℃),在恒温下发生共析转变,转变结

束时全部为珠光体P,珠光体中的渗碳体称为共析渗碳体,当温度

继续下降时,珠光体中铁素体溶碳量减少,其成分沿固溶度线PQ

变化,析出三次渗碳体Fe3CⅢ,它常与共析渗碳体长在一起,彼此

分不出,且数量少,可忽略。

室温时组织P。

0.60% C:合金在1~2点间按匀晶转变结晶出A,在2点结晶结束,全部转变

为奥氏体。冷到3点时开始析出F,3-4点A成分沿GS线变化,铁

素体成分沿GP线变化,当温度到4点时,奥氏体的成分达到S点

成分(含碳0.8%),便发生共析转变,形成珠光体,此时,原先析

出的铁素体保持不变,称为先共析铁素体,其成分为0.02%C,所以

共析转变结束后,合金的组织为先共析铁素体和珠光体,当温度继

续下降时,铁素体的溶碳量沿PQ线变化,析出三次渗碳体,同样

Fe3CⅢ量很少,可忽略。

所以含碳0.40%的亚共析钢的室温组织为:F+P

1.0% C:合金在1~2点间按匀晶转变结晶出奥氏体,2点结晶结束,合金为单

Fe3CⅡ相奥氏体,冷却到3点,开始从奥氏体中析出二次渗碳体Fe3CⅡ,

沿奥氏体的晶界析出,呈网状分布,3-4间Fe3CⅡ不断析出,奥氏体

成分沿ES线变化,当温度到达4点(727℃)时,其含碳量降为0.77%,在恒温下发生共析转变,形成珠光体,此时先析出的Fe3CⅡ保持不变,

称为先共析渗碳体,所以共析转变结束时的组织为先共析二次渗碳体

和珠光体,忽略Fe3CⅢ。

室温组织为二次渗碳体和珠光体。

10.指出下列名词的主要区别:

1)一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体与共析渗碳体; 答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。

二次渗碳体:从A中析出的Fe3C称为二次渗碳体。

三次渗碳体:从F中析出的Fe3C称为三次渗碳体Fe3CⅢ。

共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳

体。

共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗碳体称为共析渗碳

体。

2) 热脆与冷脆。

答:热脆:S在钢中以FeS形成存在,FeS会与Fe形成低熔点共晶,当钢材在

1000℃~1200℃压力加工时,会沿着这些低熔点共晶体的边界开裂,

钢材将变得极脆,这种脆性现象称为热脆。

冷脆:P使室温下的钢的塑性、韧性急剧降低,并使钢的脆性转化温度有所

升高,使钢变脆,这种现象称为“冷脆”。

11.根据 Fe-Fe3C 相图,计算:

1)室温下,含碳 0.6% 的钢中珠光体和铁素体各占多少;

2)室温下,含碳 1.2% 的钢中珠光体和二次渗碳体各占多少;

3)铁碳合金中,二次渗碳体和三次渗碳体的最大百分含量。

答:1)Wp=(0.6-0.02)/(0.8-0.02)*100%=74% Wα=1-74%=26%

2)Wp=(2.14-1.2)/(2.14-0.8)*100%=70% WFe3CⅡ=1-70%=30%

3)WFe3CⅡ=(2.14-0.8)/(6.69-0.8)*100%=23%

W Fe3CⅢ=0.02/6.69*100%=33%

12.对某退火碳素钢进行金相分析,其组织的相组成物为铁素体+渗碳体(粒状),其中渗碳体占 18% ,问此碳钢的含碳量大约是多少?

答: WFe3CⅡ=18% =( WC-0.02)/(6.69-0.02)*100% WC=1.22%

13.对某退火碳素钢进行金相分析,其组织为珠光体+渗碳体(网状),其中珠光体占 93% ,问此碳钢的含碳量大约为多少?

答:Wp=93% =(2.14- WC)/(2.14-0.8)*100%=70% WC=0.89%

14.根据 Fe-Fe3C 相图,说明产生下列现象的原因:

1)含碳量为 1.0% 的钢比含碳量为 0.5% 的钢硬度高;

答:钢中随着含碳量的增加,渗碳体的含量增加,渗碳体是硬脆相,因此含碳量

为 1.0% 的钢比含碳量为 0.5% 的钢硬度高。

2)在室温下,含碳 0.8% 的钢其强度比含碳 1.2% 的钢高;

答:因为在钢中当含碳量超过1.0%时,所析出的二次渗碳体在晶界形成连续的

网络状,使钢的脆性增加,导致强度下降。因此含碳 0.8% 的钢其强度比含碳 1.2% 的钢高。

3)在 1100℃,含碳 0.4% 的钢能进行锻造,含碳 4.0% 的生铁不能锻造; 答:在 1100℃时,含碳 0.4% 的钢的组织为奥氏体,奥氏体的塑性很好,因此

适合于锻造;含碳 4.0% 的生铁的组织中含有大量的渗碳体,渗碳体的硬度很高,不适合于锻造。

4)绑轧物件一般用铁丝(镀锌低碳钢丝),而起重机吊重物却用钢丝绳(用 60 、 65 、 70 、 75 等钢制成);

答:绑轧物件的性能要求有很好的韧性,因此选用低碳钢有很好的塑韧性,镀锌

低碳钢丝;而起重机吊重物用钢丝绳除要求有一定的强度,还要有很高的弹性极限,而60 、 65 、 70 、 75钢有高的强度和高的弹性极限。这样在吊重物时不会断裂。

5)钳工锯 T8 , T10,T12 等钢料时比锯 10,20 钢费力,锯条容易磨钝; 答:T8 , T10,T12属于碳素工具钢,含碳量为0.8%,1.0%,1.2%,因而钢中渗

碳体含量高,钢的硬度较高;而10,20钢为优质碳素结构钢,属于低碳钢,钢的硬度较低,因此钳工锯 T8 , T10,T12 等钢料时比锯 10,20 钢费力,锯条容易磨钝。

6)钢适宜于通过压力加工成形,而铸铁适宜于通过铸造成形。

答:因为钢的含碳量范围在0.02%~2.14%之间,渗碳体含量较少,铁素体含量较

多,而铁素体有较好的塑韧性,因而钢适宜于压力加工;而铸铁组织中含有大量以渗碳体为基体的莱氏体,渗碳体是硬脆相,因而铸铁适宜于通过铸造成形。

15.钢中常存杂质有哪些?对钢的性能有何影响?

