篇一 :机械原理知识点归纳总结

第一章 绪论

基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。

第二章 平面机构的结构分析

机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。

1. 机构运动简图的绘制

机构运动简图的绘制是本章的重点,也是一个难点。

为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对(运动副的性质和数目来检查)。

2. 运动链成为机构的条件

判断所设计的运动链能否成为机构,是本章的重点。

运动链成为机构的条件是:原动件数目等于运动链的自由度数目。

机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。

机构自由度计算是本章学习的重点。

准确识别复合铰链、局部自由度和虚约束,并做出正确处理。

(1) 复合铰链

复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。

正确处理方法: k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。

(2) 局部自由度

局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度。局部自由度常发生在为减小高副磨损而增加的滚子处。

正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度。

(3) 虚约束

虚约束是机构中所存在的不产生实际约束效果的重复约束。

正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算。

虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。

3. 机构的组成原理与结构分析

机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。

…… …… 余下全文

篇二 :机械原理知识点

1构件:具有确定运动的单元体组成的,这些运动单元体称为构件 零件:组成构件的制造单元体

运动副:两构件直接接触的可动联接

构件的自由度:构件的独立运动数目

运动链:若干个构件通过运动副所构成的系统

机架:固定的构件

原动件:机构中做独立运动的构件

从动件:机构中除原动件外其余的活动构件

运动链→机构:将运动链中的一个构件固定,并且它的一个或几个构件作给定的独立运动时,其余构件便随之作确定的运动,这样运动链就成了机构

2机构运动简图:表示机构中各构件间相对运动关系的简单图形。机构运动简图必须与原机械具有完全相同的运动特性。

示意图:只为了表明机械的结构,不按比例来绘制简图

3约束和自由度的关系:增加一个约束,构件就失去一个自由度 4机构具有确定运动的条件:机构自由度等于机构的原动件数

5瞬心:在任一瞬间,两构件的运动都可以看作是绕某一重合点的相对转动,该重合点称为他们的瞬心速度中心

绝对瞬心:运动构件上瞬时绝对速度为零的点

相对瞬心:两运动构件上瞬时绝对速度相等的重合点

6摩擦力增大并不是运动副元素材料间摩擦因数发生了变化,而是运动副元素的几何结构形状发生变化所致。

7摩擦圆:对于一具体的轴颈,r和fv为定值,因此ρ为定值,以轴心O为圆心,ρ为半径做一圆,该圆成为摩擦圆。

8机械自锁:由于摩擦的存在,会出现无论施加多大的驱动力,都不能使机械沿驱动方向产生运动的现象。 自锁条件:η≤0 机械发生自锁 9连杆机构(低副机构):若干个构件通过低副联接所组成的机构 10平面四杆机构基本形式:铰链四杆机构

