葛洲坝电厂实习报告

发表于:2021.11.11来自:www.fanwen118.com字数:5021 手机看范文

葛洲坝电厂实习报告

葛洲坝电厂实习报告

一、实习名称:葛洲坝实习

二、实习时间:20xx年2月10日~14日

三、实习地点:中国湖北宜昌市

三、实习单位:葛洲坝水力发电厂

四、实习目的意义:

生产实习是我们大学实习中很重要的环节,通过实习我们要掌握基本原理,理论联系到实际上来。我们要掌握水电厂发电基本过程,认识发电环节的各个设备,会分析水电厂的接线方式及运行方式,认识开关电器,了解其性能。

五、实习内容:

葛洲坝水电站是中国长江干流上的第一座大型水利枢纽,兼顾兴利,防洪和通航功能。大坝位于湖北省宜昌市三峡出口南津关下游约3公里处。长江出三峡峡谷后,水流由东急转向南,江面由390米突然扩宽到坝址处的2200米。由于泥沙沉积,在河面上形成葛洲坝、西坝两岛,把长江分为大江、二江和三江。大江为长江的主河道,二江和三江在枯水季节断流。葛洲坝水利枢纽工程横跨大江、葛洲坝、二江、西坝和三江大坝兴建时,将葛洲坝挖去,为了纪念这个小岛,所以大坝取名葛洲坝。

葛洲坝水电站是三峡水利枢纽工程的反调节工程,位于三峡大坝下游38千米处,它的成功实践,为长江三峡水利枢纽工程建设进行了实战准备。大坝顶全坝长2606.5米,大坝高程70米,最高点109.4米,控制流域面积100万平方千米,总库容量15.8亿立方米,回水距离180KM。整个工程分两期。一期工程包括二江的发电站、泄水闸和三江的二、三号船闸、冲沙闸及其他挡水建筑物。二江电站装有7台水轮发电机组,一、二号机组容量为17万千瓦,其余5台机组容量为12.5万千瓦(后经实践计算,机组现运行于13.4万千瓦)。工程于19xx年12月30日开工,19xx年1月3日大江开始截流。6月21日三江船闸正式通航,7月31日二江电站一号机组并网发电。二期工程包括大江电站、一号船闸、大江冲沙闸和混凝土挡水坝等。电站设计装机14台,机组容量12.5万千瓦。19xx年葛洲坝工程全部完成,水电站设计总装机容量271.5万千瓦,平均年发电量141亿千瓦时。工程最大泄洪量11万亿立方米/秒,发挥了发电、航运、防洪等巨大综合效益。该工程从蓝图绘制,施工建造,到运行管理均由国人之所为,它的大部分主设备以及成千上万件辅助设备,均由"中国制造"。工程总造价48.48亿。

葛洲坝水力发电厂成立于19xx年11月,20xx年11月改制重组,与三峡电厂成为长江电力的下属企业。

葛洲坝电气一次部分介绍(二江电厂)

发电机参数:

葛洲坝电厂实习报告

葛洲坝电厂实习报告

220kV开关站的接线方式为:

双母线带旁路,旁路母线分段。

将旁路母线分段并在每个分段上各设置一台断路器的原因是母线上的进、出线回数多,且均是重要电源或重要线路,有可能出现有其中两台断路器需要同时检修而对应的进、出线不能停电的情况,在这种情况发生时旁路母线分段运行、旁路断路器分别代替所要检修的两台断路器工作,保证了发供电的可靠性。同时两台旁路断路器也不可能总是处于完好状态,也需要检修与维护,当其中一台检修例一台处于备用状态,这样可靠性比旁路母线不分段、仅设置一台旁路断路器高。

开关站的主要配置:

出线8回 :1-8E(其中7E备用);

进线7回 :1-7FB(FB:发电机-变压器组);

大江、二江开关站联络变压器联络线:2回;

断路器:19台;

母线:圆形管状空心铝合金硬母线,主母线分别设置电压互感器(CVT)及避雷器(ZnO)一组。

开关站布置型式:

分相中型单列布置(户外式)。

发电机与主变压器连接方式:

采用单元接线方式。

厂用6kV系统与发电机组的配接方式:

采用分支接线方式(仅3-6F有此分支)。分支接线是机组与主变压器采用单元接线或扩大单元接线方式下获得厂用电的一种常用方法。在有厂用分支的情况下,为保证对厂用分支供电可靠性,必须作到:1)发电机出口母线上设置隔离开关;2)隔离开关安装位置应正确。为提高对厂用分支供电的可靠性,在3F-6F出口母线上加装了出口断路器。这样当机组故障时出口断路器跳闸切除故障,主变压器高压断路器不再分闸,不会出现机组故障对应6kV分段短时停电情况。

厂用6kV系统的接线方式:

采用单母线分段方式——二江电厂厂用6kV母线共4段,各段编号分别为3、4、5、6,与各自供电变压器(公用变压器)所连接的发电机编号对应。

厂用电有关配置:

对发电厂来讲,厂用电就是“生命线”,必须具有足够高的可靠性。但单母线分段接线方式可靠性不高,为解决这一矛盾,普遍采用的配置原则是:

1、电源配置原则:各分段的电源必须相互独立,且获得电源方向不得单一。

2、 负荷配置原则:同名负荷的双回路或多回路须连接于母线不同分段上。

3、 段间配置原则:分段与分段间应具备相互备用功能或设置专门备用段。(二江电厂为相互备用)

参观三峡大坝

三峡工程位于长江西陵峡中段,坝址在湖北省宜昌市三斗坪。整个工程由一座混凝重力式大坝、泄水闸、一座堤后式水电站、一座永久性通航船闸和一架升船机组成。设计正常蓄水位l75米,总库容393亿立方米,防洪库容221.5亿立方米。大坝坝顶总长为3035米,坝高185米,总装机容量为1820千瓦时,年发电量847亿千瓦时。

三峡工程设计总工期l7年,其中施工准备及第一期工程施工5年,二期工程施工6年,三期工程施工6年。第一期围右岸,在一期土石围堰保护下开挖导流明渠,修建混凝土纵向围堰,同时在左岸修建临时船闸,并开始施工永久船闸及升船机挡水部位的土建工程。长江水流仍从主河床宣泄,照常通航。第二期围左岸,截断主河床,修建二期上下游土石围堰与混凝土纵向围堰形成。二期基坑,施工大坝泄洪坝段、左岸厂磨坝段及电站厂房。继续施工升船机挡水部位(上闸首),并完建永久船闸。江水从明渠宣泄,船舶从明渠及左岸临时船闸通行。第三期封堵明渠,修筑土石围堰及碾压混凝土围堰,在三期基坑内施工右岸厂房坝段及电站厂房、碾压混凝土围堰和混凝土纵向围堰及其以左大坝挡水、左岸电站发电。江水从泄洪坝段、导流底孔及深孔宣泄,船舶从永久船闸通行。

三峡工程建成后,荆江河段两岸地区的防洪标准将由目前的不足10年一遇提高到百年一遇,并为洞庭湖区的根本治理创造条件;为经济发达、能源不足的华中、华东地区提供可靠廉价的电能,每年约替代原煤4000万~5000万吨;显著改善长江宜昌至重庆660千米的航道,万吨级船队可直通重庆,航道单向年通过能力可由目前的约l000万吨提高到5000万吨,运输成本可降到35%~37%,同时,因三峡水库的调节,将大大改善长江中下游枯水李节肮运条件。另外,有利于促进水库渔业、旅游业的发展,也有利于南水北调工程的实施。

500kV换流站

葛洲坝-上海南桥直流输电工程是中国第一条超高压直流输电工程。工程送端葛洲坝换流站位于宜昌宋家坝,受端换流站位于上海市奉贤县南桥,途经湖北、安徽、江苏、浙江和上海,线路全长1045.7KM。原计划19xx年12月建成极1,19xx年工程全部建成。由于换流变压器未通过出厂试验而重新制造,推迟到19xx年9月投入运行,整个工程于19xx年8月全部建成,从湖北葛洲坝至上海的葛南双极直流输电线路投入商业运行。其额定容量为1200MW(单极600MW),额定电压为±500kV,输送直流电流为1200A。

葛洲坝-上海直流输电工程的运行方式有以下几种:

①双极方式(包括双极对称方式和不对称方式);

②单极大地回线方式(包括双导线并联大地回线方式);

③单极金属回线方式;

④功率反送方式(反送最大功率为额定功率的50%);

⑤降压方式(在额定直流电流下,直流电压可降到额定值的70%)。 换流站的主要设备:

换流阀:两端均采用空气绝缘,水冷却,户内悬挂式,晶闸管四重阀结构。三个四重阀构成一个12脉动换流器。每个换流阀由8个组件,每个组件有15个晶闸管,共120个晶闸管组成。

换流变压器:采用单相三线圈的换流变压器,每极3台,共7台(其中1台为备用)。线圈结线为 接法,二次线圈对地高压绝缘,单台变压器的额定容

量为237/118.5/118.5MVA,额定电压为 kV。变压器为有载调压,抽头在525kV侧,调节范围为-6%-+4%,每级1%。

交流滤波器:用于消除直流输电时在交流侧产生的特征谐波(12n±1次),以及补偿无功。单组容量67MVAR,6组共402MVAR。其中有四组11/12.94次的低通交流滤波器,和两组23.6/36.23次、23.25/35.37次的双调谐高通交流滤波器。

直流滤波器:换流站的每极各配备调谐频率为12/24次和12/36次的双调谐滤波器各一组。

葛洲坝大江电厂

大江电厂总装机14台,单台容量为12.5MW,机端出口电压为13.8kV。发电机与主变采用单元接线。经主变升压为500kV后,送至500kV开关站。

500kV开关站

500kV开关站接线方式:

采用3/2接线——选择3/2 接线方式,是基于开关站重要性考虑的。因为开关站进出线回数多,且均是重要电源与重要负荷,电压等级高、输送容量大、距离远,母线穿越功率大(最大2820MVA),并通过葛洲坝500kV换流站与华东电网并网,既是葛洲坝电厂电力外送的咽喉,又是华中电网重要枢纽变电站。3/2接线可以保证供电的高可靠性。

500kV开关站布置型式:

分相中型三列布置(户外式)。

开关站有关配置:

开关站共6串,每串均作交叉配置(交叉配置:一串的2回线路中,一回是电源或进线,另一回是负荷或出线),交叉配置是3/2接线方式普遍的配置原则,作交叉配置时,3/2接线可靠性达到最高。因为这种配置在一条母线检修时另一条母线故障或2条母线同时故障时电源与系统仍然相连接,(在系统处于稳定条件下)仍能够正常工作。

1-6串的出线分别是:葛凤线、葛双 1回、葛双2回、葛岗线、葛换2回、葛换1回。其中葛凤线、葛双2回、葛岗线首端分别装设并联电抗器(DK)。

1-6串的进线分别是:8B与10B并联引线、12B与14B并联引线、16B与18B并联引线、20B引线(上述各变压器共连接大江电厂14台发电机组)。例外两条进线是二江电厂220kV开关站与大江电厂500kV开关站两台联络变压器(251B、252B)的高压侧引出线。

六、心得体会:

来葛洲坝实习,我们向往已久。当我们踏上火车时,心已经神往。第一次出远门实习,让我获益匪浅。生产实习是大学所有实习中最重要的实习。通过生产实习,使得我们从课堂来到了生产厂房,结合实际,去验证我们所学的知识。 以前我们只在课堂上学习,所认识的也只有书本上所说的性质和大体的特性,但究竟是怎样的,是怎么回事,就不得而知了。因此只有通过实习才会有一个感性的认识。以前在课堂上学习的时候,感觉那些知识只是一些理论,但实际的东西是怎样的,心里也没有概念。通过这次实习,终于将课本联系到了实际,有了一个明确的概念。比如:双母线接线的形式,一般情况下双母线都处于暗备用状态;双母线带旁路母线:在葛洲坝电厂,旁路母线进行了分段,提高了系统的可靠性。又如:双母线带旁路母线多使用于110,220,330kV的系统,而3/2接线多使用于500kV系统中。又如在扩大单元接线中,发电机的引

出线必须装断路器,单元接线则可以省略掉。还有绝缘片的多少说明了电压等级的大小,一般情况下:1-2片为6-10kV,3-4片35kV,6-7片为110kV,12-14片为220kV,23-27片为500kV。诸如此类的小常识,我们平常是不得而知的,但通过实习,我们懂得了许多。

通过这次实习,还让我感觉到了自己所学到的知识是如此的少,简直是渺沧海之一粟。在我们平常所学到的知识中,我们老感觉已经掌握的挺不错了,很多小的细节都认为没有必要去细细考虑,但在这次实习中我发现自己错了,其实自己懂得的只是皮毛,而且还少的可怜。在这次参观中,所有的厂房都是无人值班的,实行的是全自动化的电厂,这让我们叹为观止,感慨现代化的技术是如此的高超。身为大学生,我们是21世纪的主人,我们应该挑起时代赋予我们的使命,好好学习科学文化知识,将来报效祖国。

实习是短暂的,但留给我们的思考是永久的。




第二篇:葛洲坝水力发电厂实习报告 9400字

葛洲坝水力发电厂

实习报告

华北水利水电学院

电力学院

电气工程及其自动化专业

一、实习目的

生产实习是为了加强我们对课本中的知识的感性认识,使我们不仅知其然,更知其所以然。了解电厂和变电站的运行以及里面的结构和工作原理,使理论和实际相结合,增进对本专业的兴趣,以进一步学习专门课程。同时使我们认识到电力在国民经济中的重要性,电力的安全和稳定生产很重要,要求我们保持严谨的态度,马虎不得。

二、实习时间

20xx年10月24日到20xx年10月30日

三、实习单位

湖北省宜昌市葛洲坝水电站及三峡水电站

四、实习过程及内容

25日晚,安全教育及葛洲坝水力发电厂概况介绍。

葛洲坝工程奠基于20世纪70年代初,竣工于八十年代末,总投资48.48亿元。它位于中国湖北省宜昌市境内的长江三峡末端河段上,距上游的三峡水电站38公里,是长江上第一座大型水电站,也是世界上最大的低水头大流量、径流式水电站。

大坝坝型为闸坝,全长2606.5米,最大坝高47米,坝顶高程70米,设计上游蓄水水位66米,实际运行水位63~66.5米,总库容15.8亿立方米,校核水位6米,设计落差18.6米,最大落差27米。库区回水110~180千米,使川江航运条件得到改善。泄水闸最大排洪能力