答:钢中常存杂质有Si、Mn、S、P等。

Mn:大部分溶于铁素体中,形成置换固溶体,并使铁素体强化:另一部分

Mn溶于Fe3C中,形成合金渗碳体,这都使钢的强度提高,Mn与S化合成MnS,能减轻S的有害作用。当Mn含量不多,在碳钢中仅作为少量杂质存在时,它对钢的性能影响并不明显。

Si:Si与Mn一样能溶于铁素体中,使铁素体强化,从而使钢的强度、硬度、弹性提高,而塑性、韧性降低。当Si含量不多,在碳钢中仅作为少量夹杂存在时,它对钢的性能影响并不显著。

S:硫不溶于铁,而以FeS形成存在,FeS会与Fe形成共晶,并分布于奥氏体的晶界上,当钢材在1000℃~1200℃压力加工时,由于FeS-Fe共晶(熔点只有989℃)已经熔化,并使晶粒脱开,钢材将变得极脆。

P:磷在钢中全部溶于铁素体中,虽可使铁素体的强度、硬度有所提高,但却使室温下的钢的塑性、韧性急剧降低,并使钢的脆性转化温度有所升高,使钢变脆。

16.试述碳钢的分类及牌号的表示方法。

答:分类:1)按含碳量分类

低碳钢:含碳量小于或等于0.25%的钢,0.01~0.25%C ≤0.25%C 中碳钢:含碳量为0.30~0.55%的钢 0.25~0.6%C

高碳钢:含碳量大于0.6%的钢 0.6~1.3%C >0.6%C

(2)按质量分类:即含有杂质元素S、P的多少分类:

普通碳素钢:S≤0.055% P≤0.045%

优质碳素钢:S、P≤0.035~0.040%

高级优质碳素钢:S≤0.02~0.03%;P≤ 0.03~0.035%

(3)按用途分类

碳素结构钢:用于制造各种工程构件,如桥梁、船舶、建筑构件等,及机

器零件,如齿轮、轴、连杆、螺钉、螺母等。

碳素工具钢:用于制造各种刀具、量具、模具等,一般为高碳钢,在质量

上都是优质钢或高级优质钢。

牌号的表示方法:(1)普通碳素结构钢:

用Q+数字表示,“Q”为屈服点,“屈”汉语拼音,数字表示屈服点数值。若牌号后面标注字母A、B、C、D,则表示钢材质量等级不同, A、B、C、D质量依次提高,“F”表示沸腾钢,“b”为半镇静钢,不标“F”和“b”的为镇静钢。

(2)优质碳素结构钢:

牌号是采用两位数字表示的,表示钢中平均含碳量的万分之几。若钢中含锰量较高,须将锰元素标出,

(3)碳素工具钢:

这类钢的牌号是用“碳”或“T”字后附数字表示。数字表示钢中平均含碳量的千分之几。若为高级优质碳素工具钢,则在钢号最后附以“A”字。

17.低碳钢、中碳钢及高碳钢是如何根据含碳量划分的?分别举例说明他们的用途?

答:低碳钢:含碳量小于或等于0.25%的钢;08、10、钢,塑性、韧性好,具有

优良的冷成型性能和焊接性能,常冷轧成薄板,用于制作仪表外壳、

汽车和拖拉机上的冷冲压件,如汽车车身,拖拉机驾驶室等;15、

20、25钢用于制作尺寸较小、负荷较轻、表面要求耐磨、心部强

度要求不高的渗碳零件,如活塞钢、样板等。

中碳钢:含碳量为0.30~0.55%的钢 ;30、35、40、45、50钢经热处理(淬

火+高温回火)后具有良好的综合机械性能,即具有较高的强度和

较高的塑性、韧性,用于制作轴类零件;

高碳钢:含碳量大于0.6%的钢 ;60、65钢热处理(淬火+高温回火)后具

有高的弹性极限,常用作弹簧。T7、T8、用于制造要求较高韧性、

承受冲击负荷的工具,如小型冲头、凿子、锤子等。T9、T10、T11、

用于制造要求中韧性的工具,如钻头、丝锥、车刀、冲模、拉丝模、

锯条。T12、T13、钢具有高硬度、高耐磨性,但韧性低,用于制造

不受冲击的工具如量规、塞规、样板、锉刀、刮刀、精车刀等。

18.下列零件或工具用何种碳钢制造:手锯锯条、普通螺钉、车床主轴。

答:手锯锯条:它要求有较高的硬度和耐磨性,因此用碳素工具钢制造,如T9、

T9A、T10、T10A、T11、T11A。

普通螺钉:它要保证有一定的机械性能,用普通碳素结构钢制造,如Q195、

Q215、Q235。

车床主轴:它要求有较高的综合机械性能,用优质碳素结构钢,如30、35、

40、45、50。

19.指出下列各种钢的类别、符号、数字的含义、主要特点及用途:

Q235-AF、Q235-C、Q195-B、Q255-D、40、45、08、20、20R、20G、T8、T10A、T12A

答:Q235-AF:普通碳素结构钢,屈服强度为235MPa的A级沸腾钢。

Q235-C:屈服强度为235MPa的C级普通碳素结构钢,

Q195-B: 屈服强度为195MPa的B级普通碳素结构钢,

Q255-D: 屈服强度为255MPa的D级普通碳素结构钢,

Q195、Q235含碳量低,有一定强度,常扎制成薄板、钢筋、焊接钢管等,用于桥梁、建筑等钢结构,也可制造普通的铆钉、螺钉、螺母、垫圈、地脚螺栓、轴套、销轴等等,Q255钢强度较高,塑性、韧性较好,可进行焊接。通常扎制成型钢、条钢和钢板作结构件以及制造连杆、键、销、简单机械上的齿轮、轴节等。

40:含碳量为0.4%的优质碳素结构钢。

45含碳量为0.45%的优质碳素结构钢。

40、45钢经热处理(淬火+高温回火)后具有良好的综合机械性能,即具有较高的强度和较高的塑性、韧性,用于制作轴类零件。

08:含碳量为0.08%的优质碳素结构钢。塑性、韧性好,具有优良的冷成型

性能和焊接性能,常冷轧成薄板,用于制作仪表外壳、汽车和拖拉机上的冷冲压件,如汽车车身,拖拉机驾驶室等。

20:含碳量为0.2%的优质碳素结构钢。用于制作尺寸较小、负荷较轻、表

面要求耐磨、心部强度要求不高的渗碳零件,如活塞钢、样板等。

20R:含碳量为0.2%的优质碳素结构钢,容器专用钢。

20G:含碳量为0.2%的优质碳素结构钢,锅炉专用钢。

T8:含碳量为0.8%的碳素工具钢。用于制造要求较高韧性、承受冲击负荷

的工具,如小型冲头、凿子、锤子等。

T10A:含碳量为1.0%的高级优质碳素工具钢。用于制造要求中韧性的工具,

如钻头、丝锥、车刀、冲模、拉丝模、锯条。

T12A:含碳量为1.2%的高级优质碳素工具钢。具有高硬度、高耐磨性,但

韧性低,用于制造不受冲击的工具如量规、塞规、样板、锉刀、刮刀、

精车刀。

第五章 金属的塑性变形与再结晶:

1.解释下列名词:

滑移、加工硬化、回复、再结晶、热加工、冷加工。

答:滑移:指在切应力作用下,晶体的一部分对于另一部分沿一定晶面(滑移面)

发生相对的滑动。

加工硬化:随着塑性变形的增加,金属的强度、硬度迅速增加;塑性、韧性

迅速下降的现象。

回复:为了消除金属的加工硬化现象,将变形金属加热到某一温度,以使其

组织和性能发生变化。在加热温度较低时,原子的活动能力不大,这

时金属的晶粒大小和形状没有明显的变化,只是在晶内发生点缺陷的

消失以及位错的迁移等变化,因此,这时金属的强度、硬度和塑性等

机械性能变化不大,而只是使内应力及电阻率等性能显著降低。此阶

段为回复阶段。

再结晶:被加热到较高的温度时,原子也具有较大的活动能力,使晶粒的外

形开始变化。从破碎拉长的晶粒变成新的等轴晶粒。和变形前的晶

粒形状相似,晶格类型相同,把这一阶段称为“再结晶”。

热加工:将金属加热到再结晶温度以上一定温度进行压力加工。

冷加工:在再结晶温度以下进行的压力加工。

2.产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊?

答:①随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细

碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。因此,随着变形量的增加,由于晶粒破碎和位错密度的增加,金属的塑性变形抗力将迅速增大,即强度和硬度显著提高,而塑性和韧性下降产生所谓“加工硬化”现象。②金属的加工硬化现象会给金属的进一步加工带来困难,如钢板在冷轧过程中会越轧越硬,以致最后轧不动。另一方面人们可以利用加工硬化现象,来提高金属强度和硬度,如冷拔高强度钢丝就是利用冷加工变形产生的加工硬化来提高钢丝的强度的。加工硬化也是某些压力加工工艺能够实现的重要因素。如冷拉钢丝拉过模孔的部分,由于发生了加工硬化,不再继续变形而使变形转移到尚未拉过模孔的部分,这样钢丝才可以继续通过模孔而成形。

3.划分冷加工和热加工的主要条件是什么?

答:主要是再结晶温度。在再结晶温度以下进行的压力加工为冷加工,产生加工

硬化现象;反之为热加工,产生的加工硬化现象被再结晶所消除。

4.与冷加工比较,热加工给金属件带来的益处有哪些?

答:(1)通过热加工,可使铸态金属中的气孔焊合,从而使其致密度得以提高。

(2)通过热加工,可使铸态金属中的枝晶和柱状晶破碎,从而使晶粒细化,

机械性能提高。

(3)通过热加工,可使铸态金属中的枝晶偏析和非金属夹杂分布发生改变,

使它们沿着变形的方向细碎拉长,形成热压力加工“纤维组织”(流线),使纵向的强度、塑性和韧性显著大于横向。如果合理利用热加工流线,尽量使流线与零件工作时承受的最大拉应力方向一致,而与外加切应力或冲击力相垂直,可提高零件使用寿命。

5.为什么细晶粒钢强度高,塑性,韧性也好?

答:晶界是阻碍位错运动的,而各晶粒位向不同,互相约束,也阻碍晶粒的变形。

因此,金属的晶粒愈细,其晶界总面积愈大,每个晶粒周围不同取向的晶粒数便愈多,对塑性变形的抗力也愈大。因此,金属的晶粒愈细强度愈高。同时晶粒愈细,金属单位体积中的晶粒数便越多,变形时同样的变形量便可分

散在更多的晶粒中发生,产生较均匀的变形,而不致造成局部的应力集中,

引起裂纹的过早产生和发展。因此,塑性,韧性也越好。

6.金属经冷塑性变形后,组织和性能发生什么变化?