11曲柄:在两连杆中能做整周回转机构

摇杆:只能在一定角度范围内摆动的构件

周转副:将两构件能做360°相对转动的转动副

摆动副:不能将两构件能做360°相对转动的转动副

12铰链四杆机构的曲柄存在条件:1最短杆与最长杆长度之和小于或等于其他两杆长度之和 2连架杆和机架中有一杆是最短杆

…… …… 余下全文

篇三 :《机械原理》基础知识点

《机械原理》基础知识点

1构件:具有确定运动的单元体组成的,这些运动单元体称为构件

零件:组成构件的制造单元体

运动副:两构件直接接触的可动联接

构件的自由度:构件的独立运动数目

运动链:若干个构件通过运动副所构成的系统

机架:固定的构件

原动件:机构中做独立运动的构件

从动件:机构中除原动件外其余的活动构件

运动链→机构:将运动链中的一个构件固定,并且它的一个或几个构件作给定的独立运动时,其余构件便随之作确定的运动,这样运动链就成了机构

2机构运动简图:表示机构中各构件间相对运动关系的简单图形。机构运动简图必须与原机械具有完全相同的运动特性。

示意图:只为了表明机械的结构,不按比例来绘制简图

3约束和自由度的关系:增加一个约束,构件就失去一个自由度

4机构具有确定运动的条件:机构自由度等于机构的原动件数

5瞬心:在任一瞬间,两构件的运动都可以看作是绕某一重合点的相对转动,该重合点称为他们的瞬心速度中心

绝对瞬心:运动构件上瞬时绝对速度为零的点

相对瞬心:两运动构件上瞬时绝对速度相等的重合点

6摩擦力增大并不是运动副元素材料间摩擦因数发生了变化,而是运动副元素的几何结构形状发生变化所致。

7摩擦圆:对于一具体的轴颈,r和fv为定值,因此ρ为定值,以轴心O为圆心,ρ为半径做一圆,该圆成为摩擦圆。

8机械自锁:由于摩擦的存在,会出现无论施加多大的驱动力,都不能使机械沿驱动方向产生运动的现象。 自锁条件:η≤0 机械发生自锁

9连杆机构(低副机构):若干个构件通过低副联接所组成的机构

10平面四杆机构基本形式:铰链四杆机构

11曲柄:在两连杆中能做整周回转机构

摇杆:只能在一定角度范围内摆动的构件

周转副:将两构件能做360°相对转动的转动副

摆动副:不能将两构件能做360°相对转动的转动副

12铰链四杆机构的曲柄存在条件:1最短杆与最长杆长度之和小于或等于其他两杆长度之和 2连架杆和机架中有一杆是最短杆

…… …… 余下全文

篇四 :机械原理考试知识点汇总

填空:1. 机械是机器和机构的总称。2.由两个构件直接接触而组成的可动的连接称为运动副,而把两构件上能够参加接触而构成运动副的表面称为副元素3.凡两物件同过单一点或线接触而构成的运动副称为高副,通过面接触而构成的运动副统称为低副4.机构中按给定的已知运动规律独立运动的构件称为原动件,常在其上面画转向箭头表示。5.平面机构自由度计算:F=3n-(2P1+Ph),P1为低副,Ph为高副,n为活动物件。6.转动副为周转副条件是:⑴最短杆长度+最长杆长度≦其余两杆长度之和,此条件称为杆长条件。⑵组成该周转副的两杆中必有一杆为最短杆。7.为了表明急回运动的急回程度,可使用行程速度变化系数行程速比系数K来衡量,即K=V2/V1=(C1*C2/t2)/(C1*C2/t1)=t1/t2= α1/α2  =(180度+θ)/180度-θ)。8.当原动件与连杆共线时为极位,当从动件与连杆共线时为死点9.在连杆设计时,不能要求其从动件在两个不连通的可行域内连续运动,例如要求从动件从位置CD连续运动到位置C’D,这是不可能。连杆机构的这种运动不连续称为错位不连续。当原动件按同一方向连续转动时,若其连杆不能按顺序通过给定的各个位置,这也是一种运动不连续,此称为错序不连续10.一对齿轮传动是依靠主动轮齿轮的齿廓,推动从动齿轮的齿廓来实现的,若两轮的传动能能实现预定的传动比(i12=w1/w2)规律,则两轮相互接触传动的一对齿廓称为共轭齿廓。