8.4万立方米/秒,总体最大排洪能力11.2万立方米/秒。

电站设计装机21台,其中大江电厂装机14台,二江电厂装机7台,总容量2715MW。投产后通过扩建1台保安电源机组和实施2台机组改造增容,现装机容量为2777MW,最大出力达2930MW,年均发电157亿千瓦小时。

26日上午,三峡水电站的概况和葛洲坝二江电厂电气一次部分介绍。

三峡水电站介绍:

三峡工程大坝坝址选定在宜昌市三斗坪,在已建成的葛洲坝水利枢纽上游约40公里处。坝址区河谷开阔,两岸岸坡较平缓,江中原有一小岛(中堡岛),具备良好的分期施工导流条件。枢纽建筑物基础为坚硬完整的花岗岩体。修建了宜昌至工地长约28 公里的专用高速公路及坝下游4公里处的跨江大桥——西陵长江大桥。还修建了一批坝区码头。坝区具备良好的交通条件。

拦河大坝为混凝土重力坝,坝长2309米,坝顶高程185米,最大坝高181米,设计上游蓄水水位175米(枯水期)、145米(丰水期),水库总库容393亿立方米,最大落差113米。泄洪坝段位于河床中部,总长483米,设有22个表孔和23个泄洪深孔,其中深孔进口高程90米,孔口尺寸为7×9米;表孔孔口宽8米,溢流堰顶高程158米,表孔和深孔均采用鼻坎挑流方式进行消能。电站坝段位于泄洪坝段两侧,设有电站进水口。进水口底板高程为108米。压力输水管道为背管式,内直径12.40米,采用钢筋混凝土受力结构。校核洪水时坝址最大下泄流量102500立方米/秒。

三峡水库将显著改善宜昌至重庆660公里的长江航道,万吨级船队可直达重庆港。航道单向年通过能力可由现在的约1000万吨提高到5000万吨,运输成本可降低35-37%。经水库调节,宜昌下游枯水季最小流量,可从现在的3000立方米/秒提高到5000立方米/秒以上,使长江中下游枯水季航运条件也得到较大的改善。

水电站采用坝后式布置方案,共设有左、右两组厂房和地下厂房。共安装32台水轮发电 - 1 -

机组,其中左岸厂房14台,右岸厂房12台,地下厂房6台。水轮机为混流式,机组单机额定容量70万千瓦。总装机容量1820万千瓦,年平均发电量846.8亿千瓦时。

葛洲坝二江电厂电气一次部分:

1.220kV开关站的接线方式:

双母线带旁路,旁路母线分段。这是二江电厂220kV开关站接线方式的一个特点。将旁路母线分段并在每个分段上各设置一台断路器的原因是母线上的进、出线回数多,且均是重要电源或重要线路,有可能出现有其中两台断路器需要同时检修而对应的进、出线不能停电的情况,在这种情况发生时旁路母线分段运行、旁路断路器分别代替所要检修的两台断路器工作,保证了发供电的可靠性。同时两台旁路断路器也不可能总是处于完好状态,也需要检修与维护,当其中一台检修例一台处于备用状态,这样可靠性比旁路母线不分段、仅设置一台旁路断路器高。一机一变一线共7台机7条出线,1个母联,2个旁路,2台联络变压器。7条出线分别为:葛雁(小雁溪)线、葛陈(陈家冲)线、葛远(远安)线、葛坡(长坂坡)线、葛桔(桔城变)线、葛白I(白家冲)回线、葛白II回线。

2.开关站的主要配置:

出线8回:1-8E(其中7E备用);

进线7回:1-7FB(FB:发电机-变压器组);

大江、二江开关站联络变压器联络线:2回;

断路器:19台;

母线:圆形管状空心铝合金硬母线,主母线分别设置电压互感器(CVT)及避雷器(ZnO)一组。

3.开关站布置型式:

分相中型单列布置(户外式)。

4.发电机与主变压器连接方式:

采用单元接线方式。

5.厂用6kV系统与发电机组的配接方式:

采用分支接线方式(仅3-6F有此分支)。分支接线是机组与主变压器采用单元接线或扩大单元接线方式下获得厂用电的一种常用方法。在有厂用分支的情况下,为保证对厂用分支供电可靠性,必须作到:1)发电机出口母线上设置隔离开关;2)隔离开关安装位置应正确。为提高对厂用分支供电的可靠性,在3F-6F出口母线上加装了出口断路器。这样当机组故障时出口断路器跳闸切除故障,主变压器高压断路器不再分闸,不会出现机组故障对应6kV分段短时停电情况。

6.厂用6kV系统的接线方式:

采用单母线分段方式——二江电厂厂用6kV母线共4段,各段编号分别为3、4、5、6,与各自供电变压器(公用变压器)所连接的发电机编号对应。

7.厂用电有关配置:

对发电厂来讲,厂用电就是“生命线”,必须具有足够高的可靠性。但单母线分段接线方式可靠性不高,为解决这一矛盾,普遍采用的配置原则是:

1、电源配置原则:各分段的电源必须相互独立,且获得电源方向不得单一。

2、负荷配置原则:同名负荷的双回路或多回路须连接于母线不同分段上。

3、段间配置原则:分段与分段间应具备相互备用功能或设置专门备用段。

26日下午,葛洲坝电厂继电保护介绍。

1.继电保护装置的定义

- 2 -

当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障或危及其安全运行的事件时,发出告警信号或跳闸命令,以终止这些事件发展的成套硬件设备。保护电力元件的称继电保护装置;保护电力系统的称安全自动装置。

2.继电保护的对象:

电力元件、电力系统

3.继电保护的任务:

1、故障跳闸;

2、异常时发信号。

4.继电保护的要求:

1、可靠性;

2、选择性;

3、快速性;

4、灵敏性。

5.继电保护的构成:

厂房的保护:

1、机组保护:纵差保护、不对称保护、失磁保护、转子过流保护、负序过流保护;

2、主变压器保护:重瓦斯保护、轻瓦斯保护、差动保护、纵联保护、过电流保护等。

3、厂用变保护:差动、速断、过流、过激磁、瓦斯保护等。

5.1机组保护:

主要故障类型:定子绕组相间短路,定子绕组同一相匝间短路,定子绕组接地故障,转子一点、两点接地故障,转子回路低励或失去励磁电流。

不正常工作状态:过负荷,定子绕组过电流,定子绕组过电压,三相电流不对称,失步,过励磁等

机组保护配置情况:

大江电厂机组保护装置为能达公司生产的WYB-021型微机继电保护装置,包括子一系统、子二系统、管理机及出口层。

5.1.1保护的作用及原理

(1)纵差保护:反应发电机线圈及其引出线的相间短路。

(2)不对称保护 :用于反应定子绕组同一相或分支短路。

(3) 失磁保护:反应发电机端测量阻抗,作为发电机全失磁或部分失磁保护,三个判据 ①静稳阻抗判据 ;②无功方向判据 ;③变励磁电压判据。

(4)过电压保护:用于反应发电机突然甩掉负荷时引起定子绕组过电压。

(5)低压过流保护:用于反应发电机外部短路引起的过电流及负荷超过发电机额定容量引起的三相对称过负荷。

(6)负序过流保护:用于反应外部不对称短路或不对称故障引起的过电流及过负荷。

(7)转子过流保护:用于反应励磁回路故障或强励时间过长而引起的转子绕组过负荷。

(8)串并变过流保护:用于反应励磁用串并变发生故障引起的过电流。

5.1.2发电机纵差保护

5.1.3发电机横差保护

保护范围:反应发电机定子绕组的一相匝间短路和同一相两并联分支间的匝间短路。 对于绕组为星形联接且每相由两个及以上并联引出线的发电机均需装设横差保护。 优点:横差保护接线简单,能灵敏反应定子绕组匝间、分支间短路故障。

缺点:在定子绕组引出线或中性点附近发生相间短路时,两中性点连线中的电流较小,横差保护可能不动作,出现死区,可达15%-20%。

- 3 -

5.1.4失磁保护

反应发电机转子回路励磁电流减少或消失。

PT发生断线及系统非对称性故障时,失磁会误动,因此需要加负序电压闭锁。

动作后果:跳出口开关、灭磁、停机。

发电机失磁对系统的主要影响:

1.发电机失磁后,不但不能向系统送出无功功率,而且还要从系统中吸取无功功率,将造成系统电压下降。

2.为了供给失磁的发电机无功功率,可能造成系统中其他发电机过电压。

发电机失磁对自身的主要影响:

1.发电机失磁后,转子和定子磁场间出现了速度差,并在转子回路中感应出转差频率的电流,引起转子局部过热。

2.发电机受交变的异步电磁力矩的冲击而发生振动,转差率越大,振动也越厉害。 发电机失磁是一个相对缓慢的过程,其保护出口时间较长,因此不能作为发电机的主保护。

发电机主保护为差动保护、匝间保护或横差保护。

5.1.5过电压保护

由于水轮发电机的调速系统惯性较大,动作缓慢,因此在突然甩去负荷时,转速将超过额定值,此时机端电压可能高达额定电压的1.8-2倍,将造成定子绕组绝缘损坏。 动作后果:跳出口开关、停机、灭磁

5.1.6定子一点接地保护

反应发电机定子及其引出线发生的一点接地故障。

保护范围:利用三次谐波电压构成的定子接地保护,保护范围是靠近中性点侧20%-25%部分,利用基波零序电压构成的定子接地保护,保护范围是靠近极端侧85%-90%,由此构成100%定子接地保护

葛洲坝电厂属小接地电流系统,在发生定子一点接地故障后,还可以继续运行1-2小时,不必立即停机处理,但是为了防止故障扩大至两点接地或多点接地短路故障,须迅速判明故障状况,视情况而定是否需申请停机处理。