答:①晶粒沿变形方向拉长,性能趋于各向异性,如纵向的强度和塑性远大于横

向等;②晶粒破碎,位错密度增加,产生加工硬化,即随着变形量的增加,

强度和硬度显著提高,而塑性和韧性下降;③织构现象的产生,即随着变形

的发生,不仅金属中的晶粒会被破碎拉长,而且各晶粒的晶格位向也会沿着

变形的方向同时发生转动,转动结果金属中每个晶粒的晶格位向趋于大体一

致,产生织构现象;④冷压力加工过程中由于材料各部分的变形不均匀或晶

粒内各部分和各晶粒间的变形不均匀,金属内部会形成残余的内应力,这在

一般情况下都是不利的,会引起零件尺寸不稳定。

7.分析加工硬化对金属材料的强化作用?

答:随着塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割、位错缠结加剧,使位错运动的阻力增大,引起变形抗力的增加。这样,金属

的塑性变形就变得困难,要继续变形就必须增大外力,因此提高了金属的强

度。

8.已知金属钨、铁、铅、锡的熔点分别为3380℃、1538℃、327℃、232℃,试

计算这些金属的最低再结晶温度,并分析钨和铁在1100℃下的加工、铅和锡在

室温(20℃)下的加工各为何种加工?

答:T再=0.4T熔;钨T再=[0.4*(3380+273)]-273=1188.2℃; 铁T再=[0.4*

(1538+273)]-273=451.4℃; 铅T再=[0.4*(327+273)]-273=-33℃; 锡T再

=[0.4*(232+273)]-273=-71℃.由于钨T再为1188.2℃>1100℃,因此属于

热加工;铁T再为451.4℃<1100℃,因此属于冷加工;铅T再为-33℃<20℃,

属于热加工;锡T再为-71<20℃,属于热加工。

9.在制造齿轮时,有时采用喷丸法(即将金属丸喷射到零件表面上)使齿面得

以强化。试分析强化原因。

答:高速金属丸喷射到零件表面上,使工件表面层产生塑性变形,形成一定厚度

的加工硬化层,使齿面的强度、硬度升高。

第一章习题

1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、

[-2 1 1]、[3 4 6] 等晶向

金属学与热处理总结前七章

8.试证明面心立方晶格的八面体间隙半径为r=0.414R

解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a

面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有 R=0.146X4R/√2=0.414R

10.已知铁和铜在室温下的晶格常数分别为0.286nm和0.3607nm,求1cm3中铁和铜的原子数。

解:室温下Fe为体心立方晶体结构,一个晶胞中含2个Fe原子,Cu为面心立方晶体结构, 一个晶胞中含有4个Cu原子

1cm3=1021nm3

令1cm3中含Fe的原子数为N Fe,含Cu的原子数为N Cu,室温下一个Fe的晶胞题解为V Fe,一个Cu晶胞的体积为V Cu,则

N Fe=1021/V Fe=1021/(0.286)3=3.5x1018

N Cu=1021/V Cu=1021/(0.3607)3=2.8X1018

11.一个位错环能不能各个部分都是螺型位错或者刃型位错,试说明之。

解:不能,因为位错环上各点的位错运动方向是不一样的,而柏氏矢量的方向是确定的。

15.有一正方形位错线,其柏式矢量如图所示,试指出图中各段线的性能,并指出任性位错额外串排原子面所在的位置。

D C

A B

AD、BC段为刃型位错;

DC、AB段为螺型位错

AD段额外半原子面垂直直面向里

BC段额外半原子面垂直直面向外

第二章习题

1.证明均匀形核时,形成临界晶粒的 ΔGk 与其体积 V 之间的关系

为 ΔG k = V/2△Gv

证明:由均匀形核体系自由能的变化

金属学与热处理总结前七章

(1)

可知,形成半径为rk的球状临界晶粒,自由度变化为

金属学与热处理总结前七章

(2)

对(2)进行微分处理,有

金属学与热处理总结前七章

金属学与热处理总结前七章

(3)

将(3)带入(1),有

金属学与热处理总结前七章

(4) 由于,即3V=rkS (5) 将(5)带入(4)中,则有

金属学与热处理总结前七章

2.如果临界晶核是边长为 a 的正方形,试求其 △Gk 和 a 的关系。为什么形成立方晶核的 △Gk 比球形晶 核要大?

金属学与热处理总结前七章

3.为什么金属结晶时一定要有过冷度,影响过冷度的因素是什么,固态金属融化时是否会出现过热,为什么?

答:由热力学可知,在某种条件下,结晶能否发生,取决于固相的自由度是否低于液相的自由度,即 ?G =GS-GL<0;只有当温度低于理论结晶温度 Tm 时,固态金属的自由能才低于液态金属的自由能,液态 金属才能自发地转变为固态金属,因此金属结晶时一定要有过冷度。 影响过冷度的因素: 影响过冷度的因素:1)金属的本性,金属不同,过冷度大小不同;2)金属的纯度,金属的纯度越高,

过冷度越大;3)冷却速度,冷却速度越大,过冷度越大。 固态金属熔化时会出现过热度。原因:由热力学可知,在某种条件下,熔化能否发生,取决于液相自 固态金属熔化时会出现过热度。原因: 由度是否低于固相的自由度,即 ?G = GL-GS<0;只有当温度高于理论结晶温度 Tm 时,液态金属的自 由能才低于固态金属的自由能,固态金属才能自发转变为液态金属,因此金属熔化时一定要有过热度。

4.试比较均匀形核和非均匀形核的异同点。

相同点:均匀形核与非均匀形核具有相同的临界晶核半径,非均匀形核的临界形核功也等于三分之一 .