11.连杆机构中,当原动件的运动规律不变,可通过改变各构件的长度来使从动件得到不同的运动规律。12.凸轮的类型:(1)安凸轮的形状分1盘形凸轮2圆柱凸轮(2)按推杆的形状分1尖顶推杆2滚子推杆3平底推杆13.凸轮的优缺点: 凸轮机构的最大优点是只要适当的设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且响应快速,机构简单紧凑。缺点是凸轮廓线与推杆之间为点、线接触,易磨损,凸轮制造叫困难。14. 在连杆机构中常用传动角的大小及变化来衡量机构传力性能好坏。简答:1.渐开线的形成:如图10-6所示,当一直线 BK沿一圆周作纯滚动时,直线上任意点k的轨迹AK就是该圆的渐开线。该圆称为渐开线的基圆,它的半径用rb表示,直线BK称为渐开线的发生线,角θk称为渐开线上k点的展角。2.渐开线特性:①发生线上BK(上带横线)线段长度等于基圆上被滚过的弧长AB(带弧度),即BK(上带横线)=AB(弧度)。②发生线BK即为渐开线在K点的法线,又因发生线恒切于基圆,故知渐开线在K点的法线恒于其基圆相切。③发生线于基圆的切点B也是渐开线在K点处的曲率中心,线段BK(弧度)就是渐开线在K点处的曲率半径,故渐开线越接近基圆部分的曲率半径越小,在基圆上其曲率半径为零。④渐开线的形式取决于基圆的大小,在展角相同处,基圆半径越大,其渐开线的曲率半径也越大,当基圆半径为无穷大时,其渐开线就变成一条直线,故齿条的齿痕曲线为直线。⑤基圆以内无渐开线。(两个图)3.齿轮的优缺点,分类?答:它依靠轮齿齿廓直接接触来传递空间任意两轴间的运动和动力。并且有传递功率范围大,传动效率高,传动比准确,使用寿命长,工作可靠等优点,但也存在对制造和安装精度要求高以及成本高等缺点。根据一对齿轮在齿合过程中其瞬时转动比(i12=W1/W2)是否恒定,将齿轮机构分为圆形(i12=常数)齿轮机构和非圆(i12≠常数)齿轮机构。圆形齿轮机构又可分为:①用于平行轴间的传动齿轮机构。 ②用于相交轴间传动齿轮机构。 ③用于交错轴间传动齿轮机构。4.计算平面机构自由度时应注意的事项:1.正确计算运动副数目:①两个以上的物品同在一处以转动副相连接,就构成了所谓的复合铰链有m个构件组成的复合铰链,共有(m-1)个转动副。②如果两构件在多处接触而构成转动副,且转动轴线重合。或者在多处接触而构成制动副,切移动方向彼此平行,或者两构件构成为平面高副,切各接触点的分法线彼此重合,则均只能算作一个运动副(一个运动副,一个移动副或一个平面高副)。③如果两构件在多处相接触所构成的平面高副,在各接触点公法线方向彼此不重合,就构成了符合高复,它相当于一个低副。2.要除去局部自由度:设机构的局部自由度数目F’,则机构实际自由度应为F=3n-(2P1+2Ph)-F’  3.要除去虚约束: ①机构中,如果用转动副连接的是两构件上运动轨迹相重合的点,则该连接将带入1个虚约束。②机构中,如果用双转动副秆连接的两运动构件上某两点之间的距离始终保持不变的两点,也将带入1个虚约束。③机构中,不影响机构运动传递的重复部分所带入的约束为虚约束,如设机构重复部分中的物件数为n’,低副数为P1’及高副部分所带入的虚约束P’为 P’=2P1’+Ph’-3n’ 5.连杆机构具有一下一些传动特点(1)连杆机构中的运动副一般均为低副 (2)在连杆机构中,在运动件的运动规律不变的条件下,可用改变各构件的相对长度来使从动件得到不同的运动规律(3)在连杆机构中,连杆上各点的轨迹是各种不同形状的曲线   缺点:(1)由于连杆机构的运动必须经过中间构件进行传递,因而传动路线较长,易产生较大的误差累计,同时也使机械效率降低(2)在连杆机构运动中,连杆及滑块所产生的惯性力难以用一般平衡方法加以消除,因而连杆机构不宜用于高速运动。