动作后果:延时5s发报警信号

5.1.7转子一点接地保护

反应发电机转子及其引出线发生的一点接地故障。

采用变极性原理,通过加在转子回路上的方波,提高转子不同位置发生接地保护的动作灵敏度。

动作后果:延时5s发信号

转子两点接地的危害:

(1)转子绕组的一部分被短路,另一部分电流增加,破坏了发电机气隙磁场的对称性,引起剧烈振动,无功出力降低

(2) 转子电流通过转子本身,造成转子磁化。

(3)转子局部受热,发生缓慢变形而偏心运转。

5.2主变保护介绍

5.2.1主要故障类型

内部故障:各相绕组之间发生的相间短路,单相绕组部分线匝之间发生的匝间短路,单相绕组或引出线通过外壳发生的单相接地故障。

外部故障:绝缘套管闪络或破碎而发生的单相接地短路,引出线之间发生的相间故障。

- 4 -

5.2.2不正常工作状态:外部短路或过负荷引起的过电流,油箱漏油造成的油面降低,变压器中性点电压升高,外加电压过高或频率降低引起的过激磁等。

5.2.3机组保护配置情况

第一、四单元保护装置为能达公司生产的WYB-3C型微机变压器保护装置,第二、三单元保护装置为南自厂生产的WBZ-500H型微机变压器保护装置。

5.2.4保护的作用及原理

(1)差动保护:

采用差电流原理。构成:比例制动差动保护+二次谐波制动+五次谐波制动+差速断,反应变压器绕组和引出线的多相短路,大接地电流电网侧绕组和引出线接地短路以及绕组匝间短路。

为了避免由于各个电流互感器的饱和特性和励磁电流不同及其他原因引起不平衡电流造成保护误动而设置比例制动。

在变压器空载投入或外部短路故障切除后,电压恢复过程中,变压器一侧会产生激磁电流,此电流二次谐波分量含量多,此时设置二次谐波制动以防保护误动。

由于发电机励磁系统的误操作或失调,或电力系统的不正常运行,激磁电流中五次谐波电流分量很大,所以取五次谐波制动以防保护误动。

对于大型变压器,为防止在较高的短路水平时,由于电流互感器饱和时高次谐波量增加,产生极大的制动力矩而使差动元件拒动,设置差速断快速动

复合过流:由一个负序电压继电器和一个接在相间电压上的低电压继电器共同组成的电压复合元件,两个继电器只有一个动作,同时过电流继电器也动作,装置即启动。

过激磁:大型变压器的额定工作磁密和它的饱和工作磁密相差不大,据B=KU/f,当U/f增加时,工作磁密B增加,当铁心饱和后,励磁电流急剧增大,造成变压器过激磁,此时应装设过激磁保护。

(2) 瓦斯保护:

瓦斯保护是变压器的主保护,能有效地反映变压器内部故障。

轻瓦斯继电器由开口杯、干簧触点等组成,作用于信号。重瓦斯继电器由挡板、弹簧、干簧触点等组成,作用于跳闸。

正常运行时,瓦斯继电器充满油,开口杯浸在油内,处于上浮位置,干簧触点断开。 变压器内部故障时,故障点局部发热,引起油类溶解的空气逸出,同时,由于电离作用变压器油和其他杂质分解,形成气泡上升,进入瓦斯继电器的开口杯中,开口杯于是上浮,带动干簧触点接通,发出信号。

当变压器内部故障严重时,产生强烈的瓦斯,使主变压器内部压力突增,产生很大的油流向油枕方向冲击,因油流冲击挡板,挡板克服弹簧的阻力,使干簧触点接通,作用于跳闸。 差动保护不能代替瓦斯保护,因为差动保护不能反应铁心过热、油面下降等故障,当变压器绕组发生少数线匝的匝间短路时,虽然短路匝内短路电流很大,并会造成局部绕组严重过热,产生强烈的油流冲击,但表现在相电流上却并不大,因此差动保护没有反应。而瓦斯保护却能灵敏反应。

27日上午,参观二江电厂,220kv开关站。

戴上安全帽,别上实习证,我们走进了宽敞的二江电厂厂房。里面非常空旷,只看到地板上隆起的水轮发电机组顶部。四周墙壁上镶嵌着柜式的励磁装置与微机保护装置,不禁感叹电厂的现代化程度之高。当我们走到下一层,发电机组发出的强烈噪音震耳欲聋。我们看到了环形墙壁包围着的定子绕组,半径之大令人惊叹。串联变压器旁的消弧线圈也让人眼前一亮,原来课本上屡屡提到的减小容性短路电流的重要装置是这种体积并不大的柱状的。 - 5 -

走出厂房,我们参观了并列一字排开在厂房外的主变压器。在众多国产变压器当中,我们看到了ABB的变压器。这种变压器的噪音明显比周围的国产变压器小很多,让人感叹我们的技术水平较国外还差一大节。这些小房子一样大的主变下面,是被称为事故油池的由鹅卵石填充的池子,有抑制火势的作用。