不同点:非均匀形核要克服的位垒比均匀形核的小得多,在相变的形核过程通常都是非均匀形核优先进行。核心总是倾向于以使其总的表面能和应变能最小的方式形成,因而析出物的形状是总应变能和总表面能综合影响的结果。

5.说明晶体成长形状与温度梯度的关系

(1)、在正的温度梯度下生长的界面形态:

光滑界面结晶的晶体,若无其它因素干扰,大多可以成长为以密排晶面为表面的晶体,具有规则的几何外形。粗糙界面结构的晶体,在正的温度梯度下成长时,其界面为平行于熔点等温面的平直界面,与散热方向垂直,从而使之具有平面状的长大形态,可将这种长大方式叫做平面长大方式。

(2)、在负的温度梯度下生长的界面形态粗糙界面的晶体在负的温度梯度下生长成树枝晶体。主干叫一次晶轴或一次晶枝。其它的叫

二次晶或三次晶。对于光滑界面的物质在负的温度梯度下长大时,如果杰克逊因子α不太大时可能生长为树枝晶,如果杰克逊因子α很大时,即使在负的温度梯度下,仍有可能形成规则形状的晶体。

6.简述三晶区形成的原因及每个晶区的性能特点

形成原因:1)表层细晶区:低温模壁强烈地吸热和散热,使靠近模壁的薄层液体产生极大地过冷, 加上型壁可以作为非均匀形核的基底,在此一薄层液体中立即产生大量的晶核,并同时向各个方向生长。 晶核数目多,晶核很快彼此相遇,不能继续生长,在靠近模壁处形成薄层很细的等轴晶粒区。

2) 柱状晶区:模壁温度升高导致温度梯度变得平缓;过冷度小,不能生成新晶核,但利于细晶区靠近液 相的某些小晶粒长大;远离界面的液态金属过热,不能形核;垂直于模壁方向散热最快,晶体择优生 长。

3)中心等轴晶区:柱状晶长到一定程度后,铸锭中部开始形核长大---中部液体温度大致是均匀的,每个晶粒的成长在各方向上接近一致,形成等轴晶。

性能特点:1)表层细晶区:组织致密,力学性能好;

2)柱状晶区:组织较致密,存在弱面,力学性 能有方向性;

3)中心等轴晶区:各晶粒枝杈搭接牢固,无弱面,力学性能无方向性。

7.为了得到发达的柱状晶区应采用什么措施,为了得到发达的等轴晶区应采取什么措施?其基本原理如何?

答:为了得到发达的柱状晶区应采取的措施:1)控制铸型的冷却能力,采用导热性好与热容量大的铸型 为了得到发达的柱状晶区应采取的措施: 材料,增大铸型的厚度,降低铸型的温度。2)提高浇注温度或浇注速度。3)提高熔化温度。 基本原理: 基本原理:1)铸型冷却能力越大,越有利于柱状晶的生长。2)提高浇注温度或浇注速度,使温度梯 度增大,有利于柱状晶的生长。3)熔化温度越高,液态金属的过热度越大,非金属夹杂物溶解得越多, 非均匀形核数目越少,减少了柱状晶前沿液体中的形核的可能,有利于柱状晶的生长。

为了得到发达的等轴晶区应采取的措施: 为了得到发达的等轴晶区应采取的措施:1)控制铸型的冷却能力,采用导热性差与热容量小的铸型材 等轴晶区应采取的措施 料,增大铸型的厚度,提高铸型的温度。2)降低浇注温度或浇注速度。3)降低熔化温度。

基本原理: 基本原理:1)铸型冷却能力越小,越有利于中心等轴晶的生长。2)降低浇注温度或浇注速度,使温 度梯度减小,有利于等轴晶的生长。3)熔化温度越低,液态金属的过热度越小,非金属夹杂物溶解得 越少,非均匀形核数目越多,增加了柱状晶前沿液体中的形核的可能,有利于等轴晶的生长。

第三章习题

1.在正温度梯度下,为什么纯金属凝固时不能呈树枝状生长,而固溶体合金却能呈树枝状成长?

纯金属凝固时,要获得树枝状晶体,必需在负的温度梯度下;在正的温度梯度下,只能以平面状长大。而固溶体实际凝固时,往往会产生成分过冷,当成分过冷区足够大时,固溶体就会以树枝状长大。

2.何谓合金平衡相图,相图能给出任一条件下的合金显微组织吗?

合金平衡相图是研究合金的工具,是研究合金中成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。 其中二元合金相图表示二元合金相图表示在平衡状态下,合金的组成相或组织状态与温度、成分、压力之间关系的简明图解。平衡状态:合金的成分、质量份数不再随时间而变化的一种状态。 合金的极缓慢冷却可近似认为是平衡状态。

三元合金相图是指独立组分数为3的体系,该体系最多可能有四个自由度,即温度、压力和两个浓度项,用三维空间的立体模型已不足以表示这种相图。若维持压力不变,则自由度最多等于3,其相图可用立体模型表示。若压力、温度同时固定,则自由度最多为2,可用平面图来表示。通常在平面图上用等边三角形(有时也有用直角坐标表示的)来表示各组分的浓度。

不能,相图只能给出合金在平衡条件下存在的合金显微组织

4.何谓成分过冷?成分过冷对固溶体结晶时晶体长大方式和铸锭组织有何影响?

在固溶体合金凝固时,在正的温度梯度下,由于固液界面前沿液相中的成分有所差别,导致固液界面前沿的熔体的温度低于实际液相线温度,从而产生的过冷称为成分过冷。

这种过冷完全是由于界面前沿液相中的成分差别所引起的。温度梯度增大,成分过冷减小。 成分过冷必须具备两个条件:第一是固~液界面前沿溶质的富集而引起成分再分配;第二是固~液界面前方液相的实际温度分布,或温度分布梯度必须达到一定的值。 对合金而言,其凝固过程同时伴随着溶质再分配,液体的成分始终处于变化当中,液体中的溶质成分的重新分配改变了相应的固液平衡温度,这种关系有合金的平衡相图所规定。利用“成分过冷”判断合金微观的生长过程。