…… …… 余下全文

篇五 :机械原理知识点

机械原理知识点

零件:独立的制造单元

构件:机器中每一个独立的运动单元体

运动副:由两个构件直接接触而组成的可动的连接

运动副元素:把两构件上能够参加接触而构成的运动副表面

运动副的自由度和约束数的关系f=6-s

运动链:构件通过运动副的连接而构成的可相对运动系统

平面运动副的最大约束数为2,最小约束数为1;引入一个约束的运动副为高副,引入两个约束的运动副为平面低副

机构具有确定运动的条件:机构的原动件的数目应等于机构的自由度数目;根据机构的组成原理,任何机构都可以看成是由原动件、从动件和机架组成

高副:两构件通过点线接触而构成的运动副

低副:两构件通过面接触而构成的运动副

由M个构件组成的复合铰链应包括M-1个转动副

平面自由度计算公式:F=3n-(2Pl+Ph)

局部自由度:在有些机构中某些构件所产生的局部运动而不影响其他构件的运动 虚约束:在机构中有些运动副带入的约束对机构的运动只起重复约束的作用

虚约束的作用:为了改善机构的受力情况,增加机构刚度或保证机械运动的顺利 基本杆组:不能在拆的最简单的自由度为零的构件组

速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点。若绝对速度为零,则该瞬心称为绝对瞬心

相对速度瞬心与绝对速度瞬心的相同点:互作平面相对运动的两构件上瞬时相对速度为零的点;不同点:后者绝对速度为零,前者不是

三心定理:三个彼此作平面平行运动的构件的三个瞬心必位于同一直线上

速度多边形:根据速度矢量方程按一定比例作出的各速度矢量构成的图形

驱动力:驱动机械运动的力

阻抗力:阻止机械运动的力

矩形螺纹螺旋副:

拧紧:M=Qd2tan(α+φ)/2

放松:M’=Qd2tan(α-φ)/2

三角螺纹螺旋副:

拧紧:M=Qd2tan(α+φv)/2

放松:M=Qd2tan(α-φv)/2

质量代换法:为简化各构件惯性力的确定,可以设想把构件的质量按一定条件用集中于构件上某几个选定点的假想集中质量来代替,这样便只需求各集中质量的惯性力,而无需求惯性力偶距,从而使构件惯性力的确定简化

…… …… 余下全文

篇六 :机械原理知识点

机械原理知识点

2. 机构组成:

机构的自由度计算; 机构具有确定运动的条件;机构的结构分类(包括高副低代)。

3. 机构运动:

用瞬心法求速度或角速度; 矢量方程求速度、加速度(注意方向、选择题); 速度影像法的应用;速度多边形、加速度多边形的特点。

45. 力分析、效率、自锁:

考虑摩擦时力的真实方向(二力杆);运动副自锁条件(移动副、转动副、螺旋副)、机械自锁条件

67. 平衡、调速:

动平衡、静平衡的平衡原理、区别;机械稳定运转阶段功能关系(功能原理);速度不均匀系数、飞轮转动惯量的计算(最大盈亏功、示功图)

8. 连杆:

曲柄存在条件,判断铰链四杆机构类型或给定类型求其中一杆长范围;急回及判定,图解作极位夹角;死点及判定;压力角传动角图解,最小传动角可能出现的位置。

9. 凸轮:

图解法绘制凸轮轮廓(尖顶、磙子、对心、偏置);压力角、位移求解(注意:反转法); 运动规律的动力学性能,凸轮机构的运动过程及概念(基圆、升程或行程、位移、推程、回程、远休止、近休止);凸轮机构基本尺寸的确定。

10. 齿轮:

渐开线的性质; 标准直齿圆柱齿轮的尺寸计算;齿轮传动比的定义

(直齿、斜齿、圆锥、蜗杆)正确啮合、标准参数面、各类型传动特点;

连续传动条件(重合度定义及物理意义); 理论、实际啮合线(5线合一); 什么是标准中心距? 传动中心距的可分性;分度圆与节圆的关系?