220kV开关站是一块开阔的空旷地,上面树着数量众多却排列有序的杆塔。根据昨天的课程上所学的,双母线带旁路,旁路母线分段的接线方式。复杂的接线与各种各样的装置让我们眼花缭乱,断路器,隔离开关,母线,避雷器,阻波器……我们一开始并没有分清。在老师的讲解下,我们慢慢回忆起昨天学的东西。避雷器是装在母线上,不过有避雷器故障母线就跳闸的缺点。避雷器上有一个像碗一样倒扣着的环,是计数用的。三相线路在这里十分好认,大多数三相装置都标有黄绿红三种颜色,分别代表A、B、C三相。

27日下午,葛洲坝大江电厂电气一次部分介绍。

1.500kV开关站接线方式:

采用3/2接线——选择3/2接线方式,是基于开关站重要性考虑的。因为开关站进出线回数多,且均是重要电源与重要负荷,电压等级高、输送容量大、距离远,母线穿越功率大(最大2820MVA),并通过葛洲坝500kV换流站与华东电网并网,既是葛洲坝电厂电力外送的咽喉,又是华中电网重要枢纽变电站。3/2接线可以保证供电的高可靠性。

2.500kV开关站布置型式:

分相中型三列布置(户外式)。

3.开关站有关配置:

开关站共6串,每串均作交叉配置(交叉配置:一串的2回线路中,一回是电源或进线,另一回是负荷或出线),交叉配置是3/2接线方式普遍的配置原则,作交叉配置时,3/2接线可靠性达到最高。因为这种配置在一条母线检修时另一条母线故障或2条母线同时故障时电源与系统仍然相连接,(在系统处于稳定条件下)仍能够正常工作。

6条进线6条出线,其中4条进线由大江厂房引入,2条进线通过2台联络变压器从二江厂房引入。

1-6串的出线分别是:葛凤线、葛双1回、葛双2回、葛岗线、葛换2回、葛换1回。其中葛凤线、葛双2回、葛岗线首端分别装设并联电抗器(DK)。

1-6串的进线分别是:8B与10B并联引线、12B与14B并联引线、16B与18B并联引线、20B引线(上述各变压器共连接大江电厂14台发电机组)。例外两条进线是二江电厂220kV开关站与大江电厂500kV开关站两台联络变压器(251B、252B)的高压侧引出线。

4.发电机与主变压器的连接方式:

扩大单元接线方式——由于主变压器连接2台发电机,且1-3串进线由二台主变压器并联,所以在发电机出口母线上设置了断路器。这样当一台发电机故障时,仅切除故障发电机,本串上其他发电机仍能正常工作,最大限度保证了对系统供电的可靠性。

5.厂用6kV系统接线方式:

单母线分段方式。

6.葛洲坝电厂励磁方式

它励:备励系统

自并励:20F~21F 3F ,14F励磁系统

交流侧串联自复励:除上面的机组外都是

葛洲坝电厂1F~19F采用可控硅静止式交流侧串联自复励方式。 20F~21F采用可控硅静止式自并励方式,其一次电源接线与自复励相比,除没有CB外,其余部分都一样。

自并励方式与其他励磁方式相比,设备和接线都比较简单,可靠性高,降低了造价,励 - 6 -

磁调节速度很快,优点十分突出。但在发电机近机端短路时,由于机端电压很低,自并励系统强励能力差,由于短路电流的迅速衰减,带时限的继电保护有可能使拒动。交流侧串联自复励方式可以从励磁变和串联变同时获得电源,解决了发电机近机端 短路时的强励问题,但由于增加了串联变,设备和接线都变得复杂了。

在实际运行中,交流侧串联自复励系统存在的缺点:

(1)、串联变运行噪声很大;

(2)、串联变的电抗使整流柜的可控硅换相角和可控硅的关断尖峰电压增大;

(3)、由于整流柜阳极电压与发电机电压不同相位,且相位差在不同的运行状况下也不相同,故励磁调节器只能在整流柜阳极采取同步电压信号,而整流柜阳极的交流波形很差,可能使同步采样出现错误。

28日上午,参观三峡水电站。

我们从葛洲坝坐了差不多两个小时的车,终于到了三峡大坝。我们先看了特有的五级船闸,据介绍,船只通过船闸时,需要很长的时间,而在建的升船机,能提起3000吨以下的小船,提高船只通过大坝的效率。

之后我们来到坝面上,通过对比我觉得两边水位落差真的很大。江面非常宽广,远处的岸边与江中的小岛在雾蒙蒙的江面中看得并不清楚。而把天空整个倒影在水中的澄澈江水也非常美丽。这样壮观的大坝,让我非常敬佩大坝的建设者们,他们的智慧和汗水,是我们的骄傲。

28日下午,参观大江电厂。

从二江电厂到大江电厂破费周折,在这里,我们更详细地走进了厂房更下面的部分,里面结构复杂,却各有用处。我们有幸看到了连接水轮机与发电机的转轴,更进一步了解了发电厂各部分的构造。中央控制室的现代化也让我们激动不已,看到巨大的显示屏,老师为我们讲解了上面各个指示灯的含义,每个圆圈代表一台发电机,如果圆圈上的灯在旋转,则代表机组正常运行,如果出现故障,下面的故障指示灯亮起,显示何种故障。