第四章习题

1.分析分析ωc=0.2%,wc=0.6%,wc=1.2%的铁碳合金从液态平衡冷却到室温的转变过程。

ωc=0.2%: L---L+δ---δ→γ(1495度)---γ+L---γ----α+γ----γ→α(727度)---α+Fe3C; (γ=A,α=F;下同)

ωc=0.6%: L---γ+L---γ----α+γ----γ→α(727度)---α+Fe3C; ωc=1.2%: L---γ+L---γ----Fe3C+γ----γ→α(727度)---α+Fe3C;

室温下相组成物的相对含量:

ωc=0.2%,渗碳体相对含量=(0.2-0.02)/6.67 %,余量铁素体 ωc=0.6%,渗碳体相对含量=(0.6-0.02)/6.67 %,余量铁素体 ωc=1.2% 渗碳体相对含量=(1.2-0.02)/6.67 %,余量铁素体 室温下组织组成物的相对含量:

ωc=0.2%,珠光体相对含量=(0.2-0.02)/0.77%,余量铁素体

ωc=0.6%,珠光体相对含量=(0.6-0.02)/0.77 %,余量铁素体 ωc=1.2%,渗碳体相对含量=(1.2-0.77)/6.67 %,余量珠光体

2.分析ωc=3.5%、ωc=4.7%的铁碳合金从液态到室温的平衡结晶过程,画出冷却曲线和组织转变示意图,并计算室温下的组织组成物和相组成物。

金属学与热处理总结前七章

解:下图表示ωc=3.5%%的铁碳合金从液态到室温的平衡结晶过程:

金属学与热处理总结前七章

下图表示ωc=4.7%的铁碳合金从液态到室温的平衡结晶过程:

金属学与热处理总结前七章

3.计算铁碳合金中二次渗碳体和三次渗碳体最大可能含量。

答:铁碳合金中二次渗碳体即Fe3CⅡ的最大可能含量产生在

2.11%C的铁碳合金中,因此

(Fe3CⅡ)max=(2.11-0.77)/(6.69-0.77)x100%=22.64%

三次渗碳体即Fe3CⅢ的可能最大含量在0.0218%C的铁碳合金中,

因此

(Fe3CⅢ)max(0.0218-0.006)/(6.69-0.006)x100%=0.24%

4.分别计算莱氏体中共晶渗碳体、二次渗碳体、共析渗碳体的含量。

解:在莱氏体中,

Fe3C共晶%=(4.3-2.11)/(6.69-2.11)*100%=47.8%

Fe3CⅡ%=[(6.69-4.3)/(6.69-2.11)]*[(2.11-0.77)/

(6.69-0.77)]*100%=11.8%

Fe3C共析%=[(6.69-4.3)/(6.69-2.11)-11.8%]*[(0.77-0.0218)/

(6.69-0.0218)]*100%=4.53%

5.为了区分两种弄混的钢,工人分别将A、B两块碳素钢试样加热至850 ℃保温后缓冷, 金相组织分别为: A试样的先共析铁素体面积为41.6%,珠光体面积为 58.4%; B试样的二次渗碳体面积为7.3%,珠光体面积为 92.7%; 设铁素体和渗碳体的密度相同,铁素体的含碳量为零, 求A、B两种碳素钢的含碳量。

解:这两个试样处理后都是得到的平衡态组织,首先判断A试样为亚共析钢,根据相图杠杆原理列出方程如下:

(0.77-X)/(0.77-0.0218)=41.6% 这样得到X=45.0%,大概是45钢的成分范围。

同理B试样为过共析钢(6.69-X)/(6.69-0.77)=92.7%;X=1.2%,大概是T12钢的范围,当然相应地还可以利用杠杆的另外一端来求了。

6.利用Fe-FeC3相图说明铁碳合金的成分、组织和性能的关系。

从相组成物的情况来看,铁碳合金在室温下的平衡组织均由铁素体和渗碳体组成,当碳质量分数为零时,合金全部由铁素体所组成,随着碳质量分数的增加,铁素体的量呈直线下降,到wc为6.69%时降

为零,相反渗碳体则由零增至100%。

碳质量分数的变化不仅引起铁素体和渗碳体相对量的变化,而且两相相互组合的形态即合金的组织也将发生变化,这是由于成分的变化引起不同性质的结晶过程,从而使相发生变化的结果,由图3-35可见,随碳质量分数的增加,铁碳合金的组织变化顺序为:

F→F+Fe3CⅢ→F+P→P→P+ Fe3CⅡ→P+ Fe3CⅡ+Le→Le→Le+ Fe3CⅠ wc<0.0218%时的合金组织全部为铁素体,wc=0.77%时全部为珠光

体,wc=4.3%时全部为莱氏体,wc=6.69%时全部为渗碳体,在上述碳质

量分数之间则为组织组成物的混合物;而且,同一种组成相,由于生成条件不同,虽然相的本质未变,但其形态会有很大的差异。如渗碳体,当wc<0.0218% 时,三次渗碳体从铁素体中析出,沿晶界呈小片

状分布;经共析反应生成的共析渗碳体与铁素体呈交替层片状分布;从奥氏体中析出的二次渗体则以网状分布于奥氏体的晶界;共晶渗碳体与奥氏体相关形成,在莱氏体中为连续的基体,比较粗大,有时呈

鱼骨状;从液相中直接析出的一次渗碳体呈规则的长条状。可见,成分的变化,不仅引起相的相对量的变化,而且引起组织的变化,从而对铁碳合金的性能产生很大的影响。

金属学与热处理总结前七章

1)切削加工性能

钢中碳质量分数对切削加工性能有一定的影响。低碳钢的平衡结晶组织中铁素体较多,塑性、韧性很好,切削加工时产生的切削热较大,容易黏刀,而且切屑不易折断,影响表面粗糙度,因此,切削加工性能不好;高碳钢中渗碳体较多,硬度较高,严重磨损刀具,切削性能也不好;中碳钢中铁素体与渗碳体的比例适当,硬度与塑性也比较适中,切削加工性能较好。一般说来,钢的硬度在170~250HBW时切削加工性能较好。