非标准中心距安装时中心距与啮合角的关系(公式);

齿轮齿条啮合的特殊性; 当量齿轮及当量齿数(公式); 根切及原因; 变位加工目的,加工刀具位置;

变位传动与变位的区别(正传动都是正变位齿轮吗?);

高度变位(角度变位)齿轮与标准齿轮比较各部分尺寸有什么变化?

变位齿轮传动类型、设计(等变位、不等变位)

斜齿轮、蜗杆传动的啮合特点;

…… …… 余下全文

篇七 :机械原理总结

    机构和零件不同,构件是(运动的单元 ),而零件是(制造的单元 )。

    凸轮的基圆半径越小,则机构尺寸(越大 )但过于小的基圆半径会导致压力角(增大 )。

    用齿条型刀具范成法切制渐开线齿轮时,为使标准齿轮不发生根切,应使刀具的(齿顶线不超过极限啮合点  )。

    间歇凸轮机构是将(主动轮的连续转动)转化为(从动转盘的间歇 )的运动。

    机械的等效动力学模型的建立,其等效原则是:等效构件所具有的动能应( 等于整个系统的总动能 )。等效力、等效力矩所作的功或瞬时功率应(等于整个系统的所有力,所有力矩所作的功或所产生的功率之和  )。

    高副低代中的虚拟构件的自由度为(  -1 ).

重合度 表示一对轮齿啮合的时间在齿轮转过一个基圆齿距的时间内占(  40%   )。

   

    齿数为Z,分度圆柱螺旋角为β的斜齿圆柱齿轮其当量齿数为( ZV=Z/COS3β  )

    斜齿圆柱齿轮的螺旋角β偏大,会使( 轴向力过大)

机构中的构件可分为_原动件___、 _从动件__、  _机架__。

    常用的齿轮加工方法有成形法和__范成发_____。

    机构处于死点位置时,其( 传动角γ=0  )

    若标准齿轮与正变位齿轮的参数m,Z,α,ha*均相同,则后者比前者的:齿根高  变大   ,分度圆直径  不变   ,分度圆齿厚  变大  ,周节  不变 

…… …… 余下全文

篇八 :机械原理重要概念总结

机械原理重要概念总结

零件:独立的制造单元 \ 构件:机器中每一个独立的运动单元体 \ 运动副:由两个构件直

接接触而组成的可动的连接 \ 运动副元素:把两构件上能够参加接触而构成的运动副表面

高副:凡两构件通过单一点或线接触而构成的运动副称为高副。

低副:通过面接触而构成的运动副统称为低副。

4. 空间自由运动有6歌自由度,平面运动的构件有3个自由度。

构件的自由度:构件的独立运动数目   \  运动链:构件通过运动副的连接而构成的

可相对运动系统  \  机架:固定的构件 \ 原动件:机构中做独立运动的构件

 从动件:机构中除原动件外其余的活动构件

 运动链→机构:将运动链中的一个构件固定,并且它的一个或几个构件作给定

的独立运动时,其余构件便随之作确定的运动,这样运动链就成了机构

2机构运动简图:表示机构中各构件间相对运动关系的简单图形。机构运动简图

必须与原机械具有完全相同的运动特性。

  示意图:只为了表明机械的结构,不按比例来绘制简图

3约束和自由度的关系:增加一个约束,构件就失去一个自由度

4机构具有确定运动的条件:机构自由度等于机构的原动件数

5瞬心:在任一瞬间,两构件的运动都可以看作是绕某一重合点的相对转动,该

重合点称为他们的瞬心速度中心

绝对瞬心:运动构件上瞬时绝对速度为零的点

  

相对瞬心:两运动构件上瞬时绝对速度相等的重合点

9连杆机构(低副机构):若干个构件通过低副联接所组成的机构

10平面四杆机构基本形式:铰链四杆机构

11曲柄:在两连杆中能做整周回转机构

  摇杆:只能在一定角度范围内摆动的构件

 周转副:将两构件能做360°相对转动的转动副

 摆动副:不能将两构件能做360°相对转动的转动副

…… …… 余下全文