29日下午,参观500kV开关站。

这里是我们实习的最后一站,同学们都精神集中地想最后再学点什么。这里是整个水电站电压最高的地方,一开始我们有点发怵,不过后来发现并没有那么危险。这里的母线结构是组合式的,为减小电晕而呈编织型。避雷器装在线路末端,牢牢守住母线的大门,避免雷电过电压波的侵害。由于电压等级高,这里的断路器有4个灭弧室,呈YY型。经过老师介绍,3/2接线也清楚明晰地展现在我们眼前。发现了课本中的知识在现实中找到了原形,我们都十分兴奋。在一旁摆着几台停用的变压器,原来是用作220kV与500kV系统的联络变压器,将电能远送到上海,不过最近附近出现了大负荷用户,所以考虑到经济性,就直接将220kV电送过去,联络变压器也就用不上了。一般隔离开关上连有接地刀闸,用于检修时安全接地,而且与隔离开关有特殊的机械构造,只有隔离开关断开,接地刀闸才能合上。电压互感器是圆柱状的,而电流互感器则是圆锥状,上细下粗,很好辨认。接着老师领我们看了钢筋铝绞线和串式绝缘子,第一次接触这些东西的我们十分兴奋。最后我们参观了位于不起眼角落的GIS,六氟化硫封闭式组合电器。这东西很小,差不多是一台变压器大小,不过却等同于我们刚才看到的那个庞大的接线场。麻雀虽小,五脏俱全,它适合放置于室内,减小占地面积,不过造价昂贵。

- 7 -

五、实习心得

第一次坐上火车离家那么远,到一个陌生的地方去实习,让我收获良多。实习是大学里必不可少的一课,它提供一个机会给我们,让我们去校验自己的知识是否正确,是否离实际太远,是否真正能派上用场,更重要的是通过实践去得知自己的知识是否足够。

曾经以为课堂上讲的东西只在考试时有用,在这次实习中发现错了。像3/2接线、母线分段、双母线带旁母、长线并联电抗器中性点经小电抗接地、单元接线等等的知识点,它们都实实在在的运用到电力系统中。如果你上课时没有认真学,那么你只能对着那架在高处的各种设备发呆,不得其解。俗话说得好,外行看热闹,内行看门道;只有你努力挤进这个门槛后,才会得知其中的奥妙。

创新是建立在深厚的知识基础上,以及实实在在的应用中。葛洲坝的220kV开光站的双母线带旁母分段,既是在双母线带旁母的基础上加上分段,使得整个系统的可靠性得以大大的提高。3/2接线也是一个承前的划时代创新。没有基础的创新是空中楼阁,没有应用的创新是美丽的花瓶。

这次实习还让我掂量到自己的水平,肚子里的知识还是太少了。在电力这个行业里,经验是非常非常的重要,但是没有扎实的基础又何以有机会去得到经验呢?纵然让你去做一件事,不得要领也是徒然的。现代化的企业,需要的是专业又全面的人才。在这次参观中,所有的厂房都是无人值班的,实行的是全自动化的电厂,这个是未来发展的趋势。要想在社会上有长足的发展,必须好好努力,打造不可替代的素质!

实习除了有知识上的收获,还有对社会人生的感悟。一直以来,我们作为学生,只是一味地获取知识,真正接触社会的机会少之又少。正所谓“读万卷书,行万里路”。从小到大,我们读过得书定是不少,而行的路却真的太少了。

- 8 -

更多类似范文
┣ 葛洲坝实习 8800字
┣ 毕业实习报告 13500字
┣ 三峡实习报告 12500字
┣ 毕业实习报告(经典范文) 8100字
┣ 更多葛洲坝电厂实习报告
┗ 搜索类似范文

更多相关推荐:
华科葛洲坝生产实习日志11600字

葛洲坝实习报告电气主接线是发电厂和变电所电气部分的主体它反映各设备的作用连接方式和回路间的相互关系所以它的设计直接关系到全厂电气设备的选择配电装置的布置继电保护自动装置和控制方式的确定对电力系统的安全经济运行起...

18101617 魏思瞧 三峡实习报告7100字

南京师范大学暑期三峡实习报告姓名学号院系指导老师日期目录1实习目的22实习单位23实习内容231三峡工程展览馆232三峡工程3321三峡工程简介3322三峡工程效益4323船闸和升船机8324三峡高边坡8325...

南昌大学电力系统实习报告2100字

实习报告实习内容:□认识实习(社会调查)□教学实习(□生产□临床□劳动)□毕业实习实习形式:□集中□分散学生姓名:学号:专业班级:实习单位:实习时间:20xx年x月x日一、实习目的了解电能生产的全过程及主要电气…

专栏推荐
大家在关注

地图地图CC