2)压力加工性能

金属压力加工性能的好坏主要与金属的锻造性有关。金属的锻造性是指金属在压力加工时能改变形状而不产生裂纹的性能。钢的锻造性主要与碳质量分数及组织有关,低碳钢的锻造性较好,随着碳质量

分数的增加,锻造性逐渐变差。由于奥氏体具有良好的塑性,易于塑性变形,钢加热到高温获得单相奥氏体组织时可具有良好的锻造性。白口铸铁无论在低温或高温,其组织都是以硬而脆的渗碳体为基体,锻造性很差,不允许进行压力加工。

3)铸造性能

随着碳质量分数的增加,钢的结晶温度间隔增大,先结晶形成的树枝晶阻碍未结晶液体的流动,流动性变差。铸铁的流动性要好于钢,随碳质量分数的增加,亚共晶白口铁的结晶温度间隔缩小,流动性随之提高;过共晶白口铁的流动性则随之降低;共晶白口铁的结晶温度最低,又是在恒温下结晶,流动性最好。碳质量分数对钢的收缩性也有影响,一般说来,当浇注温度一定时,随着碳质量分数的增加,钢液温度与液相线温度差增加,液态收缩增大;同时,碳质量分数增加,钢的凝固温度范围变宽,凝固收缩增大,出现缩孔等铸造缺陷的倾向增大。此外,钢在结晶时的成分偏析也随碳质量分数的增加而增大。

7.Fe-FeC3相图有哪些应用,又有哪些局限性

答:铁—渗碳体相图的应用:

1)在钢铁选材方法的应用;

2)在铸造工艺方法的应用;

3)在热锻、热轧、热锻工艺方法的应用 ;

4)在热处理工艺方法的应用。

渗碳体相图的局限性 :

1)只反映平衡相,而非组织;

2)只反映铁 二元合金中相的平衡; 3)不能用来分析非平衡条件下的问题

第5章 习题

5-2 在成分三角形中,找出P(wA=70%,wB=20%,wC=10%)、Q(wA=30%,wB=50%,wC=20%)、N(wA=30%,wB=10%,wC=60%)合金的位置。若将5kgP合金、5kgQ合金和10kgN合金熔合在一起,试求新合金的成分。

解:5kgP合金、5kgQ合金和10kgN合金熔合后的合金中A、B和C的成分分别为

555112

?wQA??wNA??70%??30%??30%??40%

5?5?105?5?105?5?10444

555112

wB?wPB??wQB??wNB??20%??50%??10%??22.5%

5?5?105?5?105?5?10444

555112

wC?wPC??wQC??wNC??10%??20%??60%??37.5%

5?5?105?5?105?5?10444wA?wPA?

5-3 试比较匀晶型三元相图的变温截面与二元相图的异同,并举合金的结晶过程为例说明之。

答:二元匀晶相图上的液、固相线是液、固相的成分随温度变化线,它们之间存在两平衡相成分的对应关系,因此可用来确定平衡相的成分,用杠杆定律计算平衡相的相对量。

虽然三元匀晶相图变温截面和二元匀晶相图相似,都可以用来分析凝固过程,确定相变的大致温度,作为制定热加工工艺的依据;但是它们存在本质上的差别:除特殊情况外,变温截面上的液、固相线只是变温截面与液、固相面的交截线,而不是液、固相的成分随温度变化线,它们之间不存在两平衡相成分的对应关系,因此在变温截面上不能确定平衡相的成分,不能用杠杆定律计算平衡相的相对量。

六习题

1.

金属学与热处理总结前七章

金属学与热处理总结前七章

计算方法τk=σs·cosλcosυ=F/A cosλcosυ

4. 试用多晶体的塑性变形过程说明金属晶粒越细强度越高、塑性越好的原因是什么?

答:由 Hall-Petch 公式可知,屈服强度σs 与晶粒直径平方根的倒数 d v2呈线性关系。 在多晶体中,滑移能否从先塑性变形的晶粒转移到相邻晶粒主要取决于在已滑移晶粒晶界附近的位错塞 积群所产生的应力集中能否激发相邻晶粒滑移系中的位错源,使其开动起来,从而进行协调性的多滑移。 由τ=nτ0知,塞积位错数目n越大,应力集中τ越大。位错数目n与引起塞积的晶界到位错源的距离成正比。晶粒越大,应力集中越大,晶粒小,应力集中小,在同样外加应力下,小晶粒需要在较大的外加应 力下才能使相邻晶粒发生塑性变形。 在同样变形量下,晶粒细小,变形能分散在更多晶粒内进行,晶粒内部和晶界附近应变度相差较小,引 起的应力集中减小,材料在断裂前能承受较大变形量,故具有较大的延伸率和断面收缩率。另外,晶粒 细小,晶界就曲折,不利于裂纹传播,在断裂过程中可吸收更多能量,表现出较高的韧性。

6.滑移和孪生有何区别,试比较它们在塑性变形过程的作用。

答:区别:

1)滑移:一部分晶体沿滑移面相对于另一部分晶体作切变,切变时原子移动的距离是滑移方向原 区别: 区别 子间距的整数倍;孪生:一部分晶体沿孪生面相对于另一部分晶体作切变,切变时原子移动的距离不是 孪生方向原子间距的整数倍;

2)滑移:滑移面两边晶体的位向不变;孪生:孪生面两边的晶体的位向不 同,成镜面对称;

3)滑移:滑移所造成的台阶经抛光后,即使再浸蚀也不会重现;孪生:由于孪生改变 了晶体取向,因此孪生经抛光和浸蚀后仍能重现;

4)滑移:滑移是一种不均匀的切变,它只集中在某些 晶面上大量的进行,而各滑移带之间的晶体并未发生滑移;孪生:孪生是一种均匀的切变,即在切变区 内与孪生面平行的每一层原子面均相对于其毗邻晶面沿孪生方向位移了一定的距离。

作用:晶体塑性变形过程主要依靠滑移机制来完成的;孪生对塑性变形的贡献比滑移小得多,但孪生改 变了部分晶体的空间取向,使原来处于不利取向的滑移系转变为新的有利取向,激发晶体滑移。

7.试述金属塑性变形后组织结构与性能之间的关系,阐明加工硬化在机械零构件生产和服役过程中的重要 试述金属塑性变形后组织结构与性能之间的关系, 意义。

答:关系:

随着塑性变形程度的增加,位错密度不断增大,位错运动阻力增加,金属的强度、硬度增加,而 关系: 关系 塑性、韧性下降。

重要意义:1)提高金属材料的强度;

2)是某些工件或半成品能够加工成形的重要因素;

3)提高零件或 构件在使用过程中的安全性。

8.金属材料经塑性变形后为什么会保留残留内应力?研究这部分残留内应力有什么实际意义? 金属材料经塑性变形后为什么会保留残留内应力?研究这部分残留内应力有什么实际意义?

答: 残余内应力存在的原因

1)塑性变形使金属工件或材料各部分的变形不均匀,导致宏观变形不均匀;

2)塑性变形使晶粒或亚晶粒变形不均匀,导致微观内应力;

3)塑性变形使金属内部产生大量的位错或空位,使点阵中的一部分原子偏离其平衡位置,导致点阵畸变 内应力。

实际意义:可以控制材料或工件的变形、开裂、应力腐蚀;可以

利用残留应力提高工件的使用寿命。

9.何谓脆性断裂和塑性断裂,若在材料中存在裂纹时,试述裂纹对脆性材料和塑性材料断裂过程中的影响。

答:塑性断裂又称为延性断裂,断裂前发生大量的宏观塑性变形,断裂时承受的工程应力大于材料的屈服强度。在塑性和韧性好的金属中,通常以穿晶方式发生塑性断裂,在断口附近会观察到大龄的塑性变形痕迹,如缩颈。

金属脆性断裂过程中,极少或没有宏观塑性变形,但在局部区域任然存在着一定的微观塑性变形。断裂时承受的工程应力通常不超过材料的屈服强度,甚至低于按宏观强度理论确定的许用应力,因此又称为低应力断裂。

在塑性材料中,断裂是胃口形成、扩大和连接的过程,在打的应力作用下,基体金属产生塑性变形后,在基体和非金属夹杂物、析出相粒子周围产生应力集中,使界面拉开,或使异相颗粒折断形成微孔。微孔扩大和链接也是基体金属塑性变形的结果。当微孔扩大到一定的程度,相邻微孔见的金属产生较大的塑性变形后就发生微观塑性失稳,就像宏观实验产生缩颈一样,此时微孔将迅速扩大,直至细缩成一线,最后由于金属与金属件的连线太少,不足以承载而发生断裂。

脆性材料中,由于断裂前既无宏观塑性变形,又无其他预兆,并且一旦开裂后,裂纹扩展迅速,造成整体断裂或河大的裂口,有时还产生很多碎片,容易导致严重事故。

10.何谓断裂韧度,它在机械设计中有何作用?

答:在弹塑性条件下,当应力场强度因子增大到某一临界值,裂纹便

失稳扩展而导致材料断裂,这个临界或失稳扩展的应力场强度因子即断裂韧度。它反映了材料抵抗裂纹失稳扩展即抵抗脆断的能力,是材料的力学性能指标。

一次渗碳体(从液体相中析出)其呈白色条带状分布在莱氏体之间。

二次渗碳体(从奥氏体中析出),沿奥氏体晶界网状分布。沿原始奥氏体晶界析出且呈网状分布,从而勾划出奥氏体晶界,故成网状的二次渗碳体。当奥氏体转变成珠光体后,二次渗碳体便呈连续网状分布在珠光体的边界上。

三次渗碳体(从铁素体中析出),其分布在铁素体晶界上,但因量少、极分散,一般看不到。 共晶渗碳体是由液态铁碳合金中直接结晶出来的;由于液体原子活动能力强,故共晶渗碳体常以树枝状形态生长,而且比较粗大;由于形成共晶渗碳体的液态合金碳含量较高(4.3%),故合金中共晶渗碳体的量大。

共析渗碳体是由固态下(奥氏体中)形成的;以比较细小的片状形式存在;由于形成共析渗碳体的合金的碳含量较低(0.77%),故共析渗碳体的量少



更多类似范文
┣ 金属学与热处理总结 3300字
┣ (金属学与热处理)工程材料学总结 4200字
┣ 金属材料与热处理技术专业实习总结范文 1700字
┣ 20xx年年终金属材料与热处理教师个人工作总结 1000字
┣ 更多金属学与热处理总结
┗ 搜索类似范文

更多相关推荐:
《金属材料与热处理》教学的实践策略2000字

《金属材料与热处理》教学的实践策略[摘要]《金属材料与热处理》是职高机械类专业的一门综合性专业基础课,对于初中刚毕业即进入职校学习的学生来说,从未接触过生产实际,学习起来普遍感到比较困难。文章通过自身实践,探索…

热处理调研总结1000字

热处理调研总结20xx年x月,我们部(技术基础专业)组织了老师到热处理企业进行调研。经过几天的热处理企业调研,我学到了很多东西,最主要的是现代热处理企业设备的更新及高技术、高质量、环保型的生产模式。我们的调研主…

热处理实习总结3600字

转眼已然大四,在这即将毕业的时刻,我们迎来了大四下学期也是整个大学最后一次的实习。在李安铭老师的带领下,我们参观了校金属热处理实验室并进行了相关的实验研究,着时令我们长了不少见识,也让我们更好地把书本上所学的知…

专栏推荐
大家在关注

地图地图CC